1
|
Alcalde J, Izquierdo JM. Proteomic profile changes associated with diminished expression of T-cell intracellular antigens reveal a hormesis response. Biochem Biophys Res Commun 2018; 503:2569-2575. [PMID: 30017198 DOI: 10.1016/j.bbrc.2018.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/05/2018] [Indexed: 01/09/2023]
Abstract
T-cell intracellular antigen (TIA) proteins function as regulators of cell homeostasis by controlling global gene expression in response to dynamic regulatory changes and environmental stress. Here, we used two-dimensional differential in-gel electrophoresis (2D-DIGE) and mass spectrometry (MALDI-TOF/TOF) to identify protein changes associated with the down-regulated expression of TIA proteins. We detected 30 differentially expressed proteins (DEPs), 24 of which were identified, and some of these DEPs were validated by western blotting. In silico analysis showed that DEPs were associated with metabolic processes, detoxification and proteostasis. We mapped the DEPs to the available biological pathways and networks, which included the metabolism of small molecules such as sugars, lipids, amino acids, and nucleotides. Our findings support previous studies and suggest that low expression of TIA proteins might act as a potential adaptive switch to link gene expression reprogramming to a proliferative phenotype mediated by a hormesis phenomenon.
Collapse
Affiliation(s)
- José Alcalde
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas. Universidad Autónoma de Madrid (CSIC/UAM), C/ Nicolás Cabrera 1., Cantoblanco, 28049, Madrid, Spain
| | - José M Izquierdo
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas. Universidad Autónoma de Madrid (CSIC/UAM), C/ Nicolás Cabrera 1., Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
2
|
Lu M, Zhan X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J 2018; 9:77-102. [PMID: 29515689 PMCID: PMC5833337 DOI: 10.1007/s13167-018-0128-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/29/2018] [Indexed: 02/06/2023]
Abstract
Cancer with heavily economic and social burden is the hot point in the field of medical research. Some remarkable achievements have been made; however, the exact mechanisms of tumor initiation and development remain unclear. Cancer is a complex, whole-body disease that involves multiple abnormalities in the levels of DNA, RNA, protein, metabolite and medical imaging. Biological omics including genomics, transcriptomics, proteomics, metabolomics and radiomics aims to systematically understand carcinogenesis in different biological levels, which is driving the shift of cancer research paradigm from single parameter model to multi-parameter systematical model. The rapid development of various omics technologies is driving one to conveniently get multi-omics data, which accelerates predictive, preventive and personalized medicine (PPPM) practice allowing prediction of response with substantially increased accuracy, stratification of particular patients and eventual personalization of medicine. This review article describes the methodology, advances, and clinically relevant outcomes of different "omics" technologies in cancer research, and especially emphasizes the importance and scientific merit of integrating multi-omics in cancer research and clinically relevant outcomes.
Collapse
Affiliation(s)
- Miaolong Lu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
- The State Key Laboratory of Medical Genetics, Central South University, 88 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| |
Collapse
|
3
|
Immunohistochemical expression analysis of leucine-rich PPR-motif-containing protein (LRPPRC), a candidate colorectal cancer biomarker identified by shotgun proteomics using iTRAQ. Clin Chim Acta 2017. [DOI: 10.1016/j.cca.2017.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
|
5
|
ZHOU RUI, HUANG WENJUN, YAO YUQIN, WANG YUXI, LI ZIQIANG, SHAO BIN, ZHONG JIAN, TANG MINGHAI, LIANG SHUFANG, ZHAO XIA, TONG AIPING, YANG JINLIANG. CA II, a potential biomarker by proteomic analysis, exerts significant inhibitory effect on the growth of colorectal cancer cells. Int J Oncol 2013; 43:611-21. [DOI: 10.3892/ijo.2013.1972] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/03/2013] [Indexed: 12/16/2022] Open
|
6
|
Ménoret A, Drew DA, Miyamoto S, Nakanishi M, Vella AT, Rosenberg DW. Differential proteomics identifies PDIA3 as a novel chemoprevention target in human colon cancer cells. Mol Carcinog 2012; 53 Suppl 1:E11-22. [PMID: 23255428 DOI: 10.1002/mc.21986] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/24/2012] [Accepted: 11/05/2012] [Indexed: 11/06/2022]
Abstract
Chemoprevention offers a promising strategy to prevent or delay the development of various cancers. Critical to this approach is the identification of molecular targets that may track with chemopreventive efficacy. To address this issue, we screened a panel of chemoprevention agents, including resveratrol, epigallocatechin-3-gallate, ursodeoxycholic acid, and sulindac sulfide for their effects on human colon cancer cell viability. Resveratrol elicited the most potent effect in HCT116 cells and was selected for further study. Proteomic PF 2D maps were generated from HCT116 cells treated with resveratrol versus vehicle alone. Analysis of proteomic maps using tandem mass spectrometry (MS) identified a panel of differentially modified proteins. Two proteins, actin and Hsp60, were previously shown in other cell culture systems to be affected by resveratrol, validating our approach. PDIA3, RPL19, histone H2B and TCP1β were uniquely identified by our proteomic discovery platform. PDIA3 was of particular interest given its potential role in regulating chemosensitivity of cancer cells. Total levels of PDIA3 in HCT116 cells were unchanged following 24 h of resveratrol treatment, confirmed by Western blot analysis. Immunoprecipitation of PDIA3 revealed a new set of client proteins following resveratrol treatment, including α, β, and δ-catenins, and cellular fractionation identified decreased nuclear localization of α-catenin by resveratrol. These data establish differential proteomic mapping as a powerful tool for identifying novel molecular targets of chemopreventive agents.
Collapse
Affiliation(s)
- Antoine Ménoret
- Department of Immunology, Colorectal Cancer Prevention Program University of Connecticut Health Center, Farmington, Connecticut
| | | | | | | | | | | |
Collapse
|
7
|
Nakanishi M, Ménoret A, Belinsky GS, Giardina C, Godman CA, Vella AT, Rosenberg DW. Utilizing endoscopic technology to reveal real-time proteomic alterations in response to chemoprevention. Proteomics Clin Appl 2012; 1:1660-6. [PMID: 21136663 DOI: 10.1002/prca.200700545] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer chemoprevention approaches use either pharmacological or dietary agents to impede, arrest or reverse the carcinogenic process. Although several agents have shown effectiveness against colon cancer, present intervention strategies provide only partial reduction. In this study, we utilized high-resolution endoscopy to obtain colon tumor biopsy specimens from Apc mutant mice before and after 2-wk sulindac intervention. To acquire information beyond genomics, proteome analysis using the ProteomeLab PF2D platform was implemented to generate 2-D protein expression maps from biopsies. Chromatograms produced common signature profiles between sulindac and nonsulindac treated samples, and contrasting profiles termed "fingerprints". We selected a double peak that appeared in tumor biopsies from sulindac-treated mice. Further analyses using MS sequencing identified this protein as histone H2B. The location of H2B in the 1(st) dimension strongly suggested PTM, consistent with identification of two oxidized methionines. While further studies on sulindac proteomic fingerprints are underway, this study demonstrates the feasibility and advantages of "real-time" proteomic analysis for obtaining information on biomarker discovery and drug activity that would not be revealed by a genetic assay. This approach should be broadly applicable for assessing lesion responsiveness in a wide range of translational and human clinical studies.
Collapse
Affiliation(s)
- Masako Nakanishi
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Searching for consistently reported up- and down-regulated biomarkers in colorectal cancer: a systematic review of proteomic studies. Mol Biol Rep 2012; 39:8483-90. [PMID: 22699879 DOI: 10.1007/s11033-012-1702-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/06/2012] [Indexed: 01/01/2023]
Abstract
The cumulative lifetime risk for the development of colorectal cancer in the general population is 6 %. In many cases, early detection by fecal occult blood test is limited regarding sensitivity. Therefore, there is an urgent need for improved diagnostic tests in colorectal cancer. The recent development of high-throughput molecular analytic techniques should allow the rapid evaluation of new diagnostic markers. However, researchers are faced with an overwhelming number of potential markers form numerous colorectal cancer protein expression profiling studies. To address the challenge, we have carried out a comprehensive systematic review of colorectal cancer biomarkers from 13 published studies that compared the protein expression profiles of colorectal cancer and normal tissues. A protein ranking system that considers the number of comparisons in agreement, total sample sizes, average fold-change and direction of differential expression was devised. We observed that some proteins were consistently reported by multiple studies as differentially expressed with a statistically significant frequency (P < 0.05) in cancer versus normal tissues comparison. Our systematic review method identified proteins that were consistently reported as differentially expressed. A review of the top four candidates revealed proteins described previously as having diagnostic value as well as novel candidate biomarkers. These candidates should help to develop a panel of biomarkers with sufficient sensitivity and specificity for the diagnosis of colorectal cancer in a clinical setting.
Collapse
|
9
|
Yang HY, Kwon J, Park HR, Kwon SO, Park YK, Kim HS, Chung YJ, Chang YJ, Choi HI, Chung KJ, Lee DS, Park BJ, Jeong SH, Lee TH. Comparative proteomic analysis for the insoluble fractions of colorectal cancer patients. J Proteomics 2012; 75:3639-53. [PMID: 22564821 DOI: 10.1016/j.jprot.2012.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 03/24/2012] [Accepted: 04/15/2012] [Indexed: 12/30/2022]
Abstract
We used label-free quantitative proteomics with the insoluble fractions from colorectal cancer (CRC) patients to gain further insight into the utility of profiling altered protein expression as a potential biomarker for cancer. The insoluble fractions were prepared from paired tumor/normal biopsies from 13 patients diagnosed with CRC (stages I to IV). Fifty-six proteins identified in data pooled from the 13 cases were differentially expressed between the tumor and adjacent normal tissue. The connections between these proteins are involved in reciprocal networks related to tumorigenesis, cancer incidence based on genetic disorder, and skeletal and muscular disorders. To assess their potential utility as biomarkers, the relative expression levels of the proteins were validated using personal proteomics and a heat map to compare five individual CRC samples with five normal tissue samples. Further validation of a panel of proteins (KRT5, JUP, TUBB, and COL6A1) using western blotting confirmed the differential expression. These proteins gave specific network information for CRC, and yielded a panel of novel markers and potential targets for treatment. It is anticipated that the experimental approach described here will increase our understanding of the membrane environment in CRC, which may provide direction for making diagnoses and prognoses through molecular biomarker targeting.
Collapse
Affiliation(s)
- Hee-Young Yang
- Department of Oral Biochemistry, Dental Science Research Institute and the BK21 Project, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Junker H, Venz S, Zimmermann U, Thiele A, Scharf C, Walther R. Stage-related alterations in renal cell carcinoma--comprehensive quantitative analysis by 2D-DIGE and protein network analysis. PLoS One 2011; 6:e21867. [PMID: 21760917 PMCID: PMC3131398 DOI: 10.1371/journal.pone.0021867] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/07/2011] [Indexed: 12/31/2022] Open
Abstract
Renal cell carcinoma accounts for about 3% of adult malignancies and 85% of neoplasms arising from the kidney. To identify potential progression markers for kidney cancer we examined non-neoplastic and neoplastic kidney tissue from three groups of patients, which represent different tumor stages (pT1, pT2, pT3) by a fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) approach combined with MALDI-ToF-MS/MS. Delta2D software package was used for gel image based quantification and statistical analysis. Thereby, a comprehensive Principal Component Analysis (PCA) could be performed and allowed a robust quality control of the experiment as well as a classification of the analyzed samples, which correlated with the predicted stages from the pathological examination. Additionally for selected candidate proteins we detected a correlation to the tumor grading as revealed by immunohistochemistry. On the 2D protein map 176 spots out of 989 were detected as at least 2-fold differentially expressed. These spots were analyzed by MALDI-ToF-MS/MS and 187 different proteins were identified. The functional clustering of the identified proteins revealed ten groups. Within these groups we found 86 enzymes, 63 proteins of unknown function, 14 transporter, 8 peptidases and 7 kinases. From the systems biology approach we could map many of these proteins in major pathways involved in remodelling of cytoskeleton, mitochondrial dysfunctions and changes in lipid metabolism. Due to complexity of the highly interconnected pathway network, further expression and functional validation of these proteins might provide new insights in kidney cancer progression to design novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Heike Junker
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Simone Venz
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald, Germany
- Interfacultary Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Uwe Zimmermann
- Department of Urology, University of Greifswald, Greifswald, Germany
| | - Andrea Thiele
- Department of Pathology, University of Greifswald, Greifswald, Germany
| | - Christian Scharf
- Interfacultary Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Greifswald, Greifswald, Germany
| | - Reinhard Walther
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald, Germany
- * E-mail:
| |
Collapse
|
11
|
Ummanni R, Mundt F, Pospisil H, Venz S, Scharf C, Barett C, Fälth M, Köllermann J, Walther R, Schlomm T, Sauter G, Bokemeyer C, Sültmann H, Schuppert A, Brümmendorf TH, Balabanov S. Identification of clinically relevant protein targets in prostate cancer with 2D-DIGE coupled mass spectrometry and systems biology network platform. PLoS One 2011; 6:e16833. [PMID: 21347291 PMCID: PMC3037937 DOI: 10.1371/journal.pone.0016833] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 01/16/2011] [Indexed: 11/18/2022] Open
Abstract
Prostate cancer (PCa) is the most common type of cancer found in men and among the leading causes of cancer death in the western world. In the present study, we compared the individual protein expression patterns from histologically characterized PCa and the surrounding benign tissue obtained by manual micro dissection using highly sensitive two-dimensional differential gel electrophoresis (2D-DIGE) coupled with mass spectrometry. Proteomic data revealed 118 protein spots to be differentially expressed in cancer (n = 24) compared to benign (n = 21) prostate tissue. These spots were analysed by MALDI-TOF-MS/MS and 79 different proteins were identified. Using principal component analysis we could clearly separate tumor and normal tissue and two distinct tumor groups based on the protein expression pattern. By using a systems biology approach, we could map many of these proteins both into major pathways involved in PCa progression as well as into a group of potential diagnostic and/or prognostic markers. Due to complexity of the highly interconnected shortest pathway network, the functional sub networks revealed some of the potential candidate biomarker proteins for further validation. By using a systems biology approach, our study revealed novel proteins and molecular networks with altered expression in PCa. Further functional validation of individual proteins is ongoing and might provide new insights in PCa progression potentially leading to the design of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ramesh Ummanni
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, Hamburg, Germany
| | - Frederike Mundt
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, Hamburg, Germany
| | - Heike Pospisil
- Bioinformatics, University of Applied Sciences Wildau, Wildau, Germany
| | - Simone Venz
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald, Germany
- Interfacultary Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Christian Scharf
- Interfacultary Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Greifswald, Greifswald, Germany
| | - Christine Barett
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, Hamburg, Germany
| | - Maria Fälth
- Cancer Genome Research, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Jens Köllermann
- Department of Pathology, University Hospital Eppendorf, Hamburg, Germany
| | - Reinhard Walther
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Thorsten Schlomm
- Prostate Cancer Center, University Hospital Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Department of Pathology, University Hospital Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, Hamburg, Germany
| | - Holger Sültmann
- Cancer Genome Research, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - A. Schuppert
- Aachen Institute for Advanced Study in Computational Engineering Science, RWTH Aachen University, Aachen, Germany
| | - Tim H. Brümmendorf
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, Hamburg, Germany
- Medizinische Klinik IV - Hämatologie und Onkologie, RWTH Aachen University, Aachen, Germany
| | - Stefan Balabanov
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
12
|
Fan CW, Chan CC, Chen KT, Twu J, Huang YS, Han CL, Chen YJ, Yu JS, Chang YS, Kuo YB, Chan EC. Identification of SEC61β and its autoantibody as biomarkers for colorectal cancer. Clin Chim Acta 2011; 412:887-93. [PMID: 21255561 DOI: 10.1016/j.cca.2011.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/09/2011] [Accepted: 01/10/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND To identify novel serological biomarkers for human colorectal cancer (CRC), we analyzed CRC tissues using gel-assisted digestion and isobaric tags with related and absolute quantitation (iTRAQ) labeling mass spectrometry (MS). By comparing pairs of tumor tissues and matched normal tissues, we discovered the SEC61β with expression changes 3.3-fold and a marginal statistical significance (p=0.052) previously. METHODS SEC61β expression in CRC tissues was further analyzed by western blotting and immunohistochemistry. We next assessed the putative diagnostic value of the SEC61β autoantibody as a serum marker. RESULTS Using western blotting analysis, SEC61β expression was increased 1.9-fold in tumor tissues. Immunohistochemical analysis of 64 CRC specimens showed that SEC61β was positively detected in 64% of the tumors, but weakly or not detected in >80% of the adjacent nontumor epithelial cells. Western blot analysis with plasma samples showed that the sensitivity and specificity of the SEC61β autoantibody from patients with CRC were 79% and 75%, respectively. Importantly, the results of the SEC61β autoantibody for early detection of colorectal cancer revealed a higher sensitivity of 77% than the carcinoembryonic antigen (CEA) assay. CONCLUSIONS Measurement of SEC61β autoantibody levels may provide an alternative detection indicator for CRC, particularly among early-stage patients.
Collapse
Affiliation(s)
- Chung-Wei Fan
- Department of Colorectal Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu C, Pan C, Shen J, Wang H, Yong L. MALDI-TOF MS combined with magnetic beads for detecting serum protein biomarkers and establishment of boosting decision tree model for diagnosis of colorectal cancer. Int J Med Sci 2011; 8:39-47. [PMID: 21234268 PMCID: PMC3020391 DOI: 10.7150/ijms.8.39] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 12/20/2010] [Indexed: 01/22/2023] Open
Abstract
The aim of present study is to study the serum protein fingerprint of patients with colorectal cancer (CRC) and to screen protein molecules that are closely related to colorectal cancer during the onset and progression of the disease with Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Serum samples from 144 patients with CRC and 120 healthy volunteers were adopted in present study. Weak cation exchange (WCX) magnetic beads and PBSII-C protein chips reader (Ciphergen Biosystems Ins.) were used. The protein fingerprint expression of all the Serum samples and the resulted profiles between cancer and normal groups were analyzed with Biomarker Wizard system. Several proteomic peaks were detected and four potential biomarkers with different expression profiles were identified with their relative molecular weights of 2870.7 Da, 3084 Da, 9180.5 Da, and 13748.8 Da, respectively. Among the four proteins, two proteins with m/z 2870.7 and 3084 were down-regulated, and the other two with m/z 9180.5 and 13748.8 were up-regulated in serum samples from CRC patients. The present diagnostic model could distinguish CRC from healthy controls with the sensitivity of 92.85% and the specificity of 91.25%. Blind test data indicated a sensitivity of 86.95% and a specificity of 85%. The result suggested that MALDI technology could be used to screen critical proteins with differential expression in the serum of CRC patients. These differentially regulated proteins were considered as potential biomarkers for the patients with CRC in the serum and of the potential value for further investigation.
Collapse
Affiliation(s)
- Chibo Liu
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, 318000, China.
| | | | | | | | | |
Collapse
|
14
|
Yeoh LC, Loh CK, Gooi BH, Singh M, Gam LH. Hydrophobic protein in colorectal cancer in relation to tumor stages and grades. World J Gastroenterol 2010; 16:2754-63. [PMID: 20533595 PMCID: PMC2883131 DOI: 10.3748/wjg.v16.i22.2754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify differentially expressed hydrophobic proteins in colorectal cancer.
METHODS: Eighteen pairs of colorectal cancerous tissues in addition to tissues from normal mucosa were analysed. Hydrophobic proteins were extracted from the tissues, separated using 2-D gel electrophoresis and analysed using Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS). Statistical analysis of the proteins was carried out in order to determine the significance of each protein to colorectal cancer (CRC) and also their relation to CRC stages, grades and patients’ gender.
RESULTS: Thirteen differentially expressed proteins which were expressed abundantly in either cancerous or normal tissues were identified. A number of these proteins were found to relate strongly with a particular stage or grade of CRC. In addition, the association of these proteins with patient gender also appeared to be significant.
CONCLUSION: Stomatin-like protein 2 was found to be a promising biomarker for CRC, especially in female patients. The differentially expressed proteins identified were associated with CRC and may act as drug target candidates.
Collapse
|
15
|
Ma YL, Peng JY, Zhang P, Huang L, Liu WJ, Shen TY, Chen HQ, Zhou YK, Zhang M, Chu ZX, Qin HL. Heterogeneous nuclear ribonucleoprotein A1 is identified as a potential biomarker for colorectal cancer based on differential proteomics technology. J Proteome Res 2010; 8:4525-35. [PMID: 19715280 DOI: 10.1021/pr900365e] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and has poor prognosis. To identify the proteins involved in colorectal carcinogenesis, we employed 2-DE and MALDI-TOF/TOF-based proteomics approach to study the differentially expressed proteins in tumor and adjacent nontumor tissue samples. Samples from 10 colorectal patients were analyzed. Of the 7 significantly and consistently altered proteins identified, hnRNP A1 was one of the most significantly altered proteins and its overexpression was confirmed using RT-PCR and Western blot analyses. Immunohistochemical examination showed that the enhanced expression of hnRNP A1 was correlated with the increasing severity of colorectal tissue and the progression of the colorectal cancer, as well as UICC (International Union against Cancer) staging, histo-differentiation, recurrence and decreased survival. By developing a highly sensitive immunoassay, hnRNP A1 could be detected in human serum and was significantly elevated in CRC patients compared with healthy volunteers. We proposed that hnRNP A1 could be considered as a novel serum tumor marker for CRC that may have significance in the detection and in the management of patients with this disease. Knockdown of hnRNP A1 expression by RNA interference led to the significant suppression of the cell growth in colorectal cancer SW480 cells in vitro. These data suggested that hnRNP A1 may be a potential biomarker for early diagnosis, prognosis, and monitoring in the therapy of colorectal cancer. Further studies are needed to fully assess the potential clinical value of this biomarker candidate.
Collapse
Affiliation(s)
- Yan-Lei Ma
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ma Y, Peng J, Liu W, Zhang P, Huang L, Gao B, Shen T, Zhou Y, Chen H, Chu Z, Zhang M, Qin H. Proteomics identification of desmin as a potential oncofetal diagnostic and prognostic biomarker in colorectal cancer. Mol Cell Proteomics 2009; 8:1878-90. [PMID: 19460759 DOI: 10.1074/mcp.m800541-mcp200] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and has poor prognosis. To identify the oncofetal proteins involved in CRC carcinogenesis, differentially expressed proteins among fetal colorectal tissues, CRC, and the paired tumor-adjacent normal colorectal tissues were investigated by a two-dimensional gel electrophoresis and MALDI-TOF/TOF-based proteomics approach. 42 protein spots were differentially expressed among these tissues, and 22 proteins were identified by MS analysis. Desmin and zinc finger protein 829 were found to be elevated in CRC tissue and fetal colorectal tissue compared with normal colorectal tissue. The elevated expression of desmin in CRC tissue and different developmental stages of fetus colon was confirmed by RT-PCR and Western blot analysis. Immunohistochemical analysis showed that the elevated expression of desmin was correlated with the severity and differentiation of CRC and decreased survival rate of CRC patients. Finally by developing a highly sensitive immunoassay, desmin could be detected in human serum and was significantly elevated in CRC patients compared with healthy volunteers. We propose that desmin be considered a potential oncofetal serum tumor marker for CRC that may have significance in the detection of patients with CRC.
Collapse
Affiliation(s)
- Yanlei Ma
- Department of Surgery, The Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee CJ, Ariztia EV, Fishman DA. Conventional and Proteomic Technologies for the Detection of Early Stage Malignancies: Markers for Ovarian Cancer. Crit Rev Clin Lab Sci 2008; 44:87-114. [PMID: 17175521 DOI: 10.1080/10408360600778885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Our understanding of the tumor microenvironment continues to evolve and allows for the identification of biomarkers that should detect the presence of early stage malignancies. Recent advances in computational analysis and biomedical technologies have come together to elucidate signatures associated with cancer and that are capable of identifying unique tumor-specific proteins. Within the tumor microenvironment, we continue to characterize the proteophysiology of the different steps associated with tumor progression. The urgent need for biomarkers accurately detecting early-stage epithelial ovarian cancer has prompted us, and others, to engage in a search for specific peptide signatures that may discriminate transformed cells from those of the normal ovarian microenvironment. This endeavor also provides new insights into the biology of the disease, which may not only be applicable to detection but may also help to initiate new therapies and optimize patient care.
Collapse
Affiliation(s)
- Catherine J Lee
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
18
|
Kasthuri RS, Wroblewski M, Jilma B, Key NS, Nelsestuen GL. Potential biomarkers of an exaggerated response to endotoxemia. Biomarkers 2008; 12:287-302. [PMID: 17453742 DOI: 10.1080/13547500601160536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Serial plasma protein analysis was used to study the acute plasma proteome response to endotoxemia (presence of toxic bacterial products called endotoxins in the blood stream). Plasma samples from healthy volunteers before and multiple time points up to 24 h following administration of low-dose endotoxin were evaluated. Plasma protein profiles were obtained by rapid extraction of whole plasma followed by analysis with matrix-assisted laser desorption ionisation-time of flight mass spectrometry. The profiles were unique to each individual and stable over the time of the experiment. Administration of low-dose endotoxin caused profound change in six of 18 individuals. At 8 h many proteins showed quantitative oxidation, in addition to the appearance of new components and disappearance of common baseline components. An exceptionally intense new component at 4154 mass units was identified as the activation peptide of C1 esterase inhibitor. While recovery of baseline protein structure was nearly complete by 24 h, serum amyloid A, an acute-phase reactant, was still increasing and minor profile changes persisted. Clinical features did not distinguish these extreme responders from others, suggesting that plasma proteome changes offered unique insights into and potential biomarkers of subclinical events following endotoxin exposure.
Collapse
Affiliation(s)
- R S Kasthuri
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
19
|
Wu CC, Huang YS, Lee LY, Liang Y, Tang RP, Chang YS, Hsieh LL, Yu JS. Overexpression and elevated plasma level of tumor-associated antigen 90K/Mac-2 binding protein in colorectal carcinoma. Proteomics Clin Appl 2008; 2:1586-95. [PMID: 21136809 DOI: 10.1002/prca.200800080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Indexed: 01/24/2023]
Abstract
The cancer cell secretome may contain potentially useful biomarkers. Previously, we have analyzed the colorectal carcinoma (CRC) cell secretome. In this study, tumor-associated antigen 90K (TAA90K)/Mac-2 binding protein (Mac-2BP), one of the CRC cell secreted proteins, was chosen for evaluation as a potential CRC biomarker because its mRNA level was also found to be significantly elevated in CRC tissues and in a more metastatic CRC cell line from the analysis of two public domain array-based datasets. Immunohistochemical analysis of 241 CRC specimens showed that TAA90K/Mac-2BP was positively detected in 52.7% of the tumors, but weakly or not detected in over 95% of the adjacent nontumor epithelial cells. The plasma TAA90K/Mac-2BP levels were significantly higher in CRC patients (N = 280) versus healthy controls (N = 147) (7.77 ± 3.49 vs. 5.72 ± 2.67 μg/mL, p<0.001). Moreover, combination of TAA90K/Mac-2BP and carcinoembryonic antigen (CEA) could outperform CEA alone in discriminating CRC patients from healthy persons in this case-control study. Our results collectively indicate that analysis of cancer cell secretome is a feasible strategy for identifying cancer biomarker candidates, and the TAA90K/Mac-2BP may be a potential CRC biomarker.
Collapse
Affiliation(s)
- Chih-Ching Wu
- Proteomics Core Laboratory, Chang Gung University, Tao-Yuan, Taiwan, Republic of China; Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sessa C, Guibal A, Del Conte G, Rüegg C. Biomarkers of angiogenesis for the development of antiangiogenic therapies in oncology: tools or decorations? ACTA ACUST UNITED AC 2008; 5:378-91. [DOI: 10.1038/ncponc1150] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Accepted: 12/06/2007] [Indexed: 12/26/2022]
|
21
|
Wu CC, Chen HC, Chen SJ, Liu HP, Hsieh YY, Yu CJ, Tang R, Hsieh LL, Yu JS, Chang YS. Identification of collapsin response mediator protein-2 as a potential marker of colorectal carcinoma by comparative analysis of cancer cell secretomes. Proteomics 2008; 8:316-32. [PMID: 18203259 DOI: 10.1002/pmic.200700819] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cancer cell secretome may contain many potentially useful biomarkers. We therefore sought to identify proteins in the conditioned media of colorectal carcinoma (CRC) cell lines but not in those from other cancer cell lines. The secretomes of 21 cancer cell lines derived from 12 cancer types were analyzed by SDS-PAGE combined with MALDI-TOF MS. Among the 325 proteins identified, collapsin response mediator protein-2 (CRMP-2) was chosen for evaluation as a potential CRC biomarker, since it was selectively detected in the CRC cell line secretome and has never been reported as a cancer biomarker. Immunohistochemical analysis of 169 CRC specimens showed that CRMP-2 was positively detected in 58.6% of the tumors, but weakly or not detected in >90% of the adjacent nontumor epithelial cells. Moreover, the CRMP-2-positive rate was significantly increased in earlier stage tumors and lymph node metastasis. Plasma CRMP-2 levels were significantly higher in CRC patients (N = 201) versus healthy controls (N = 201) (61.3 +/- 34.6 vs. 40.2 +/- 24.3 ng/mL, p = 0.001). Our results indicate that comparative analysis of cancer cell secretome is a feasible strategy for identifying potential cancer biomarkers, and that CRMP-2 may be a novel CRC biomarker.
Collapse
Affiliation(s)
- Chih-Ching Wu
- Proteomics Core Laboratory, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Defining translational research is still a complex task. In oncology, translational research implies using our basic knowledge learnt from in vitro and in vivo experiments to directly improve diagnostic tools and therapeutic approaches in cancer patients. Moreover, the better understanding of human cancer and its use to design more reliable tumor models and more accurate experimental systems also has to be considered a good example of translational research. The identification and characterization of new molecular markers and the discovery of novel targeted therapies are two main goals in colorectal cancer translational research. However, the straightforward translation of basic research findings, specifically into colorectal cancer treatment and vice versa is still underway. In the present paper, a summarized view of some of the new available approaches on colorectal cancer translational research is provided. Pros and cons are discussed for every approach exposed.
Collapse
|
23
|
Khatami M. Standardizing cancer biomarkers criteria: data elements as a foundation for a database. Inflammatory mediator/M-CSF as model marker. Cell Biochem Biophys 2007; 47:187-98. [PMID: 17652771 DOI: 10.1007/s12013-007-0003-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/23/2023]
Abstract
The purpose of this position article was to design a set of criteria (data elements) for a wide range of cancer biomarkers (CBs) in an attempt to standardize biomarkers features through a common language as a foundation for a database. Data elements are described as a set of generic criteria, which should characterize nearly all biomarkers introduced in the literature. Data elements were extracted from the review of prominent features that biomarkers represent within various categories. The extracted characteristics of biomarkers produced a short list of shared and unique generic features such as biological nature and history; stage/phase of study; sensitivity and specificity; modes of action; risk assessment; validation status; technology, and recommendation status for diversified biomarkers. To tailor data elements on specific markers, a cytokine, such as macrophage-colony stimulating factor (M-CSF), which has been proposed as a 'potentially suitable biomarker' for diagnosis of ovarian, lung, breast, pancreatic, and colorectal cancers, was selected as a Model biomarker. Small scale clinical studies suggested the superior usefulness of M-CSF compared with traditional markers for cancer detection. A key criterion for selecting Model marker and tailoring data elements for detection of cancer was the comparison of data on its specificity and sensitivity with traditional markers. The design of data elements for standardizing CBs criteria is considered a Research Tool and a foundation for developing a comprehensive CBs database useful for oncology researchers for a wide range of biomarkers. Validation, integration and proper packaging, data visualization and recommendation of suitability of CBs, by a panel of experts, for technology development are important challenging next steps toward developing a reliable database, which would allow professionals to effectively retrieve and study integrated information on potentially useful markers; identify important knowledge gaps and limitations of data; and assess state of technologies and commercialization of markers at a point of need. Appropriate use of integrated information on biomarkers in clinical practices would eventually account for more cost-effective characteristics of an individual's state of health.
Collapse
Affiliation(s)
- Mahin Khatami
- Technology Program Development, Office of Technology and Industrial Relations, Office of the Director, National Cancer Institute/NIH/DHHS, Bethesda, MD, USA.
| |
Collapse
|
24
|
Shimma S, Sugiura Y, Hayasaka T, Hoshikawa Y, Noda T, Setou M. MALDI-based imaging mass spectrometry revealed abnormal distribution of phospholipids in colon cancer liver metastasis. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 855:98-103. [PMID: 17369111 DOI: 10.1016/j.jchromb.2007.02.037] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/18/2006] [Accepted: 02/06/2007] [Indexed: 11/21/2022]
Abstract
We present the results of matrix-assisted laser desorption/ionization (MALDI) imaging and direct molecular identification using tandem mass spectrometry (MS/MS) in colon cancer liver metastasis. Cancer tissue was removed from a Japanese patient and frozen immediately without any fixations. The sections were sliced to a thickness of 3 microm. The matrix for lipid ionization was 2,6-dihydroxy acetophenone. The matrix solution was applied with an airbrush into a thin uniform matrix layer on the tissue surface. After two-dimensional laser scanning, the images were reconstructed as a function of m/z from a few hundred obtained spectra. In the obtained images, the existence of molecules was represented by a pseudo-color corresponding to the signal intensity. In a feasibility study, we picked up a localized signal, m/z 725 in a cancerous area. The MS/MS result suggested that m/z 725 was sphingomyelin(16:0)+Na. Thus, we successfully show the feasibility of MALDI imaging as a tool for the analysis of pathological specimens.
Collapse
Affiliation(s)
- Shuichi Shimma
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Alvarez-Chaver P, Rodríguez-Piñeiro AM, Rodríguez-Berrocal FJ, Martínez-Zorzano VS, Páez de la Cadena M. Identification of hydrophobic proteins as biomarker candidates for colorectal cancer. Int J Biochem Cell Biol 2006; 39:529-40. [PMID: 17084656 DOI: 10.1016/j.biocel.2006.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/19/2006] [Accepted: 10/01/2006] [Indexed: 12/14/2022]
Abstract
Nowadays, colorectal cancer is one of the major causes of cancer death in Western countries. Due to the lack of biomarkers with clinical utility for this pathology, and considering that membrane and hydrophobic proteins have not been studied in depth, we performed a prefractionation of colorectal tissues prior to two-dimensional gel electrophoresis in order to identify hydrophobic proteins differentially expressed in colorectal cancer patients. Fractions enriched in hydrophobic proteins were obtained from healthy mucosa and tumor tissue by a specific extraction method based on temperature-dependent phase partitioning with Triton X-114. Proteins were separated by two-dimensional gel electrophoresis and gels were silver-stained, scanned and compared using the PDQuest software. Those spots presenting significantly different abundance were submitted to mass spectrometry for protein identification. Alterations in the expression of cytoskeletal proteins, including a decrease of vimentin and the absence of desmin, were found. We also detected alterations in antioxidant and transport proteins, chaperones, and in two isoforms of the calcium-binding protein S100A6. On the other hand, vimentin was chosen to corroborate the electrophoretic results by specific immunodetection. Most of the altered proteins have been related to cellular membranes, many of them to lipid rafts microdomains in the plasma membrane, and they have also been implicated in the control of cell proliferation, apoptosis, or metastasis. In conclusion, all the proteins found altered in colorectal tumor samples could be considered as candidates for future studies focused on their utility as markers for colorectal diagnosis and prognosis, or as targets for colorectal cancer therapy.
Collapse
Affiliation(s)
- Paula Alvarez-Chaver
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Campus Universitario, 36310 Vigo, Spain
| | | | | | | | | |
Collapse
|
26
|
García-Foncillas J, Bandrés E, Zárate R, Remírez N. Proteomic analysis in cancer research: potential application in clinical use. Clin Transl Oncol 2006; 8:250-61. [PMID: 16648100 DOI: 10.1007/bf02664935] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ultimate goal of cancer proteomics is to adapt proteomic technologies for routine use in clinical laboratories for the purpose of diagnostic and prognostic classification of disease states, as well as in evaluating drug toxicity and efficacy. The novel technologies allows researchers to facilitate the comprehensive analyses of genomes, transcriptomes, and proteomes in health and disease. The information that is expected from such technologies may soon exert a dramatic change in cancer research and impact dramatically on the care of cancer patients. Analysis of tumor-specific proteomic profiles may also allow better understanding of tumor development and the identification of novel targets for cancer therapy. The localization of gene products, which is often difficult to deduce from the sequence, can be determined experimentally. Mechanisms, such as regulation of protein function by proteolysis, recycling, and isolation in cell compartments, affect gene products, not genes. Finally, protein-protein interactions and the molecular composition of cellular structures can be determined only at the protein level. The biological variability among patient samples as well as the great dynamic range of biomarker concentrations are currently the main challenges facing efforts to deduce diagnostic patterns that are unique to specific disease states. While several strategies exist to address this problem, we have tried to offer a wide perspective about the current possibilities.
Collapse
Affiliation(s)
- Jesús García-Foncillas
- Laboratory of Pharmacogenomics, Center for Medical Applied Research, Department of Oncology and Radiotherapy, University Clinic, University of Navarra, Pamplona, Spain.
| | | | | | | |
Collapse
|
27
|
Wang X, Zhu W, Pradhan K, Ji C, Ma Y, Semmes OJ, Glimm J, Mitchell J. Feature extraction in the analysis of proteomic mass spectra. Proteomics 2006; 6:2095-100. [PMID: 16502467 DOI: 10.1002/pmic.200500459] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Feature extraction or biomarker selection is a critical step in disease diagnosis and knowledge discovery based on protein MS. Many studies have discussed the classification methods applied in proteomics; however, few could be found to address feature extraction in detail. In this paper, we developed a systematic approach for the extraction of mass spectrum peak apex and peak area with special emphasis on noise filtration and peak calibration. Application to a head and neck cancer data generated at the Eastern Virginia Medical School [Wadsworth, J. T., Somers, K. D., Cazares, L. H., Malik, G. et al.., Clin. Cancer Res. 2004, 10, 1625-1632] revealed that the new feature extraction method would yield consistent and highly discriminatory biomarkers.
Collapse
Affiliation(s)
- Xuena Wang
- State University of New York, Stony Brook, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bi X, Lin Q, Foo TW, Joshi S, You T, Shen HM, Ong CN, Cheah PY, Eu KW, Hew CL. Proteomic Analysis of Colorectal Cancer Reveals Alterations in Metabolic Pathways. Mol Cell Proteomics 2006; 5:1119-30. [PMID: 16554294 DOI: 10.1074/mcp.m500432-mcp200] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Colorectal cancer is the second leading killer cancer worldwide and presently the most common cancer among males in Singapore. The study aimed to detect changes of protein profiles associated with the process of colorectal tumorigenesis to identify specific protein markers for early colorectal cancer detection and diagnosis or as potential therapeutic targets. Seven pairs of colorectal cancer tissues and adjacent normal mucosa were examined by two-dimensional gel electrophoresis at basic pH range (pH 7-10). Intensity changes of 34 spots were detected with statistical significance. 16 of the 34 spots were identified by MALDI-TOF/TOF tandem mass spectrometry. Changes in protein expression levels revealed a significantly enhanced glycolytic pathway (Warburg effect), a decreased gluconeogenesis, a suppressed glucuronic acid pathway, and an impaired tricarboxylic acid cycle. Observed changes in protein abundance were verified by two-dimensional DIGE. These changes reveal an underlying mechanism of colorectal tumorigenesis in which the roles of impaired tricarboxylic acid cycle and the Warburg effect may be critical.
Collapse
Affiliation(s)
- Xuezhi Bi
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Azad NS, Rasool N, Annunziata CM, Minasian L, Whiteley G, Kohn EC. Proteomics in clinical trials and practice: present uses and future promise. Mol Cell Proteomics 2006; 5:1819-29. [PMID: 16737951 DOI: 10.1074/mcp.r600008-mcp200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The study of clinical proteomics is a promising new field that has the potential to have many applications, including the identification of biomarkers and monitoring of disease, especially in the field of oncology. Expression proteomics evaluates the cellular production of proteins encoded by a particular gene and exploits the differential expression and post-translational modifications of proteins between healthy and diseased states. These biomarkers may be applied towards early diagnosis, prognosis, and prediction of response to therapy. Functional proteomics seeks to decipher protein-protein interactions and biochemical pathways involved in disease biology and targeted by newer molecular therapeutics. Advanced spectrometry technologies and new protein array formats have improved these analyses and are now being applied prospectively in clinical trials. Further advancement of proteomics technology could usher in an era of personalized molecular medicine, where diseases are diagnosed at earlier stages and where therapies are more effective because they are tailored to the protein expression of a patient's malignancy.
Collapse
Affiliation(s)
- Nilofer S Azad
- Laboratory of Pathology, Molecular Signaling Section, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
30
|
Tchabo NE, Guancial EA, Czechowicz JA, Kohn EC. The role of proteomics in the diagnosis and treatment of ovarian cancer. ACTA ACUST UNITED AC 2005; 1:365-74. [PMID: 19803878 DOI: 10.2217/17455057.1.3.365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ovarian cancer is the leading cause of gynecologic cancer death in the Western world and more than 70% of patients are diagnosed with advanced stage disease. The high mortality rate is due to the difficulty in the early detection of ovarian cancer. Current screening strategies lack the necessary sensitivity and specificity to reliably and accurately diagnose affected women, prompting investigators to seek alternative means of analysis found in protein pathways and networks. Proteomics seeks to advance the understanding of how proteins interact in cancer and may provide a mechanism for early stage diagnosis. The proteomic techniques of laser capture microdissection, mass spectrometry and tissue lysate arrays have led to the discovery of new biomarkers and the identification, development and approval of a number of targeted therapeutic agents. Following validation through clinical trials, the application of these techniques will contribute to the changing paradigm of cancer detection and treatment toward personalized medicine.
Collapse
Affiliation(s)
- Nana E Tchabo
- Molecular Signaling Section, Laboratory of Pathology, National Cancer Institute, Bldg 10 Rm 4B1110, Center Drive, MSC 1500 Bethesda, MD 20892, USA. , .
| | | | | | | |
Collapse
|