1
|
Bharal B, Ruchitha C, Kumar P, Pandey R, Rachamalla M, Niyogi S, Naidu R, Kaundal RK. Neurotoxicity of per- and polyfluoroalkyl substances: Evidence and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176941. [PMID: 39454776 DOI: 10.1016/j.scitotenv.2024.176941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals widely used in various products, including food packaging, textiles, and firefighting foam, owing to their unique properties such as amphiphilicity and strong CF bonds. Despite their widespread use, concerns have arisen due to their resistance to degradation and propensity for bioaccumulation in both environmental and human systems. Emerging evidence suggests a potential link between PFAS exposure and neurotoxic effects, spanning cognitive deficits, neurodevelopmental disorders, and neurodegenerative diseases. This review comprehensively synthesizes current knowledge on PFAS neurotoxicity, drawing insights from epidemiological studies, animal experiments, and mechanistic investigations. PFAS, known for their lipophilic nature, tend to accumulate in lipid-rich tissues, including the brain, breaching biological barriers such as the blood-brain barrier (BBB). The accumulation of PFAS within the central nervous system (CNS) has been implicated in a spectrum of neurological maladies. Neurotoxicity induced by PFAS manifests through a multitude of direct and indirect mechanisms. A growing body of research associated PFAS exposure with BBB disruption, calcium dysregulation, neurotransmitter alterations, neuroinflammation, oxidative stress, and mitochondrial dysfunction, all contributing to neuronal impairment. Despite notable strides in research, significant lacunae persist, necessitating further exploration to elucidate the full spectrum of PFAS-mediated neurotoxicity. Prospective research endeavors should prioritize developing biomarkers, delineating sensitive exposure windows, and exploring mitigation strategies aimed at safeguarding neurological integrity within populations vulnerable to PFAS exposure.
Collapse
Affiliation(s)
- Bhagyashree Bharal
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Chanda Ruchitha
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Paarth Kumar
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rukmani Pandey
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ravinder K Kaundal
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India; Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| |
Collapse
|
2
|
Wang Z, Liang C, Shi LL, Zhu CS, Wang S, Nakayama SF, Kido T, Sun XL, Shan J. Associations Between Heavy Metal Exposure from Milk and Steroid Hormones in Mothers. Biol Trace Elem Res 2024:10.1007/s12011-024-04466-0. [PMID: 39633227 DOI: 10.1007/s12011-024-04466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Environmental exposure to heavy metals is ubiquitous. However, its relationship with steroid hormone levels is not well understood, particularly in pregnant women. This study investigated the association between prenatal heavy metal exposure and steroid hormone levels in an e-waste disposal area in China. We analyzed the Cd, Cr, Mn, Pb, Cu, and As concentrations in 102 human milk samples collected 4 weeks after delivery. Multiple regression analysis was used to assess the associations and interactions between heavy metals and steroidal hormones. We found positive associations between Mn and estrone and estriol (estrone: β = 0.713, 95%CI = 0.046, 1.381 and estriol: β = 1.290, 95%CI = 0.494, 2.085) and between Cd and progesterone (β = 0.280; 95%CI = 0.053, 0.506). We observed negative associations between Cr and estrone and estriol (estrone: β = - 0.757, 95%CI = - 1.473, - 0.041 and estriol: β = - 1.354, 95%CI = - 2.209, - 0.499). At last, we found that Pb was negatively associated with estrone (estrone: β = - 0.537, 95%CI = - 1.053, - 0.020). Our results suggest that exposure to heavy metals may affect steroid hormone levels in mothers living in an e-waste recycling area in China.
Collapse
Affiliation(s)
- Zheng Wang
- School of Medicine, Jiaxing University, Jiaxing, China
- School of Medicine, and The First Affiliated Hospital, Huzhou University, Huzhou, China
| | - Caixia Liang
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Li Li Shi
- School of Medicine, Jiaxing University, Jiaxing, China
| | - Cheng-Sheng Zhu
- Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Shenghang Wang
- School of Public Health, Shandong University, Jinan, China
| | - Shoji F Nakayama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan
| | - Teruhiko Kido
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Xian Liang Sun
- School of Medicine, and The First Affiliated Hospital, Huzhou University, Huzhou, China.
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Jiancong Shan
- School of Medicine, and The First Affiliated Hospital, Huzhou University, Huzhou, China.
| |
Collapse
|
3
|
Du X, Wu Y, Tao G, Xu J, Du Z, Wu M, Gu T, Xiong J, Xiao S, Wei X, Ruan Y, Xiao P, Zhang L, Zheng W. Association between PFAS exposure and thyroid health: A systematic review and meta-analysis for adolescents, pregnant women, adults and toxicological evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175958. [PMID: 39233077 DOI: 10.1016/j.scitotenv.2024.175958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
A burgeoning body of epidemiological and toxicological evidence suggests that thyroid health may be significantly impacted by exposure to both long- and short-chain perfluoroalkyl substances (PFAS) compounds. We conducted a meta-analysis to examine the association between 16 PFAS compounds and five thyroid hormones (TSH, TT3, TT4, FT3, and FT4) in the serum of a pregnant women, adolescents, and adults. The dose-response relationship between some PFAS and thyroid hormones in different population subpopulation was found and the model was fitted. We also amalgamated data from 18 animal experiments with previously published in vitro studies to elucidate the toxicological mechanisms underlying the impact of PFAS on the thyroid gland. The results of the study showed that (a) both conventional and emerging PFAS compounds were identified in human samples and exhibited associations with thyroid health outcomes; (b) in animal studies, PFAS have been found to impact thyroid gland health through two primary mechanisms: by influencing the hypothalamic-pituitary-thyroid axis and by binding to thyroid receptors. This study provides a systematic description of the health effects and risk assessment associated with PFAS exposure on the thyroid gland. Furthermore, dose-response relationships were established through the Hill model in python.
Collapse
Affiliation(s)
- Xiushuai Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Yitian Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Gonghua Tao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jun Xu
- Department of Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Zhiyuan Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Minjuan Wu
- Department of Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Tianmin Gu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jiasheng Xiong
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yuanyuan Ruan
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ping Xiao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Ling Zhang
- Department of Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Hajjar R, Hatoum S, Mattar S, Moawad G, Ayoubi JM, Feki A, Ghulmiyyah L. Endocrine Disruptors in Pregnancy: Effects on Mothers and Fetuses-A Review. J Clin Med 2024; 13:5549. [PMID: 39337036 PMCID: PMC11432155 DOI: 10.3390/jcm13185549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Endocrine disruptors are ubiquitous agents in the environment and are present in everyday consumer products. These agents can interfere with the endocrine system, and subsequently the reproductive system, especially in pregnancy. An increasing number of studies have been conducted to discover and describe the health effects of these agents on humans, including pregnant women, their fetuses, and the placenta. This review discusses prenatal exposure to various endocrine disruptors, focusing on bisphenols, phthalates, organophosphates, and perfluoroalkyl substances, and their effects on pregnancy and fetal development. Methods: We reviewed the literature via the PubMed and EBSCO databases and included the most relevant studies. Results: Our findings revealed that several negative health outcomes were linked to endocrine disruptors. However, despite the seriousness of this topic and the abundance of research on these agents, it remains challenging to draw strong conclusions about their effects from the available studies. This does not allow for strong, universal guidelines and might result in poor patient counseling and heterogeneous approaches to regulating endocrine disruptors. Conclusions: The seriousness of this matter calls for urgent efforts, and more studies are needed in this realm, to protect pregnant patients, and ultimately, in the long term, society.
Collapse
Affiliation(s)
- Rima Hajjar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sana Hatoum
- Foundation for Research and Education Excellence, Vestavia, AL 35243, USA
| | - Serge Mattar
- Fertility & IVF Clinic, Dubai P.O. Box 72960, United Arab Emirates
| | - Gaby Moawad
- Department of Obstetrics and Gynecology, The George Washington University Hospital, Washington, DC 20037, USA
| | - Jean Marc Ayoubi
- Department of Obstetrics and Gynecology and Reproductive Medicine, Hôpital Foch-Faculté de Médecine, Suresnes, 92150 Paris, France
| | - Anis Feki
- Department of Obstetrics and Gynecology and Reproductive Medicine, HFR-Hopital Fribourgeois, Chemin des Pensionnats 2-6, 1708 Fribourg, Switzerland
| | - Labib Ghulmiyyah
- Women's Specialty Care of Florida, Pediatrix Medical Group, Fort Lauderdale, FL 33316, USA
| |
Collapse
|
5
|
Gaillard L, Barouki R, Blanc E, Coumoul X, Andréau K. Per- and polyfluoroalkyl substances as persistent pollutants with metabolic and endocrine-disrupting impacts. Trends Endocrinol Metab 2024:S1043-2760(24)00202-9. [PMID: 39181731 DOI: 10.1016/j.tem.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
The widespread use of per- and polyfluoroalkyl substances (PFASs), and their resistance to degradation, renders human exposure to them inevitable. PFAS exposure disturbs endocrine function, potentially affecting cognitive development in newborns through thyroid dysfunction during pregnancy. Recent studies reveal varying male and female reproductive toxicity across PFAS classes, with alternative analogs affecting sperm parameters and legacy PFASs correlating with conditions like endometriosis. Metabolically, PFASs exposure is linked to metabolic disorders, including obesity, type 2 diabetes mellitus (T2DM), dyslipidemia, and liver toxicity, particularly in early childhood. This review focuses on the endocrine-disrupting impact of PFASs, particularly on fertility, thyroid, and metabolic functions. We highlight the complexity of the PFAS issue, given the large number of molecules and their extremely diverse mixed effects.
Collapse
Affiliation(s)
- Lucas Gaillard
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Robert Barouki
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Etienne Blanc
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Xavier Coumoul
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France.
| | - Karine Andréau
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| |
Collapse
|
6
|
Coperchini F, Teliti M, Greco A, Croce L, Rotondi M. Per-polyfluoroalkyl substances (PFAS) as thyroid disruptors: is there evidence for multi-transgenerational effects? Expert Rev Endocrinol Metab 2024; 19:307-315. [PMID: 38764236 DOI: 10.1080/17446651.2024.2351885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION The environmental spread of pollutants has led to a persistent exposure of living beings to multiple chemicals, by now become ubiquitous in the surrounding environment. Environmental exposure to these substances has been reported to cause multi- and/or transgenerational health effects. Per- and Polyfluorinated Substances (PFAS) raise great concern, given their known effects both as endocrine disruptors and potential carcinogens. The multi/trans-generational effects of different endocrine disruptors have been investigated by several studies, and harmful effects observed also for PFAS. AREAS COVERED This review examines the current data on the multi-trans-generational effects of PFAS, with a focus on their impact on the thyroid axis. The aim is to determine if there is evidence of potential multi-trans-generational effects of PFAS on the thyroid and/or if more research is needed. EXPERT OPINION PFAS exposure impacts thyroid homeostasis and can cross the placental barrier. In addition PFAS have shown multi-transgenerational effects in laboratory experiences and animal models, but thyroid disruptive effects of PFAS were also investigated only in a small number of these studies. Efforts are needed to study the adverse effects of PFAS, as not all PFAS are regulated and removal strategies are still being developed.
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
| | - Marsida Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
| | - Alessia Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia, Italy
| |
Collapse
|
7
|
Pearce EN. Endocrine Disruptors and Thyroid Health. Endocr Pract 2024; 30:172-176. [PMID: 37956907 DOI: 10.1016/j.eprac.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
A wide variety of thyroidal endocrine-disrupting chemicals (EDCs) have been identified. Exposure to known thyroidal EDCs is ubiquitous, and many likely remain unidentified. The sources of exposure include contaminated drinking water, air pollution, pesticides and agricultural chemicals, flame retardants, cleaning supplies, personal care products, food additives and packaging materials, coatings and solvents, and medical products and equipment. EDCs can affect thyroid hormone synthesis, transport, metabolism, and action in a myriad of ways. Understanding the health effects of thyroidal EDCs has been challenging because individuals may have multiple concomitant EDC exposures and many potential EDCs are not yet well characterized. Because of the importance of thyroid hormone for brain development in early life, pregnant women and young infants are particularly vulnerable to the effects of environmental thyroid disruption. The thyroidal effects of some EDCs may be exacerbated in iodine-deficient individuals, those with thyroid autoimmunity, and those with mutations in deiodinase genes. Differential exposures to EDCs may exacerbate health disparities in disadvantaged groups. High-throughput in vitro assays and in silico methods and methods that can detect the effects of relevant EDC mixtures are needed. In addition, optimal methods for detecting the effects of thyroidal EDCs on neurodevelopment need to be developed. Common sense precautions can reduce some thyroidal EDC exposures; however, regulation of manufacturing and drinking water content will ultimately be needed to protect populations.
Collapse
Affiliation(s)
- Elizabeth N Pearce
- Section of Endocrinology, Diabetes, Nutrition, and Weight Management, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts.
| |
Collapse
|
8
|
Kaplan ZB, Pearce EN, Lee SY, Shin HM, Schmidt RJ. Maternal Thyroid Dysfunction During Pregnancy as an Etiologic Factor in Autism Spectrum Disorder: Challenges and Opportunities for Research. Thyroid 2024; 34:144-157. [PMID: 38149625 PMCID: PMC10884547 DOI: 10.1089/thy.2023.0391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Background: Autism spectrum disorder (ASD) is a neurodevelopmental condition with unknown etiology. Both genetic and environmental factors have been associated with ASD. Environmental exposures during the prenatal period may play an important role in ASD development. This narrative review critically examines the evidence for a relationship between maternal thyroid dysfunction during pregnancy and ASD in the child. Summary: Studies that assessed the associations of hypothyroidism, hyperthyroidism, hypothyroxinemia, thyroid hormone concentrations, or autoimmune thyroid disease with ASD outcomes were included. Most research focused on the relationship between hypothyroidism and ASD. Multiple population-based studies found that maternal hypothyroidism was associated with higher likelihood of an ASD diagnosis in offspring. Associations with other forms of maternal thyroid dysfunction were less consistent. Findings may have been affected by misclassification bias, survival bias, or publication bias. Studies using medical records may have misclassified subclinical thyroid dysfunction as euthyroidism. Two studies that assessed children at early ages may have misclassified those with ASD as typically developing. Most studies adjusted for maternal body mass index (BMI) and/or mental illness, but not interpregnancy interval or pesticide exposure, all factors associated with fetal survival and ASD. Most studies reported a combination of null and statistically significant findings, although publication bias is still possible. Conclusions: Overall, evidence supported a positive association between maternal thyroid dysfunction during pregnancy and ASD outcomes in the child, especially for hypothyroidism. Future studies could reduce misclassification bias by using laboratory measures instead of medical records to ascertain thyroid dysfunction and evaluating children for ASD at an age when it can be reliably detected. Survival bias could be further mitigated by adjusting models for more factors associated with fetal survival and ASD. Additional research is needed to comprehensively understand the roles of maternal levothyroxine treatment, iodine deficiency, or exposure to thyroid-disrupting compounds in the relationship between maternal thyroid dysfunction and child ASD outcomes.
Collapse
Affiliation(s)
- Zoe B. Kaplan
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, California, USA
| | - Elizabeth N. Pearce
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition, and Weight Management, Boston University Chobanian & Avesidian School of Medicine, Boston, Massachusetts, USA
| | - Sun Y. Lee
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition, and Weight Management, Boston University Chobanian & Avesidian School of Medicine, Boston, Massachusetts, USA
| | - Hyeong-Moo Shin
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, California, USA
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, USA
| |
Collapse
|