1
|
Liu G, Fan X, Cai Y, Fu Z, Gao F, Dong J, Li K, Cai J. Efficacy of dendritic cell-based immunotherapy produced from cord blood in vitro and in a humanized NSG mouse cancer model. Immunotherapy 2020; 11:599-616. [PMID: 30943862 DOI: 10.2217/imt-2018-0103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM To produce dendritic cells (DCs) from CD34+ stem cells from cord blood and explore their prophylactic and curative effect against tumors by vaccinating humanized NSG mice. MATERIALS & METHODS Separated CD34+ stem cells from cord blood were cultured for 30 days, and the resultant DCs (CD34-DCs) were collected. The basic function of the CD34-DCs and the cytotoxicity of CD34-cytotoxic-T lymphocytes (CTLs) were tested in vitro, and tumor inhibition in a humanized NSG mouse tumor model was observed. RESULTS The number of CD34-DCs reached approximately 9 log. These cells performed functions similar to those of DCs derived from monocytes from peripheral blood (PBMC-DCs). The CTLs of the CD34-DCs (CD34-CTLs) presented a better antitumor effect in vitro. The obvious prophylactic and therapeutic antitumor effects of the CD34-DC vaccine were observed in the humanized NSG mouse models. CONCLUSION CD34-DCs from cord blood were sufficient in quantity and quality as a vaccine agent against tumors in vitro and in vivo.
Collapse
Affiliation(s)
- Gang Liu
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China.,Department of Surgery, Hebei General Hospital, 348 Heping West Road, Shijiazhuang 050051, China
| | - Xiaoyan Fan
- Department of Oncology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang 050051, China
| | - Ying Cai
- Department of Research and Development, Hebei Engineering Technology Research Center for Cell Therapy, Hebei HOFOY Biotech Corporation Ltd, 238 Changjiang Aveneu, Shijiazhuang 500350, China
| | - Zexian Fu
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Fei Gao
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Jiantao Dong
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China.,Department of Surgery, Hebei General Hospital, 348 Heping West Road, Shijiazhuang 050051, China
| | - Kang Li
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Jianhui Cai
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China.,Department of Surgery, Hebei General Hospital, 348 Heping West Road, Shijiazhuang 050051, China.,Department of Oncology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang 050051, China
| |
Collapse
|
2
|
Dierckx de Casterlé I, Billiau AD, Sprangers B. Recipient and donor cells in the graft-versus-solid tumor effect: It takes two to tango. Blood Rev 2018; 32:449-456. [PMID: 29678553 DOI: 10.1016/j.blre.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/05/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (alloHSCT) produces -similar to the long-established graft-versus-leukemia effect- graft-versus-solid-tumor effects. Clinical trials reported response rates of up to 53%, occurring mostly but not invariably in association with full donor chimerism and/or graft-versus-host disease. Although donor-derived T cells are considered the principal effectors of anti-tumor immunity after alloHSCT or donor leukocyte infusion (DLI), growing evidence indicate that recipient-derived immune cells may also contribute. Whereas the role of recipient-derived antigen-presenting cells in eliciting graft-versus-host reactions and priming donor T cells following DLI is well known, resulting inflammatory responses may also break tolerance of recipient effector cells towards the tumor. Additionally, mouse studies indicated that post-transplant recipient leukocyte infusion produces anti-leukemia and anti-solid-tumor effects that were exclusively mediated by recipient-type effector cells, without graft-versus-host disease. Here, we review current preclinical and clinical evidence on graft-versus-solid-tumor effects and growing evidence on the effector role of recipient-derived immune cells in the anti-tumor effect of alloHSCT.
Collapse
Affiliation(s)
- Isabelle Dierckx de Casterlé
- Department of Microbiology and Immunology, Laboratory of Experimental Transplantation, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - An D Billiau
- Department of Microbiology and Immunology, Laboratory of Experimental Transplantation, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Ben Sprangers
- Department of Microbiology and Immunology, Laboratory of Experimental Transplantation, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Nephrology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Zhao Q, Tong L, He N, Feng G, Leng L, Sun W, Xu Y, Wang Y, Xiang R, Li Z. IFN-γ mediates graft-versus-breast cancer effects via enhancing cytotoxic T lymphocyte activity. Exp Ther Med 2014; 8:347-354. [PMID: 25009582 PMCID: PMC4079438 DOI: 10.3892/etm.2014.1760] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/13/2014] [Indexed: 12/11/2022] Open
Abstract
Previous studies have demonstrated the beneficial effect of graft-versus-tumor (GVT) following hematopoietic stem cell transplantation (HSCT) on the incidence of leukemia relapse and the overall survival rate of patients with leukemia; however, detailed mechanisms underlying the effects GVT exhibits on solid tumors following allogeneic HSCT are yet to be elucidated. The aim of the present study was to investigate the immune mechanism underlying the effect of interferon (IFN)-γ on GVT following allogeneic HSCT in breast cancer therapy. An in situ breast cancer mouse model was established by injecting 5×104 4T1 cells into the mammary fat pads of BALB/c mice. The 4T1 cells were transfected with the firefly luciferase reporter gene in order to monitor the tumor progression in real time. An allogeneic HSCT model was then established by transplanting bone marrow mononuclear cells from C57BL/6 mice to the BALB/c mice. To investigate the influence of T lymphocyte proliferation following allogeneic bone marrow transplantation, the levels of CD3+CD8+ cytotoxic T lymphocytes (CTLs) and CD4+CD25+ regulatory T cells were determined. In addition, IFN-γ and granzyme B expression levels in splenic lymphocytes were analyzed using flow cytometry. Allogeneic HSCT was found to significantly promote the proliferation and cytotoxicity of CTLs and suppress the growth of breast cancer. Furthermore, the secretory levels of IFN-γ and granzyme B by T cells were elevated following allogeneic HSCT. These results indicated that alloreactive T cells increased the secretion of IFN-γ, which promoted the alloresponse of donor CTLs. In addition, the CTLs produced granzyme B, which exerted a tumor suppressive effect.
Collapse
Affiliation(s)
- Qianjie Zhao
- Department of Pathophysiology, School of Medicine, Nankai University, Ministry of Education, Tianjin 300071, P.R. China ; Key Laboratory of Bioactive Materials, College of Life Science, Nankai University, Ministry of Education, Tianjin 300071, P.R. China
| | - Lingling Tong
- Department of Pathophysiology, School of Medicine, Nankai University, Ministry of Education, Tianjin 300071, P.R. China
| | - Ningning He
- Department of Pathophysiology, School of Medicine, Nankai University, Ministry of Education, Tianjin 300071, P.R. China
| | - Guowei Feng
- Department of Pathophysiology, School of Medicine, Nankai University, Ministry of Education, Tianjin 300071, P.R. China
| | - Liang Leng
- Department of Pathophysiology, School of Medicine, Nankai University, Ministry of Education, Tianjin 300071, P.R. China
| | - Weijun Sun
- Department of Pathophysiology, School of Medicine, Nankai University, Ministry of Education, Tianjin 300071, P.R. China
| | - Yang Xu
- Department of Pathophysiology, School of Medicine, Nankai University, Ministry of Education, Tianjin 300071, P.R. China
| | - Yuebing Wang
- Department of Pathophysiology, School of Medicine, Nankai University, Ministry of Education, Tianjin 300071, P.R. China
| | - Rong Xiang
- Department of Pathophysiology, School of Medicine, Nankai University, Ministry of Education, Tianjin 300071, P.R. China
| | - Zongjin Li
- Department of Pathophysiology, School of Medicine, Nankai University, Ministry of Education, Tianjin 300071, P.R. China ; Key Laboratory of Bioactive Materials, College of Life Science, Nankai University, Ministry of Education, Tianjin 300071, P.R. China
| |
Collapse
|
5
|
de Jong A, van der Hulst JM, Kenter GG, Drijfhout JW, Franken KLMC, Vermeij P, Offringa R, van der Burg SH, Melief CJM. Rapid enrichment of human papillomavirus (HPV)‐specific polyclonal T cell populations for adoptive immunotherapy of cervical cancer. Int J Cancer 2004; 114:274-82. [PMID: 15540211 DOI: 10.1002/ijc.20721] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The majority of cervical cancers are caused by human papillomavirus type 16 (HPV16). Cervical cancer is associated with an ineffective host immune response against the HPV16 oncoproteins, characterized by the lack of the strong E6-specific T-helper type 1 (Th1) immunity that is generally present in healthy individuals, the presence of improperly polarized HPV16E6- and E7-specific CD4(+) T cells and increased numbers of regulatory T cells. Therefore, immunotherapeutic intervention is likely to require a modality that deletes the regulatory T cell component and enhances the HPV16-specific Type 1 T cell response. HLA-matched allogeneic stem cell transplantation may offer such a modality, because it involves the eradication of host immune cells and enables the transfer of donor derived tumor-specific T cells to the patient. As a first step in the development of such a treatment, we evaluated the success rate of a protocol for enrichment of HPV16E6-specific CD4(+) T cells from healthy donor PBMC on the basis of their IFNgamma secretion. After a short in vitro stimulation with overlapping 30 amino acid long HPV16E6 peptides, we enriched the IFNgamma secreting cells by magnetic cell sorting. The obtained polyclonal CD4(+) T cell populations recognized distinct epitopes within HPV16E6, as well as E6 protein, processed and presented by autologous professional antigen presenting cells. The described protocol proved successful in PBMC from more than half of the healthy adult blood donors. These HPV16E6-specific CD4(+) T cells may turn out to be an essential component of future adoptive T cell therapy for advanced cervical cancer, by orchestrating CTL dependent and independent tumoricidal mechanisms.
Collapse
Affiliation(s)
- Annemieke de Jong
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Building 1 E3-Q, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|