1
|
Burke W, Barkley J, Barrows E, Brooks R, Gecsi K, Huber-Keener K, Jeudy M, Mei S, O'Hara JS, Chelmow D. Executive Summary of the Ovarian Cancer Evidence Review Conference. Obstet Gynecol 2023; 142:179-195. [PMID: 37348094 PMCID: PMC10278568 DOI: 10.1097/aog.0000000000005211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/29/2022] [Accepted: 01/19/2023] [Indexed: 06/24/2023]
Abstract
The Centers for Disease Control and Prevention awarded funding to the American College of Obstetricians and Gynecologists to develop educational materials for clinicians on gynecologic cancers. The American College of Obstetricians and Gynecologists convened a panel of experts in evidence review from the Society for Academic Specialists in General Obstetrics and Gynecology and content experts from the Society of Gynecologic Oncology to review relevant literature, best practices, and existing practice guidelines as a first step toward developing evidence-based educational materials for women's health care clinicians about ovarian cancer. Panel members conducted structured literature reviews, which were then reviewed by other panel members and discussed at a virtual meeting of stakeholder professional and patient advocacy organizations in February 2022. This article is the executive summary of the relevant literature and existing recommendations to guide clinicians in the prevention, early diagnosis, and special considerations of ovarian cancer. Substantive knowledge gaps are noted and summarized to provide guidance for future research.
Collapse
Affiliation(s)
- William Burke
- Departments of Obstetrics and Gynecology, Stony Brook University Hospital, New York, New York, Creighton University School of Medicine, Phoenix, Arizona, Virginia Commonwealth University School of Medicine, Richmond, Virginia, the University of California, Davis, Davis, California, the Medical College of Wisconsin, Milwaukee, Wisconsin, the University of Iowa Hospitals and Clinics, Iowa City, Iowa, and New York University Langone School of Medicine, New York; and the American College of Obstetricians and Gynecologists, Washington, DC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Canellas R, Rosenkrantz AB, Taouli B, Sala E, Saini S, Pedrosa I, Wang ZJ, Sahani DV. Abbreviated MRI Protocols for the Abdomen. Radiographics 2019; 39:744-758. [PMID: 30901285 DOI: 10.1148/rg.2019180123] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Technical advances in MRI have improved image quality and have led to expanding clinical indications for its use. However, long examination and interpretation times, as well as higher costs, still represent barriers to use of MRI. Abbreviated MRI protocols have emerged as an alternative to standard MRI protocols. These abbreviated MRI protocols seek to reduce longer MRI protocols by eliminating unnecessary or redundant sequences that negatively affect cost, MRI table time, patient comfort, image quality, and image interpretation time. However, the diagnostic information is generally not compromised. Abbreviated MRI protocols have already been used successfully for hepatocellular carcinoma screening, for prostate cancer detection, and for screening for nonalcoholic fatty liver disease as well as monitoring patients with this disease. It has been reported that image acquisition time and costs can be considerably reduced with abbreviated MRI protocols, compared with standard MRI protocols, while maintaining a similar sensitivity and accuracy. Nevertheless, multiple applications still need to be explored in the abdomen and pelvis (eg, surveillance of metastases to the liver; follow-up of cystic pancreatic lesions, adrenal incidentalomas, and small renal masses; evaluation of ovarian cysts in postmenopausal women; staging of cervical and uterine corpus neoplasms; evaluation of müllerian duct anomalies). This article describes some successful applications of abbreviated MRI protocols, demonstrates how they can help in improving the MRI workflow, and explores potential future directions. ©RSNA, 2019.
Collapse
Affiliation(s)
- Rodrigo Canellas
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (R.C., S.S., D.V.S.); Department of Radiology, NYU Langone Health, New York, NY (A.B.R.); Department of Radiology, Mount Sinai Hospital, New York, NY (B.T.); Department of Radiology, University of Cambridge, Cambridge, England (E.S.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (I.P.); and Department of Radiology, UCSF Medical Center, San Francisco, Calif (Z.J.W.)
| | - Andrew B Rosenkrantz
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (R.C., S.S., D.V.S.); Department of Radiology, NYU Langone Health, New York, NY (A.B.R.); Department of Radiology, Mount Sinai Hospital, New York, NY (B.T.); Department of Radiology, University of Cambridge, Cambridge, England (E.S.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (I.P.); and Department of Radiology, UCSF Medical Center, San Francisco, Calif (Z.J.W.)
| | - Bachir Taouli
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (R.C., S.S., D.V.S.); Department of Radiology, NYU Langone Health, New York, NY (A.B.R.); Department of Radiology, Mount Sinai Hospital, New York, NY (B.T.); Department of Radiology, University of Cambridge, Cambridge, England (E.S.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (I.P.); and Department of Radiology, UCSF Medical Center, San Francisco, Calif (Z.J.W.)
| | - Evis Sala
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (R.C., S.S., D.V.S.); Department of Radiology, NYU Langone Health, New York, NY (A.B.R.); Department of Radiology, Mount Sinai Hospital, New York, NY (B.T.); Department of Radiology, University of Cambridge, Cambridge, England (E.S.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (I.P.); and Department of Radiology, UCSF Medical Center, San Francisco, Calif (Z.J.W.)
| | - Sanjay Saini
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (R.C., S.S., D.V.S.); Department of Radiology, NYU Langone Health, New York, NY (A.B.R.); Department of Radiology, Mount Sinai Hospital, New York, NY (B.T.); Department of Radiology, University of Cambridge, Cambridge, England (E.S.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (I.P.); and Department of Radiology, UCSF Medical Center, San Francisco, Calif (Z.J.W.)
| | - Ivan Pedrosa
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (R.C., S.S., D.V.S.); Department of Radiology, NYU Langone Health, New York, NY (A.B.R.); Department of Radiology, Mount Sinai Hospital, New York, NY (B.T.); Department of Radiology, University of Cambridge, Cambridge, England (E.S.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (I.P.); and Department of Radiology, UCSF Medical Center, San Francisco, Calif (Z.J.W.)
| | - Zhen J Wang
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (R.C., S.S., D.V.S.); Department of Radiology, NYU Langone Health, New York, NY (A.B.R.); Department of Radiology, Mount Sinai Hospital, New York, NY (B.T.); Department of Radiology, University of Cambridge, Cambridge, England (E.S.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (I.P.); and Department of Radiology, UCSF Medical Center, San Francisco, Calif (Z.J.W.)
| | - Dushyant V Sahani
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (R.C., S.S., D.V.S.); Department of Radiology, NYU Langone Health, New York, NY (A.B.R.); Department of Radiology, Mount Sinai Hospital, New York, NY (B.T.); Department of Radiology, University of Cambridge, Cambridge, England (E.S.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (I.P.); and Department of Radiology, UCSF Medical Center, San Francisco, Calif (Z.J.W.)
| |
Collapse
|
4
|
Kamal R, Hamed S, Mansour S, Mounir Y, Abdel Sallam S. Ovarian cancer screening-ultrasound; impact on ovarian cancer mortality. Br J Radiol 2018; 91:20170571. [PMID: 30102555 DOI: 10.1259/bjr.20170571] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although ovarian cancer (OC) is the most lethal of all female malignancies, debate still exists concerning the benefits and harms of the screening programs and their impact on long-term survival and mortality from the disease. The most widely tested screening strategies have focused on transvaginal ultrasound (TVU) and on algorithms that measure serum levels or interval changes of cancer antigen-125 (CA-125) either individually or in combination. Transvaginal ultrasound can identify size and morphology changes of the ovary that may signal a developing malignancy; yet, it is still accused of having a low specificity. There is preliminary evidence that screening can improve survival, but the impact of screening on mortality from OC is still unclear and warrants further validation. In spite of having many published prospective studies, up to-date, none have been able to demonstrate conclusively a reduction in mortality from OC both in the screened general or high-risk population. Data from the US Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial has not shown survival or mortality benefits in the general population. Most prospective trials have reported a decrease in stage at detection (with the exception of the PLCO trial), thereby allowing treatment to be initiated when the disease is most curable. Research is in progress to develop new diagnostic tests and novel biomarkers, which when used in combination can increase the accuracy and outcomes of screening. In this review article, we will discuss the debate provoked on OC screening programs and the impact of using ultrasound on the reduction of OC-related mortality.
Collapse
Affiliation(s)
- Rasha Kamal
- 1 Radiology Department, Faculty of Medicine - Kasr ElAiny Hospital, (women' s imaging unit), Cairo University , Giza , Egypt
| | - Soha Hamed
- 1 Radiology Department, Faculty of Medicine - Kasr ElAiny Hospital, (women' s imaging unit), Cairo University , Giza , Egypt
| | - Sahar Mansour
- 1 Radiology Department, Faculty of Medicine - Kasr ElAiny Hospital, (women' s imaging unit), Cairo University , Giza , Egypt
| | - Yasmine Mounir
- 1 Radiology Department, Faculty of Medicine - Kasr ElAiny Hospital, (women' s imaging unit), Cairo University , Giza , Egypt
| | - Sahar Abdel Sallam
- 2 Radiology Department, Faculty of Medicine, Beni Suef University , Beni Suef , Egypt
| |
Collapse
|