1
|
Li P, Cui Y, Hu K, Wang X, Yu Y. Silencing APLNR enhances the radiosensitivity of prostate cancer by modulating the PI3K/AKT/mTOR signaling pathway. Clin Transl Oncol 2024:10.1007/s12094-024-03692-1. [PMID: 39251496 DOI: 10.1007/s12094-024-03692-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Aberrant expression of apelin receptor (APLNR) has been found to be involved in various cancers' development, however, its function in prostate cancer (PCa) remains unclear. The research aimed to investigate the role and potential mechanism of APLNR in PCa. METHODS The mRNA expression of APLNR was detected via qRT-PCR assay. PCa cell proliferation and apoptosis were determined through plate cloning and flow cytometry. In addition, the expression of apoptosis-related proteins (Bax, Bcl-2, and cleaved caspase-3) was evaluated using western blot. DNA damage marker (γ-H2AX) was analyzed by immunofluorescence and western blot. GSEA analysis was performed for seeking enrichment pathways of APLNR in PCa, and the protein levels of PI3K, p-PI3K, AKT, p-AKT, mTOR, and p-mTOR were tested using western blot. RESULTS APLNR expression was up-regulated in PCa tissues and cells. Silencing APLNR enhanced the sensitivity of PCa cells to radiotherapy, which was manifested by inhibiting cell proliferation, promoting cell apoptosis, and promoting DNA damage. Next, silencing APLNR inhibited the PI3K/AKT/mTOR pathway. Specifically, 740Y-P (the PI3K/AKT/mTOR pathway activator) reversed the effects of silencing APLNR on PCa cell proliferation, apoptosis and DNA damage. CONCLUSION Silencing APLNR inhibited cell proliferation, promoted cell apoptosis, and enhanced the radiosensitivity of PCa cells, which was involved in the PI3K/AKT/mTOR signaling pathway. This study is conducive to the deeper understanding of PCa and further provides a new perspective for the treatment of PCa.
Collapse
Affiliation(s)
- Peng Li
- Department of Urology, Yantaishan Hospital, Laishan District Science and Technology Avenue 10087, Yantai, 264003, Shandong, People's Republic of China
| | - Yanfang Cui
- Department of Ultrasonography, Yantaishan Hospital, Yantai, 264003, Shandong, People's Republic of China
| | - Keyao Hu
- Department of Urology, Yantaishan Hospital, Laishan District Science and Technology Avenue 10087, Yantai, 264003, Shandong, People's Republic of China
| | - Xiaofei Wang
- Department of Urology, Yantaishan Hospital, Laishan District Science and Technology Avenue 10087, Yantai, 264003, Shandong, People's Republic of China
| | - Yizhi Yu
- Department of Urology, Yantaishan Hospital, Laishan District Science and Technology Avenue 10087, Yantai, 264003, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Dakir EH, Gajate C, Mollinedo F. Antitumor activity of alkylphospholipid edelfosine in prostate cancer models and endoplasmic reticulum targeting. Biomed Pharmacother 2023; 167:115436. [PMID: 37683591 DOI: 10.1016/j.biopha.2023.115436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer is the second most frequent cancer and the fifth leading cause of cancer death among men worldwide. While the five-year survival in local and regional prostate cancer is higher than 99%, it falls to about 28% in advanced metastatic prostate cancer. The ether lipid edelfosine is considered the prototype of a family of promising antitumor drugs collectively named as alkylphospholipid analogs. Here, we found that edelfosine was the most potent alkylphospholipid analog in inducing apoptosis in three different human prostate cancer cell lines (LNCaP, PC3, and DU145) with distinct androgen dependency, and differing in tumor suppressor phosphatase and tensin homolog (PTEN) and p53 status. Edelfosine accumulated in the endoplasmic reticulum of prostate cancer cells, leading to endoplasmic reticulum stress and cell death in the three prostate cancer cells. Inhibition of autophagy potentiated the pro-apoptotic activity of edelfosine in LNCaP and PC3 cells, where autophagy was induced as a survival response. Edelfosine induced a slight and transient inhibition of AKT in PTEN-negative LNCaP and PC3 cells, but not in PTEN-positive DU145 cells. Daily oral administration of edelfosine in murine prostate restricted AKT kinase transgenic mice, expressing active AKT in a prostate-specific manner, and in a DU145 xenograft mouse model resulted in significant tumor regression and apoptosis in tumor cells. Taken together, these results show a significant in vitro and in vivo antitumor activity of edelfosine against prostate cancer, and highlight the endoplasmic reticulum as a novel and promising therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- El-Habib Dakir
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Faculty of Biology, University of Latvia, Riga, Latvia.
| | - Consuelo Gajate
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas - Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| | - Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas - Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| |
Collapse
|
3
|
Feng T, Zhao R, Zhang H, Sun F, Hu J, Wang M, Qi M, Liu L, Gao L, Xiao Y, Zhen J, Chen W, Wang L, Han B. Reciprocal negative feedback regulation of ATF6α and PTEN promotes prostate cancer progression. Cell Mol Life Sci 2023; 80:292. [PMID: 37715829 PMCID: PMC11073217 DOI: 10.1007/s00018-023-04940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 09/18/2023]
Abstract
Phosphatase and tensin homolog (PTEN) loss tightly correlates with prostate cancer (PCa) progression and metastasis. Inactivation of PTEN leads to abnormal activation of PI3K/AKT pathway. However, results from clinical trials with AKT inhibitors in PCa have been largely disappointing. Identification of novel regulators of PTEN in PTEN-dysfunctional PCa is urgently needed. Here we demonstrated that the expression level of PTEN is inversely correlated with the signature score of unfolded protein response (UPR) in PCa. Importantly, PTEN suppresses the activity of ATF6α, via interacting to de-phosphorylate ATF6α and consequently inhibiting its nuclear translocation. Conversely, ATF6α promotes the ubiquitination and degradation of PTEN by inducing CHIP expression. Thus, ATF6α and PTEN forms a negative feedback loop during PCa progression. Combination of ATF6α inhibitor with AKT inhibitor suppresses tumor cell proliferation and xenograft growth. Importantly, this study highlighted ATF6α as a therapeutic vulnerability in PTEN dysfunctional PCa.
Collapse
Affiliation(s)
- Tingting Feng
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Ru Zhao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Hanwen Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Feifei Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jing Hu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Meng Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Mei Qi
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Ling Liu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lin Gao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yabo Xiao
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Junhui Zhen
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Weiwen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Lin Wang
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, NHC Key Laboratory of Biotechnology Drugs, Key Lab for Rare and Uncommon Diseases of Shandong Province, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China.
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Patrikidou A, Zilli T, Baciarello G, Terisse S, Hamilou Z, Fizazi K. Should androgen deprivation therapy and other systemic treatments be used in men with prostate cancer and a rising PSA post-local treatments? Ther Adv Med Oncol 2021; 13:17588359211051870. [PMID: 34707693 PMCID: PMC8543684 DOI: 10.1177/17588359211051870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Biochemical recurrence is an evolving space in prostate cancer, with increasing multidisciplinary involvement. Androgen deprivation therapy has shown proof of its value in complementing salvage radiotherapy in high-risk biochemical relapsing patients; ongoing trials aim to further refine this treatment combination. As systemic treatments, and notably next-generation androgen receptor targeted agents, have moved towards early hormone-sensitive and non-metastatic stages, the prostate specific antigen (PSA)-relapse disease stage will be undoubtedly challenged by future evidence from such ongoing clinical trials. With the use of modern imaging and newer molecular technologies, including integration of tumoral genomic profiling and liquid biopsies in risk stratification, a path towards a precision oncology-focused approach will become a reality to guide in the future decisions for patients with a diagnosis of biochemical recurrence.
Collapse
Affiliation(s)
- Anna Patrikidou
- Department of Medical Oncology, Gustave Roussy Institute, Paris Saclay University, 114 rue Edouard Vaillant, Villejuif, 94800, FranceUCL Cancer Institute & University College London Hospital, London, United Kingdom
| | - Thomas Zilli
- Department of Radiation Oncology, Geneva University Hospital and Faculty of Medicine, Geneva University, Geneva, Switzerland
| | | | - Safae Terisse
- Department of Medical Oncology, Saint Louis Hospital, Paris, France
| | - Zineb Hamilou
- Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Karim Fizazi
- Department of Medical Oncology, Gustave Roussy Institute, Paris Saclay University, 114 rue Edouard Vaillant, Villejuif, 94800, France
| |
Collapse
|
5
|
Varlamova EA, Isagulieva AK, Morozova NG, Shmendel EV, Maslov MA, Shtil AA. Non-Phosphorus Lipids As New Antitumor Drug Prototypes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021050356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Junaid M, Akter Y, Afrose SS, Tania M, Khan MA. Biological Role of AKT and Regulation of AKT Signaling Pathway by Thymoquinone: Perspectives in Cancer Therapeutics. Mini Rev Med Chem 2021; 21:288-301. [PMID: 33019927 DOI: 10.2174/1389557520666201005143818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AKT/PKB is an important enzyme with numerous biological functions, and its overexpression is related to carcinogenesis. AKT stimulates different signaling pathways that are downstream of activated tyrosine kinases and phosphatidylinositol 3-kinase, hence functions as an important target for anti-cancer drugs. OBJECTIVE In this review article, we have interpreted the role of AKT signaling pathway in cancer and the natural inhibitory effect of Thymoquinone (TQ) in AKT and its possible mechanisms. METHOD We have collected the updated information and data on AKT, its role in cancer and the inhibitory effect of TQ in AKT signaling pathway from Google Scholar, PubMed, Web of Science, Elsevier, Scopus, and many more. RESULTS Many drugs are already developed, which can target AKT, but very few among them have passed clinical trials. TQ is a natural compound, mainly found in black cumin, which has been found to have potential anti-cancer activities. TQ targets numerous signaling pathways, including AKT, in different cancers. In fact, many studies revealed that AKT is one of the major targets of TQ. The preclinical success of TQ suggests its clinical studies on cancer. CONCLUSION This review article summarizes the role of AKT in carcinogenesis, its potent inhibitors in clinical trials, and how TQ acts as an inhibitor of AKT and TQ's future as a cancer therapeutic drug.
Collapse
Affiliation(s)
- Md Junaid
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research, Chattogram, Bangladesh
| | - Yeasmin Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science & Technology University, Noakhali, Bangladesh
| | | | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center, Dhaka, Bangladesh
| | - Md Asaduzzaman Khan
- The research center for preclinical medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Deregulated PTEN/PI3K/AKT/mTOR signaling in prostate cancer: Still a potential druggable target? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118731. [PMID: 32360668 DOI: 10.1016/j.bbamcr.2020.118731] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/13/2023]
Abstract
Although the prognosis of patients with localized prostate cancer is good after surgery, with a favorable response to androgen deprivation therapy, about one third of them invariably relapse, and progress to castration-resistant prostate cancer. Overall, prostate cancer therapies remain scarcely effective, thus it is mandatory to devise alternative treatments enhancing the efficacy of surgical castration and hormone administration. Dysregulation of the phosphoinositide 3-kinase pathway has attracted growing attention in prostate cancer due to the highly frequent association of epigenetic and post-translational modifications as well as to genetic alterations of both phosphoinositide 3-kinase and PTEN to onset and/or progression of this malignancy, and to resistance to canonical androgen-deprivation therapy. Here we provide a summary of the biological functions of the major players of this cascade and their deregulation in prostate cancer, summarizing the results of preclinical and clinical studies with PI3K signaling inhibitors and the reasons of failure independent from genomic changes.
Collapse
|
8
|
Kaleağasıoğlu F, Zaharieva MM, Konstantinov SM, Berger MR. Alkylphospholipids are Signal Transduction Modulators with Potential for Anticancer Therapy. Anticancer Agents Med Chem 2019; 19:66-91. [PMID: 30318001 DOI: 10.2174/1871520618666181012093056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alkylphospholipids (APLs) are synthetically derived from cell membrane components, which they target and thus modify cellular signalling and cause diverse effects. This study reviews the mechanism of action of anticancer, antiprotozoal, antibacterial and antiviral activities of ALPs, as well as their clinical use. METHODS A literature search was used as the basis of this review. RESULTS ALPs target lipid rafts and alter phospholipase D and C signalling cascades, which in turn will modulate the PI3K/Akt/mTOR and RAS/RAF/MEK/ERK pathways. By feedback coupling, the SAPK/JNK signalling chain is also affected. These changes lead to a G2/M phase cell cycle arrest and subsequently induce programmed cell death. The available knowledge on inhibition of AKT phosphorylation, mTOR phosphorylation and Raf down-regulation renders ALPs as attractive candidates for modern medical treatment, which is based on individualized diagnosis and therapy. Corresponding to their unusual profile of activities, their side effects result from cholinomimetic activity mainly and focus on the gastrointestinal tract. These aspects together with their bone marrow sparing features render APCs well suited for modern combination therapy. Although the clinical success has been limited in cancer diseases so far, the use of miltefosine against leishmaniosis is leading the way to better understanding their optimized use. CONCLUSION Recent synthetic programs generate congeners with the increased therapeutic ratio, liposomal formulations, as well as diapeutic (or theranostic) derivatives with optimized properties. It is anticipated that these innovative modifications will pave the way for the further successful development of ALPs.
Collapse
Affiliation(s)
- Ferda Kaleağasıoğlu
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Faculty of Medicine, Near East University, Mersin 10, Turkey
| | - Maya M Zaharieva
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Microbiology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Spiro M Konstantinov
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University Sofia, Sofia, Bulgaria
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Song M, Bode AM, Dong Z, Lee MH. AKT as a Therapeutic Target for Cancer. Cancer Res 2019; 79:1019-1031. [PMID: 30808672 DOI: 10.1158/0008-5472.can-18-2738] [Citation(s) in RCA: 491] [Impact Index Per Article: 98.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/15/2018] [Accepted: 12/26/2018] [Indexed: 11/16/2022]
Abstract
Many cellular processes in cancer are attributed to kinase signaling networks. V-akt murine thymoma viral oncogene homolog (AKT) plays a major role in the PI3K/AKT signaling pathways. AKT is activated by PI3K or phosphoinositide-dependent kinases (PDK) as well as growth factors, inflammation, and DNA damage. Signal transduction occurs through downstream effectors such as mTOR, glycogen synthase kinase 3 beta (GSK3β), or forkhead box protein O1 (FOXO1). The abnormal overexpression or activation of AKT has been observed in many cancers, including ovarian, lung, and pancreatic cancers, and is associated with increased cancer cell proliferation and survival. Therefore, targeting AKT could provide an important approach for cancer prevention and therapy. In this review, we discuss the rationale for targeting AKT and also provide details regarding synthetic and natural AKT-targeting compounds and their associated studies.
Collapse
Affiliation(s)
- Mengqiu Song
- Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China.,China-US (Henan) Hormel Cancer Institute, Jinshui District, Zhengzhou, Henan, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Zigang Dong
- Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China. .,China-US (Henan) Hormel Cancer Institute, Jinshui District, Zhengzhou, Henan, China.,The Hormel Institute, University of Minnesota, Austin, Minnesota.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Mee-Hyun Lee
- Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China. .,China-US (Henan) Hormel Cancer Institute, Jinshui District, Zhengzhou, Henan, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| |
Collapse
|
10
|
Dahiya NR, Chandrasekaran B, Kolluru V, Ankem M, Damodaran C, Vadhanam MV. A natural molecule, urolithin A, downregulates androgen receptor activation and suppresses growth of prostate cancer. Mol Carcinog 2018; 57:1332-1341. [PMID: 30069922 DOI: 10.1002/mc.22848] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/25/2018] [Accepted: 06/01/2018] [Indexed: 11/10/2022]
Abstract
Androgen ablation therapy is the primary therapeutic option for locally advanced and metastatic castration-resistant prostate cancer (CRPC). We investigated therapeutic effect of a dietary metabolite Urolithin A (UroA) and dissected the molecular mechanism in CRPC cells. Treatment with UroA inhibited cell proliferation in both androgen receptor-positive (AR+ ) (C4-2B) and androgen receptor-negative (AR- ) (PC-3) cells however, AR+ CaP cells were more sensitive to UroA treatment as compared with AR- CaP cells. Inhibition of the AR signaling was responsible for the UroA effect on AR+ CaP cells. Ectopic expression of AR in PC-3 cells sensitized them to UroA treatment as compared to the vector-expresseing PC-3 cells, which suggests that AR could be a target of UroA. Similarly, in enzalutamide-resistant C4-2B cells, a downregulation of AR expression also suppressed cell proliferation which was observed with the UroA treatment. Oral administration of UroA significantly suppressed the growth of C4-2B xenografts (P = 0.05) compared with PC-3 xenografts (P = 0.069) without causing toxicity to animals. Immunohistochemistry analysis confirmed in vitro findings such as downregulation of AR/pAKT signaling in UroA-treated C4-2B tumors, which suggests that UroA may be a potent chemo-preventive and therapeutic agent for CRPC.
Collapse
Affiliation(s)
- Nisha R Dahiya
- Department of Urology, University of Louisville, Louisville, Kentucky
| | | | - Venkatesh Kolluru
- Department of Urology, University of Louisville, Louisville, Kentucky
| | - Murali Ankem
- Department of Urology, University of Louisville, Louisville, Kentucky
| | - Chendil Damodaran
- Department of Urology, University of Louisville, Louisville, Kentucky
| | - Manicka V Vadhanam
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, Kentucky
| |
Collapse
|
11
|
Bumbaca B, Li W. Taxane resistance in castration-resistant prostate cancer: mechanisms and therapeutic strategies. Acta Pharm Sin B 2018; 8:518-529. [PMID: 30109177 PMCID: PMC6089846 DOI: 10.1016/j.apsb.2018.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
Despite its good initial response and significant survival benefit in patients with castration-resistant prostate cancer (CRPC), taxane therapy inevitably encounters drug resistance in all patients. Deep understandings of taxane resistant mechanisms can significantly facilitate the development of new therapeutic strategies to overcome taxane resistance and improve CRPC patient survival. Multiple pathways of resistance have been identified as potentially crucial areas of intervention. First, taxane resistant tumor cells typically have mutated microtubule binding sites, varying tubulin isotype expression, and upregulation of efflux transporters. These mechanisms contribute to reducing binding affinity and availability of taxanes. Second, taxane resistant tumors have increased stem cell like characteristics, indicating higher potential for further mutation in response to therapy. Third, the androgen receptor pathway is instrumental in the proliferation of CRPC and multiple hypotheses leading to this pathway reactivation have been reported. The connection of this pathway to the AKT pathway has received significant attention due to the upregulation of phosphorylated AKT in CRPC. This review highlights recent advances in elucidating taxane resistant mechanisms and summarizes potential therapeutic strategies for improved treatment of CRPC.
Collapse
|
12
|
Patient-derived Hormone-naive Prostate Cancer Xenograft Models Reveal Growth Factor Receptor Bound Protein 10 as an Androgen Receptor-repressed Gene Driving the Development of Castration-resistant Prostate Cancer. Eur Urol 2018; 73:949-960. [DOI: 10.1016/j.eururo.2018.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/20/2018] [Indexed: 11/22/2022]
|
13
|
Nevedomskaya E, Baumgart SJ, Haendler B. Recent Advances in Prostate Cancer Treatment and Drug Discovery. Int J Mol Sci 2018; 19:ijms19051359. [PMID: 29734647 PMCID: PMC5983695 DOI: 10.3390/ijms19051359] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 02/08/2023] Open
Abstract
Novel drugs, drug sequences and combinations have improved the outcome of prostate cancer in recent years. The latest approvals include abiraterone acetate, enzalutamide and apalutamide which target androgen receptor (AR) signaling, radium-223 dichloride for reduction of bone metastases, sipuleucel-T immunotherapy and taxane-based chemotherapy. Adding abiraterone acetate to androgen deprivation therapy (ADT) in order to achieve complete androgen blockade has proven highly beneficial for treatment of locally advanced prostate cancer and metastatic hormone-sensitive prostate cancer (mHSPC). Also, ADT together with docetaxel treatment showed significant benefit in mHSPC. Ongoing clinical trials for different subgroups of prostate cancer patients include the evaluation of the second-generation AR antagonists enzalutamide, apalutamide and darolutamide, of inhibitors of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway, of inhibitors of DNA damage response, of targeted alpha therapy and of prostate-specific membrane antigen (PSMA) targeting approaches. Advanced clinical studies with immune checkpoint inhibitors have shown limited benefits in prostate cancer and more trials are needed to demonstrate efficacy. The identification of improved, personalized treatments will be much supported by the major progress recently made in the molecular characterization of early- and late-stage prostate cancer using “omics” technologies. This has already led to novel classifications of prostate tumors based on gene expression profiles and mutation status, and should greatly help in the choice of novel targeted therapies best tailored to the needs of patients.
Collapse
Affiliation(s)
- Ekaterina Nevedomskaya
- Therapeutic Research Groups, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| | - Simon J Baumgart
- Therapeutic Research Groups, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| | - Bernard Haendler
- Therapeutic Research Groups, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|
14
|
Abstract
PI3K/AKT signalling is commonly disrupted in human cancers, with AKT being a central component of the pathway, influencing multiple processes that are directly involved in tumourigenesis. Targeting AKT is therefore a highly attractive anti-cancer strategy with multiple AKT inhibitors now in various stages of clinical development. In this review, we summarise the role and regulation of AKT signalling in normal cellular physiology. We highlight the mechanisms by which AKT signalling can be hyperactivated in cancers and discuss the past, present and future clinical strategies for AKT inhibition in oncology.
Collapse
Affiliation(s)
| | - Udai Banerji
- Royal Marsden NHS Foundation Trust, London SM2 5PT, UK; The Institute of Cancer Research, London SM2 5NG, UK.
| |
Collapse
|
15
|
Ramalingam S, Ramamurthy VP, Njar VCO. Dissecting major signaling pathways in prostate cancer development and progression: Mechanisms and novel therapeutic targets. J Steroid Biochem Mol Biol 2017; 166:16-27. [PMID: 27481707 PMCID: PMC7371258 DOI: 10.1016/j.jsbmb.2016.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022]
Abstract
Prostate cancer (PCa) is the most frequently diagnosed non-cutaneous malignancy and leading cause of cancer mortality in men. At the initial stages, prostate cancer is dependent upon androgens for their growth and hence effectively combated by androgen deprivation therapy (ADT). However, most patients eventually recur with an androgen deprivation-resistant phenotype, referred to as castration-resistant prostate cancer (CRPC), a more aggressive form for which there is no effective therapy presently available. The current review is an attempt to cover and establish an understanding of some major signaling pathways implicated in prostate cancer development and castration-resistance, besides addressing therapeutic strategies that targets the key signaling mechanisms.
Collapse
Affiliation(s)
- Senthilmurugan Ramalingam
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - Vidya P Ramamurthy
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - Vincent C O Njar
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA.
| |
Collapse
|
16
|
Festuccia C. Investigational serine/threonine kinase inhibitors against prostate cancer metastases. Expert Opin Investig Drugs 2016; 26:25-34. [PMID: 27892725 DOI: 10.1080/13543784.2016.1266337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Androgen deprivation therapy (ADT) is used as first therapeutic approach in prostate cancer (PCa) although castration resistant disease (CRPC) develops with high frequency. CRPC is the consequence of lack of apoptotic responses to ADT. Alternative targeting of the androgen axis with abiraterone and enzalutamide, as well as taxane-based chemotherapy were used in CRPC. Serine/threonine protein kinases (STKs) regulate different molecular pathways of normal and neoplastic cells and participate to development of CRPC as well as to the progression towards a bone metastatic disease (mCRPC). Areas covered: The present review provide data on STK expression and activity in the development of CRPC as well as summarize recent reports of different strategies to block STK activity for the control of PCa progression. Expert Opinion: Inhibitors for different STKs have been developed but clinical trials in PCa are comparatively rare and few exhibit satisfactory 'drug-like' properties. It is, however, necessary to intensify, when possible, the number of clinical trials with these drugs in order to insert new therapies or combinations with standard hormone- and chemo-therapies in the treatment guidelines of the mPCA.
Collapse
Affiliation(s)
- Claudio Festuccia
- a Department of Biotechnological and Applied Clinical Sciences , University of L'Aquila , L'Aquila , Italy
| |
Collapse
|
17
|
Avan A, Narayan R, Giovannetti E, Peters GJ. Role of Akt signaling in resistance to DNA-targeted therapy. World J Clin Oncol 2016; 7:352-369. [PMID: 27777878 PMCID: PMC5056327 DOI: 10.5306/wjco.v7.i5.352] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/06/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
The Akt signal transduction pathway controls most hallmarks of cancer. Activation of the Akt cascade promotes a malignant phenotype and is also widely implicated in drug resistance. Therefore, the modulation of Akt activity is regarded as an attractive strategy to enhance the efficacy of cancer therapy and irradiation. This pathway consists of phosphatidylinositol 3 kinase (PI3K), mammalian target of rapamycin, and the transforming serine-threonine kinase Akt protein isoforms, also known as protein kinase B. DNA-targeted agents, such as platinum agents, taxanes, and antimetabolites, as well as radiation have had a significant impact on cancer treatment by affecting DNA replication, which is aberrantly activated in malignancies. However, the caveat is that they may also trigger the activation of repairing mechanisms, such as upstream and downstream cascade of Akt survival pathway. Thus, each target can theoretically be inhibited in view of improving the potency of conventional treatment. Akt inhibitors, e.g., MK-2206 and perifosine, or PI3K modulators, e.g., LY294002 and Wortmannin, have shown some promising results in favor of sensitizing the cancer cells to the therapy in vitro and in vivo, which have provided the rationale for incorporation of these novel agents into multimodality treatment of different malignancies. Nevertheless, despite the acceptable safety profile of some of these agents in the clinical studies, with regard to the efficacy, the results are still too preliminary. Hence, we need to wait for the upcoming data from the ongoing trials before utilizing them into the standard care of cancer patients.
Collapse
|
18
|
Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy. Pharmacol Ther 2016; 165:114-31. [DOI: 10.1016/j.pharmthera.2016.06.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/26/2016] [Indexed: 12/21/2022]
|
19
|
Toren P, Kim S, Johnson F, Zoubeidi A. Combined AKT and MEK Pathway Blockade in Pre-Clinical Models of Enzalutamide-Resistant Prostate Cancer. PLoS One 2016; 11:e0152861. [PMID: 27046225 PMCID: PMC4821639 DOI: 10.1371/journal.pone.0152861] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/20/2016] [Indexed: 11/25/2022] Open
Abstract
Despite recent improvements in patient outcomes using newer androgen receptor (AR) pathway inhibitors, treatment resistance in castrate resistant prostate cancer (CRPC) continues to remain a clinical problem. Co-targeting alternate resistance pathways are of significant interest to treat CRPC and delay the onset of resistance. Both the AKT and MEK signaling pathways become activated as prostate cancer develops resistance to AR-targeted therapies. This pre-clinical study explores co-targeting these pathways in AR-positive prostate cancer models. Using various in vitro models of prostate cancer disease states including androgen dependent (LNCaP), CRPC (V16D and 22RV1) and ENZ-resistant prostate cancer (MR49C and MR49F), we evaluate the relevance of targeting both AKT and MEK pathways. Our data reveal that AKT inhibition induces apoptosis and inhibits cell growth in PTEN null cell lines independently of their sensitivity to hormone therapy; however, AKT inhibition had no effect on the PTEN positive 22RV1 cell line. Interestingly, we found that MEK inhibition had greater effect on 22RV1 cells compared to LNCaP, V16D or ENZ-resistant cells MR49C and MR49F cells. In vitro, combination AKT and MEK blockade had evidence of synergy observed in some cell lines and assays, but this was not consistent across all results. In vivo, the combination of AKT and MEK inhibition resulted in more consistent tumor growth inhibition of MR49F xenografts and longer disease specific survival compared to AKT inhibitor monotherapy. As in our in vitro study, 22RV1 xenografts were more resistant to AKT inhibition while they were more sensitive to MEK inhibition. Our results suggest that targeting AKT and MEK in combination may be a valuable strategy in prostate cancer when both pathways are activated and further support the importance of characterizing the dominant oncogenic pathway in each patient's tumor in order to select optimal therapy.
Collapse
Affiliation(s)
- Paul Toren
- The Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Soojin Kim
- The Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Fraser Johnson
- The Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Amina Zoubeidi
- The Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Udayakumar TS, Stoyanova R, Shareef MM, Mu Z, Philip S, Burnstein KL, Pollack A. Edelfosine Promotes Apoptosis in Androgen-Deprived Prostate Tumors by Increasing ATF3 and Inhibiting Androgen Receptor Activity. Mol Cancer Ther 2016; 15:1353-63. [PMID: 26944919 DOI: 10.1158/1535-7163.mct-15-0332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022]
Abstract
Edelfosine is a synthetic alkyl-lysophospholipid that possesses significant antitumor activity in several human tumor models. Here, we investigated the effects of edelfosine combined with androgen deprivation (AD) in LNCaP and VCaP human prostate cancer cells. This treatment regimen greatly decreased cell proliferation compared with single agent or AD alone, resulting in higher levels of apoptosis in LNCaP compared with VCaP cells. Edelfosine caused a dose-dependent decrease in AKT activity, but did not affect the expression of total AKT in either cell line. Furthermore, edelfosine treatment inhibited the expression of androgen receptor (AR) and was associated with an increase in activating transcription factor 3 (ATF3) expression levels, a stress response gene and a negative regulator of AR transactivation. ATF3 binds to AR after edelfosine + AD and represses the transcriptional activation of AR as demonstrated by PSA promoter studies. Knockdown of ATF3 using siRNA-ATF3 reversed the inhibition of PSA promoter activity, suggesting that the growth inhibition effect of edelfosine was ATF3 dependent. Moreover, expression of AR variant 7 (ARv7) and TMPRSS2-ERG fusion gene were greatly inhibited after combined treatment with AD and edelfosine in VCaP cells. In vivo experiments using an orthotopic LNCaP model confirmed the antitumor effects of edelfosine + AD over the individual treatments. A significant decrease in tumor volume and PSA levels was observed when edelfosine and AD were combined, compared with edelfosine alone. Edelfosine shows promise in combination with AD for the treatment of prostate cancer patients. Mol Cancer Ther; 15(6); 1353-63. ©2016 AACR.
Collapse
Affiliation(s)
- Thirupandiyur S Udayakumar
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Radka Stoyanova
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Mohammed M Shareef
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Zhaomei Mu
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sakhi Philip
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Kerry L Burnstein
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, Florida
| | - Alan Pollack
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.
| |
Collapse
|
21
|
Paller CJ, Bradbury PA, Ivy SP, Seymour L, LoRusso PM, Baker L, Rubinstein L, Huang E, Collyar D, Groshen S, Reeves S, Ellis LM, Sargent DJ, Rosner GL, LeBlanc ML, Ratain MJ. Design of phase I combination trials: recommendations of the Clinical Trial Design Task Force of the NCI Investigational Drug Steering Committee. Clin Cancer Res 2015; 20:4210-7. [PMID: 25125258 DOI: 10.1158/1078-0432.ccr-14-0521] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anticancer drugs are combined in an effort to treat a heterogeneous tumor or to maximize the pharmacodynamic effect. The development of combination regimens, while desirable, poses unique challenges. These include the selection of agents for combination therapy that may lead to improved efficacy while maintaining acceptable toxicity, the design of clinical trials that provide informative results for individual agents and combinations, and logistic and regulatory challenges. The phase I trial is often the initial step in the clinical evaluation of a combination regimen. In view of the importance of combination regimens and the challenges associated with developing them, the Clinical Trial Design (CTD) Task Force of the National Cancer Institute Investigational Drug Steering Committee developed a set of recommendations for the phase I development of a combination regimen. The first two recommendations focus on the scientific rationale and development plans for the combination regimen; subsequent recommendations encompass clinical design aspects. The CTD Task Force recommends that selection of the proposed regimens be based on a biologic or pharmacologic rationale supported by clinical and/or robust and validated preclinical evidence, and accompanied by a plan for subsequent development of the combination. The design of the phase I clinical trial should take into consideration the potential pharmacokinetic and pharmacodynamic interactions as well as overlapping toxicity. Depending on the specific hypothesized interaction, the primary endpoint may be dose optimization, pharmacokinetics, and/or pharmacodynamics (i.e., biomarker).
Collapse
Affiliation(s)
- Channing J Paller
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore
| | | | - S Percy Ivy
- National Cancer Institute, Bethesda, Maryland
| | - Lesley Seymour
- NCIC Clinical Trials Group, Queen's University, Kingston, Ontario, Canada
| | | | | | | | - Erich Huang
- National Cancer Institute, Bethesda, Maryland
| | | | - Susan Groshen
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | | | - Lee M Ellis
- University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Gary L Rosner
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore
| | - Michael L LeBlanc
- Fred Hutchinson Cancer Research Center, Cancer Research and Biostatistics, Seattle, Washington
| | - Mark J Ratain
- The University of Chicago, Department of Medicine, Chicago, Illinois; and
| |
Collapse
|
22
|
Chang L, Graham PH, Ni J, Hao J, Bucci J, Cozzi PJ, Li Y. Targeting PI3K/Akt/mTOR signaling pathway in the treatment of prostate cancer radioresistance. Crit Rev Oncol Hematol 2015; 96:507-17. [PMID: 26253360 DOI: 10.1016/j.critrevonc.2015.07.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/20/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
The phosphatidylinositol-3-kinase/Akt and the mammalian target of rapamycin (PI3K/Akt/mTOR) pathway is one of the most frequently activated signaling pathways in prostate cancer (CaP) and other cancers, and responsible for the survival, metastasis and therapeutic resistance. Recent advances in radiation therapy indicate that activation of this pathway is closely associated with cancer radioresistance, which is a major challenge for the current CaP radiation treatment. Therefore, targeting this pathway by inhibitors to enhance radiosensitivity has great potential for clinical benefits of CaP patients. In this review, we summarize the recent findings in the PI3K/Akt/mTOR pathway in CaP radiotherapy research and discuss the potential use of the PI3K/Akt/mTOR pathway inhibitors as radiosensitizers in the treatment of CaP radioresistance in preclinical studies to explore novel approaches for future clinical trials.
Collapse
Affiliation(s)
- Lei Chang
- Cancer Care Centre and Prostate Cancer Institute, St. George Hospital, Sydney, NSW, Australia; St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Peter H Graham
- Cancer Care Centre and Prostate Cancer Institute, St. George Hospital, Sydney, NSW, Australia; St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Jie Ni
- Cancer Care Centre and Prostate Cancer Institute, St. George Hospital, Sydney, NSW, Australia; St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Jingli Hao
- Cancer Care Centre and Prostate Cancer Institute, St. George Hospital, Sydney, NSW, Australia; St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Joseph Bucci
- Cancer Care Centre and Prostate Cancer Institute, St. George Hospital, Sydney, NSW, Australia; St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Paul J Cozzi
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia; Department of Surgery, St. George Hospital, Sydney, NSW, Australia
| | - Yong Li
- Cancer Care Centre and Prostate Cancer Institute, St. George Hospital, Sydney, NSW, Australia; St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
23
|
Maughan BL, Antonarakis ES. Androgen pathway resistance in prostate cancer and therapeutic implications. Expert Opin Pharmacother 2015; 16:1521-37. [PMID: 26067250 PMCID: PMC4696015 DOI: 10.1517/14656566.2015.1055249] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Metastatic prostate cancer is an incurable disease that is treated with a variety of hormonal therapies targeting various nodes of the androgen receptor (AR) pathway. Invariably patients develop resistance and become castration resistant. Common treatments for castration-resistant disease include novel hormonal therapies, such as abiraterone and enzalutamide, chemotherapy, immunotherapy and radiopharmaceuticals. As this disease generally remains incurable, understanding the molecular underpinnings of resistance pathways is critical in designing therapeutic strategies to delay or overcome such resistance. AREAS COVERED This review will explore the resistance mechanisms relevant to hormonal agents, such as AR-V7 expression and others, as well as discussing new approaches being developed to treat patients with castration-resistant prostate cancer that take advantage of these new insights. A literature search was performed to identify all published clinical trials related to androgen therapy mechanisms of drug resistance in metastatic castration-resistant prostate cancer. EXPERT OPINION Androgen therapy resistance mechanisms are varied, and include modification of all nodes in the androgen signaling pathway. The optimal treatment for men with relapsed metastatic castration-resistant prostate cancer is uncertain at this time. The authors recommend using available clinical data to guide treatment decision making until more specific biomarkers are clinically available.
Collapse
Affiliation(s)
- Benjamin L Maughan
- Medical Oncology Fellow, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, 1650 Orleans St. CRB1 186, Baltimore, MD USA
| | - Emmanuel S Antonarakis
- Assistant Professor of Oncology, Assistant Professor of Urology, Johns Hopkins Sidney Kimmel, Comprehensive, Cancer Center, 1650 Orleans St. CRB1 186, Baltimore, MD, USA, Tel: + 410 502 7528; Fax: + 410 614 8397
| |
Collapse
|
24
|
Kim MN, Ro SW, Kim DY, Kim DY, Cho KJ, Park JH, Lim HY, Han KH. Efficacy of perifosine alone and in combination with sorafenib in an HrasG12V plus shp53 transgenic mouse model of hepatocellular carcinoma. Cancer Chemother Pharmacol 2015; 76:257-67. [PMID: 26037205 DOI: 10.1007/s00280-015-2787-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/21/2015] [Indexed: 12/21/2022]
Abstract
PURPOSE Perifosine has shown antitumor activity via inhibition of Akt phosphorylation in many advanced solid tumors. This study investigated the efficacy of perifosine alone and in combination with sorafenib in a transgenic mouse model of HCC. METHODS The mouse model of HCC was generated by hydrodynamic injection of transposons encoding HrasG12V and short-hairpin RNA downregulating p53. The transgenic mice were treated with perifosine alone and in combination with sorafenib to evaluate efficacy of drugs on tumor growth and survival. RESULTS Treatment with perifosine for 5 weeks, alone and in combination with sorafenib, strongly inhibited tumor growth and increased survival. Perifosine inhibited HCC cell proliferation, induced apoptosis, and decreased tumor angiogenesis. Furthermore, its combination with sorafenib enhanced these effects. In addition, Akt phosphorylation was decreased by perifosine and further decreased by combination treatment. Although perifosine alone did not appear to activate the caspase pathway, combination treatment increased the cleavage of caspase-3, caspase-9, and poly (ADP-ribose) polymerase. CONCLUSIONS The preclinical effect that current study showed represents a strong rationale for clinical trials using perifosine alone and in combination with sorafenib in the treatment of HCC patients.
Collapse
Affiliation(s)
- Mi Na Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul, 120-752, Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Santi SA, Douglas AC, Lee H. The Akt isoforms, their unique functions and potential as anticancer therapeutic targets. Biomol Concepts 2015; 1:389-401. [PMID: 25962012 DOI: 10.1515/bmc.2010.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Akt (also known as protein kinase B or PKB) is the major downstream nodal point of the PI3K signaling pathway. This pathway is a promising anticancer therapeutic target, because constitutive activation of the PI3K-Akt pathway is correlated with tumor development, progression, poor prognosis, and resistance to cancer therapies. The Akt serine/threonine kinase regulates diverse cellular functions including cell growth, proliferation, glucose metabolism, and survival. Although all three known Akt isoforms (Akt1-3) are encoded by separate genes, their amino acid sequences show a high degree of similarity. For this and other reasons, it has long been assumed that all three Akt isoforms are activated in the same way, and their functions largely overlap. However, accumulating lines of evidence now suggest that the three Akt isoforms might have unique modes of activation and many distinct functions. In particular, it has recently been found that the Akt isoforms are localized at different subcellular compartments in both adipocytes and cancer cells. In this review, we highlight the unique roles of each Akt isoform by introducing published data obtained from both in vitro and in vivo studies. We also discuss the significant potential of the Akt isoforms as effective anticancer therapeutic targets.
Collapse
|
26
|
Genomically amplified Akt3 activates DNA repair pathway and promotes glioma progression. Proc Natl Acad Sci U S A 2015; 112:3421-6. [PMID: 25737557 DOI: 10.1073/pnas.1414573112] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Akt is a robust oncogene that plays key roles in the development and progression of many cancers, including glioma. We evaluated the differential propensities of the Akt isoforms toward progression in the well-characterized RCAS/Ntv-a mouse model of PDGFB-driven low grade glioma. A constitutively active myristoylated form of Akt1 did not induce high-grade glioma (HGG). In stark contrast, Akt2 and Akt3 showed strong progression potential with 78% and 97% of tumors diagnosed as HGG, respectively. We further revealed that significant variations in polarity and hydropathy values among the Akt isoforms in both the pleckstrin homology domain (P domain) and regulatory domain (R domain) were critical in mediating glioma progression. Gene expression profiles from representative Akt-derived tumors indicated dominant and distinct roles for Akt3, consisting primarily of DNA repair pathways. TCGA data from human GBM closely reflected the DNA repair function, as Akt3 was significantly correlated with a 76-gene signature DNA repair panel. Consistently, compared with Akt1 and Akt2 overexpression models, Akt3-expressing human GBM cells had enhanced activation of DNA repair proteins, leading to increased DNA repair and subsequent resistance to radiation and temozolomide. Given the wide range of Akt3-amplified cancers, Akt3 may represent a key resistance factor.
Collapse
|
27
|
Murray M, Hraiki A, Bebawy M, Pazderka C, Rawling T. Anti-tumor activities of lipids and lipid analogues and their development as potential anticancer drugs. Pharmacol Ther 2015; 150:109-28. [PMID: 25603423 DOI: 10.1016/j.pharmthera.2015.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 12/28/2022]
Abstract
Lipids have the potential for development as anticancer agents. Endogenous membrane lipids, such as ceramides and certain saturated fatty acids, have been found to modulate the viability of tumor cells. In addition, many tumors over-express cyclooxygenase, lipoxygenase or cytochrome P450 enzymes that mediate the biotransformation of ω-6 polyunsaturated fatty acids (PUFAs) to potent eicosanoid regulators of tumor cell proliferation and cell death. In contrast, several analogous products from the biotransformation of ω-3 PUFAs impair particular tumorigenic pathways. For example, the ω-3 17,18-epoxide of eicosapentaenoic acid activates anti-proliferative and proapoptotic signaling cascades in tumor cells and the lipoxygenase-derived resolvins are effective inhibitors of inflammatory pathways that may drive tumor expansion. However, the development of potential anti-cancer drugs based on these molecules is complex, with in vivo stability a major issue. Nevertheless, recent successes with the antitumor alkyl phospholipids, which are synthetic analogues of naturally-occurring membrane phospholipid esters, have provided the impetus for development of further molecules. The alkyl phospholipids have been tested against a range of cancers and show considerable activity against skin cancers and certain leukemias. Very recently, it has been shown that combination strategies, in which alkyl phospholipids are used in conjunction with established anticancer agents, are promising new therapeutic approaches. In future, the evaluation of new lipid-based molecules in single-agent and combination treatments may also be assessed. This could provide a range of important treatment options in the management of advanced and metastatic cancer.
Collapse
Affiliation(s)
- Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia.
| | - Adam Hraiki
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Ultimo, NSW 2007, Australia
| | - Curtis Pazderka
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Ultimo, NSW 2007, Australia
| | - Tristan Rawling
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Ultimo, NSW 2007, Australia
| |
Collapse
|
28
|
El-Tantawy NL. Helminthes and insects: maladies or therapies. Parasitol Res 2014; 114:359-77. [PMID: 25547076 DOI: 10.1007/s00436-014-4260-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/15/2014] [Indexed: 11/24/2022]
Abstract
By definition, parasites cause harm to their hosts. But, considerable evidence from ancient traditional medicine has supported the theory of using parasites and their products in treating many diseases. Maggots have been used successfully to treat chronic, long-standing, infected wounds which failed to respond to conventional treatment by many beneficial effects on the wound including debridement, disinfection, and healing enhancement. Maggots are also applied in forensic medicine to estimate time between the death and discovery of a corpse and in entomotoxicology involving the potential use of insects as alternative samples for detecting drugs and toxins in death investigations. Leeches are segmented invertebrates, famous by their blood-feeding habits and used in phlebotomy to treat various ailments since ancient times. Leech therapy is experiencing resurgence nowadays in health care principally in plastic and reconstructive surgery. Earthworms provide a source of medicinally useful products with potential antimicrobial, antiviral, and anticancer properties. Lumbrokinases are a group of fibrinolytic enzymes isolated and purified from earthworms capable of degrading plasminogen-rich and plasminogen-free fibrin and so can be used to treat various conditions associated with thrombotic diseases. Helminth infection has been proved to have therapeutic effects in both animal and human clinical trials with promising evidence in treating many allergic diseases and can block the induction of or reduce the severity of some autoimmune disorders as Crohn's disease or ulcerative colitis. What is more, venomous arthropods such as scorpions, bees, wasps, spiders, ants, centipedes, snail, beetles, and caterpillars. The venoms and toxins from these arthropods provide a promising source of natural bioactive compounds which can be employed in the development of new drugs to treat diseases as cancer. The possibility of using these active molecules in biotechnological processes can make these venoms and toxins a valuable and promising source of natural bioactive compounds. The therapeutic use of helminthes and insects will be of great value in biomedicine and further studies on insect toxins will contribute extensively to the development of Biomedical Sciences.
Collapse
Affiliation(s)
- Nora L El-Tantawy
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura, 35516, Egypt,
| |
Collapse
|
29
|
Edlind MP, Hsieh AC. PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance. Asian J Androl 2014; 16:378-86. [PMID: 24759575 PMCID: PMC4023363 DOI: 10.4103/1008-682x.122876] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Prostate cancer (PCa) is the second most common malignancy among men in the world. Castration-resistant prostate cancer (CRPC) is the lethal form of the disease, which develops upon resistance to first line androgen deprivation therapy (ADT). Emerging evidence demonstrates a key role for the PI3K-AKT-mTOR signaling axis in the development and maintenance of CRPC. This pathway, which is deregulated in the majority of advanced PCas, serves as a critical nexus for the integration of growth signals with downstream cellular processes such as protein synthesis, proliferation, survival, metabolism and differentiation, thus providing mechanisms for cancer cells to overcome the stress associated with androgen deprivation. Furthermore, preclinical studies have elucidated a direct connection between the PI3K-AKT-mTOR and androgen receptor (AR) signaling axes, revealing a dynamic interplay between these pathways during the development of ADT resistance. Thus, there is a clear rationale for the continued clinical development of a number of novel inhibitors of the PI3K pathway, which offer the potential of blocking CRPC growth and survival. In this review, we will explore the relevance of the PI3K-AKT-mTOR pathway in PCa progression and castration resistance in order to inform the clinical development of specific pathway inhibitors in advanced PCa. In addition, we will highlight current deficiencies in our clinical knowledge, most notably the need for biomarkers that can accurately predict for response to PI3K pathway inhibitors.
Collapse
Affiliation(s)
| | - Andrew C Hsieh
- Division of Hematology/Oncology and Department of Internal Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
30
|
Dorff TB, Groshen S, Tsao-Wei DD, Xiong S, Gross ME, Vogelzang N, Quinn DI, Pinski JK. A Phase II trial of a combination herbal supplement for men with biochemically recurrent prostate cancer. Prostate Cancer Prostatic Dis 2014; 17:359-65. [PMID: 25245366 PMCID: PMC4234307 DOI: 10.1038/pcan.2014.37] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/30/2014] [Accepted: 08/03/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Men with biochemical recurrence (BCR) of prostate cancer are typically observed or treated with androgen-deprivation therapy. Non-hormonal, non-toxic treatments to slow the rise of PSA are desirable. We studied a combination herbal supplement, Prostate Health Cocktail (PHC), in prostate cancer cell lines and in a population of men with BCR. METHODS PC3, LAPC3 and LNCaP cells were incubated with increasing concentrations of PHC suspension. Men previously treated for prostate cancer with surgery, radiation or both with rising PSA but no radiographic metastases were treated with three capsules of PHC daily; the primary end point was 50% PSA decline. Circulating tumor cells (CTCs) were identified using parylene membrane filters. RESULTS PHC showed a strong dose-dependent anti-proliferative effect in androgen-sensitive and independent cell lines in vitro and suppression of androgen receptor expression. Forty eligible patients were enrolled in the clinical trial. Median baseline PSA was 2.8 ng ml(-1) (1.1-84.1) and 15 men (38%) had a PSA decline on study (1-55% reduction); 25 (62%) had rising PSA on study. The median duration of PSA stability was 6.4 months. Two patients had grade 2/3 transaminitis; the only other grade 2 toxicities were hyperglycemia, hypercalcemia and flatulence. There were no significant changes in testosterone or dihydrotestosterone. CTCs were identified in 19 men (47%). CONCLUSIONS Although the primary end point was not met, PHC was well tolerated and was associated with PSA declines and stabilization in a significant number of patients. We believe this is the first report of detecting CTCs in men with BCR prostate cancer. Randomized studies are needed to better define the effect of PHC in men with BCR.
Collapse
Affiliation(s)
- Tanya B. Dorff
- University of Southern California, Keck School of Medicine Norris Comprehensive Cancer Center 1441 Eastlake Ave. #3440 Los Angeles, CA 90033
| | - Susan Groshen
- USC Keck School of Medicine, Norris Comprehensive Cancer Center Department of Preventive Medicine, Division of Biostatistics
| | - Denice D. Tsao-Wei
- USC Keck School of Medicine, Norris Comprehensive Cancer Center Department of Preventive Medicine, Division of Biostatistics
| | - Shigang Xiong
- USC Keck School of Medicine, Division of Medical Oncology
| | - Mitchell E. Gross
- USC Keck School of Medicine, Westside Prostate Cancer Center Center for Applied Molecular Medicine
| | | | - David I. Quinn
- USC Keck School of Medicine, Norris Comprehensive Cancer Center Department of Medicine, Division of Medical Oncology
| | - Jacek K. Pinski
- USC Keck School of Medicine, Norris Comprehensive Cancer Center Department of Medicine, Division of Medical Oncology
| |
Collapse
|
31
|
Wozney JL, Antonarakis ES. Growth factor and signaling pathways and their relevance to prostate cancer therapeutics. Cancer Metastasis Rev 2014; 33:581-94. [PMID: 24402967 PMCID: PMC4090293 DOI: 10.1007/s10555-013-9475-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Treatments that target the androgen axis represent an effective strategy for patients with advanced prostate cancer, but the disease remains incurable and new therapeutic approaches are necessary. Significant advances have recently occurred in our understanding of the growth factor and signaling pathways that are active in prostate cancer. In conjunction with this, many new targeted therapies with sound preclinical rationale have entered clinical development and are being tested in men with castration-resistant prostate cancer. Some of the most relevant pathways currently being exploited for therapeutic gain are HGF/c-Met signaling, the PI3K/AKT/mTOR pathway, Hedgehog signaling, the endothelin axis, Src kinase signaling, the IGF pathway, and angiogenesis. Here, we summarize the biological basis for the use of selected targeted agents and the results from available clinical trials of these drugs in men with prostate cancer.
Collapse
Affiliation(s)
- Jocelyn L. Wozney
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Emmanuel S. Antonarakis
- Prostate Cancer Research Program, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, CRB1-1 M45, 1650 Orleans St., Baltimore, MD 21231, USA
| |
Collapse
|
32
|
Current clinical regulation of PI3K/PTEN/Akt/mTOR signalling in treatment of human cancer. J Cancer Res Clin Oncol 2014; 141:671-89. [PMID: 25146530 DOI: 10.1007/s00432-014-1803-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/08/2014] [Indexed: 01/14/2023]
Abstract
PURPOSE PTEN is an essential tumour suppressor gene which encodes a phosphatase protein that antagonises the PI3K/Akt/mTOR antiapoptotic pathway. Impairment of this tumour suppressor pathway potentially becomes a causal factor for development of malignancies. This review aims to assess current understanding of mechanisms of dysfunction involving the PI3K/PTEN/Akt/mTOR pathway linked to tumorigenesis and evaluate the evidence for targeted therapy directed at this signalling axis. METHODS Relevant articles in scientific databases were identified using a combination of search terms, including "malignancies", "targeted therapy", "PTEN", and "combination therapy". These databases included Medline, Embase, Cochrane Review, Pubmed, and Scopus. RESULTS PI3K/PTEN expression is frequently deregulated in a majority of malignancies through genetic, epigenetic, and post-transcriptional modifications. This contributes to the upregulation of the PI3K/Akt/mTOR pathway which has been the focus of intense clinical studies. Targeted agents aimed at this pathway offer a novel treatment approach in a variety of haematologic malignancies and solid tumours. Compared to single-agent use, greater response rates were obtained in combination regimens, supporting further investigation of suitable drug combinations in a broad spectrum of malignancies. CONCLUSION Activation of the PI3K/PTEN/Akt/mTOR pathway is implicated both in the pathogenesis of malignancies and development of resistance to anticancer therapies. Therefore, PI3K/Akt/mTOR inhibitors are a promising therapeutic option, in association with systemic cytotoxic and biological therapies, to enable sustained clinical outcomes in cancer treatment. Therapeutic strategies could be tailored according to appropriate biomarkers and patient-specific mutation profiles to maximise benefit of combination therapies.
Collapse
|
33
|
Toren P, Kim S, Cordonnier T, Crafter C, Davies BR, Fazli L, Gleave ME, Zoubeidi A. Combination AZD5363 with Enzalutamide Significantly Delays Enzalutamide-resistant Prostate Cancer in Preclinical Models. Eur Urol 2014; 67:986-990. [PMID: 25151012 DOI: 10.1016/j.eururo.2014.08.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 08/01/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED The phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt (PI3K/Akt) pathway is a key pathway activated in castrate-resistant prostate cancer (CRPC). This preclinical study evaluates targeting of Akt with AZD5363 alone and in combination with enzalutamide (ENZ) to prevent and delay resistance. Our results demonstrate AZD5363 has significant proapoptotic, antiproliferative activity as monotherapy in ENZ-resistant cell lines in vitro and significantly decreased tumour growth in ENZ-resistant xenograft. The combination of AZD5363 and ENZ showed synergistic decreases in cell proliferation and induced cell-cycle arrest and apoptosis in prostate cancer cell lines LNCaP and C4-2. Notably, the combination of AZD5363 and ENZ resulted in an impressive regression of castrate-resistant LNCaP xenograft tumours without any recurrence demonstrated, whereas progression occurred with both monotherapies. Serum prostate-specific antigen (PSA) levels were also continuously suppressed, and nadir PSA levels were lower in the combination arm compared to ENZ alone. Combination AZD5363 and ENZ at time of castration similarly resulted in significant regression of tumours, with greater relative suppression of PSA compared to when administered to castrate-resistant xenografts. In summary, combination AZD5363 and ENZ significantly delays the development of ENZ resistance in preclinical models through synergistic increases in apoptosis and cell cycle arrest. Our results also suggest greater efficacy may be seen with earlier combination treatment. This study provides preclinical data to support evaluation of combination targeting of the PI3K/Akt pathway and the androgen-receptor axis in the clinic using AZD5363 and ENZ, respectively. PATIENT SUMMARY Targeting of the Akt and androgen receptor pathways with AZD5363 and enzalutamide, respectively, significantly delayed the development of enzalutamide-resistant prostate cancer through increased apoptosis and cell cycle arrest. This preclinical synergy provides a strong rationale for clinical evaluation of this combination.
Collapse
Affiliation(s)
- Paul Toren
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Soojin Kim
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Thomas Cordonnier
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Ladan Fazli
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Martin E Gleave
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Amina Zoubeidi
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
34
|
Toren P, Zoubeidi A. Targeting the PI3K/Akt pathway in prostate cancer: challenges and opportunities (review). Int J Oncol 2014; 45:1793-801. [PMID: 25120209 DOI: 10.3892/ijo.2014.2601] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/04/2014] [Indexed: 11/06/2022] Open
Abstract
The PI3K/Akt pathway is an actively pursued therapeutic target in oncology. In prostate cancer, the activation of this pathway appears to be characteristic of many aggressive prostate cancers. Further, activation of the PI3K/Akt pathway is more frequently observed as prostate cancer progresses toward a resistant, metastatic disease. Signalling from this pathway activates numerous survival, growth, metabolic and metastatic functions characteristic of aggressive cancer. Biomarkers of this pathway have correlated activation of this pathway to high grade disease and higher risk of disease progression. Therefore there is significant interest in developing effective strategies to target this pathway in prostate cancer. In this review, we discuss the pre-clinical and clinical data relevant to targeting of the PI3K/Akt pathway in prostate cancer. In particular, we review the rationale and relevance of co-targeting approaches against the PI3K/Akt pathway. It is anticipated that through an improved understanding of the biology of the PI3K/Akt pathway in prostate cancer, relevant biomarkers and rationale combination therapies will optimize targeting of this pathway to improve outcomes among patients with aggressive prostate cancer.
Collapse
Affiliation(s)
- Paul Toren
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| | - Amina Zoubeidi
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| |
Collapse
|
35
|
PIP5K1α inhibition as a therapeutic strategy for prostate cancer. Proc Natl Acad Sci U S A 2014; 111:12578-9. [PMID: 25118275 DOI: 10.1073/pnas.1413363111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
36
|
A novel PI3K inhibitor displays potent preclinical activity against an androgen-independent and PTEN-deficient prostate cancer model established from the cell line PC3. Toxicol Lett 2014; 228:133-9. [PMID: 24831963 DOI: 10.1016/j.toxlet.2014.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/02/2014] [Accepted: 05/02/2014] [Indexed: 11/23/2022]
Abstract
Recent studies demonstrated that targeting the phosphatidylinositide 3-kinase (PI3K)/AKT signaling pathway is a major strategy for the treatment of androgen-independent prostate cancer. In the present study, we developed an analog BENC-511 from a recently reported PI3K inhibitor S14161 by structural optimization. Using PC3 and DU145 as the model cell lines, we found PTEN-deficient PC3 cells were more sensitive than PTEN-expressing DU145 ones in terms of cell proliferation, apoptosis, and caspase-3 activation. These findings were consistent with the inhibition on PI3K/AKT signals. BENC-511 preferably suppressed AKT activation in PC3 over DU145 cells. Notably, PTEN restoration attenuated BENC-511 induced apoptosis. Moreover, BENC-511 displayed great therapeutic efficacy in a PC3-derived prostate cancer model in nude mice. With an oral dosage of 50mg/kg, BENC-511 decreased tumor growth more than 50% in 27 days, which was accompanied with PARP cleavage, but did not show overt toxicity. This study lays a solid rationale for the development of BENC-511 as a drug for the treatment of PTEN-deficient and androgen-independent prostate cancers.
Collapse
|
37
|
Toren P, Zoubeidi A. Rational cotargeting of Pim-1 and Akt in prostate cancer. Expert Rev Anticancer Ther 2014; 13:937-9. [PMID: 23984895 DOI: 10.1586/14737140.2013.816461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Evaluation of: Cen B, Mahajan S, Wang W, Kraft AS. Elevation of receptor tyrosine kinases by small molecule AKT inhibitors in prostate cancer is mediated by Pim-1. Cancer Res. 73(11), 3402-3411 (2013). The PI3K/Akt pathway is a key pathway in many advanced and aggressive cancers. Targeted inhibition of this pathway is currently an actively pursued therapeutic strategy. However, blockade of this pathway with inhibitors has been challenging, with up-regulation of reciprocal feedback pathways contributing to treatment failures. The article evaluated presents mechanistic data on how Pim is a critical mediator of the receptor tyrosine elevation induced by Akt inhibition. Pim-1 kinases are overexpressed in resistant and aggressive cancers. Following Akt inhibition, Pim- regulates receptor tyrosine kinases up-regulation, at least in part, through a cap-independent translation. This research leads the way for further evaluation of co-targeting strategies using Pim-1 inhibitors in combination with PI3K/Akt pathway inhibitors.
Collapse
Affiliation(s)
- Paul Toren
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | |
Collapse
|
38
|
de Castro MSc CV, Guimaraes G, Aguiar Jr S, Lopes A, Baiocchi G, da Cunha IW, Campos AHJFM, Soares FA, Begnami MD. Tyrosine kinase receptor expression in chordomas: phosphorylated AKT correlates inversely with outcome. Hum Pathol 2013; 44:1747-55. [DOI: 10.1016/j.humpath.2012.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/24/2012] [Accepted: 11/28/2012] [Indexed: 01/13/2023]
|
39
|
Thomas C, Lamoureux F, Crafter C, Davies BR, Beraldi E, Fazli L, Kim S, Thaper D, Gleave ME, Zoubeidi A. Synergistic targeting of PI3K/AKT pathway and androgen receptor axis significantly delays castration-resistant prostate cancer progression in vivo. Mol Cancer Ther 2013; 12:2342-55. [PMID: 23966621 DOI: 10.1158/1535-7163.mct-13-0032] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The progression to castration-resistant prostate cancer (CRPC) correlates with gain-of-function of the androgen receptor (AR) and activation of AKT. However, as single agents, AR or AKT inhibitors result in a reciprocal feedback loop. Therefore, we hypothesized that combination of an AKT inhibitor with an antiandrogen might result in a more profound, long-lasting remission of CRPC. Here, we report that the AKT inhibitor AZD5363 potently inhibits proliferation and induces apoptosis in prostate cancer cell lines expressing the AR and has anticancer activity in vivo in androgen-sensitive and castration-resistant phases of the LNCaP xenograft model. However, we found that the effect of castration-resistant tumor growth inhibition and prostate-specific antigen (PSA) stabilization is transient and resistance occurs with increasing PSA after approximately 30 days of treatment. Mechanistically, we found that single agent AZD5363 induces increase of AR binding to androgen response element, AR transcriptional activity, and AR-dependent genes such as PSA and NKX3.1 expression. These effects were overcome by the combination of AZD5363 with the antiandrogen bicalutamide, resulting in synergistic inhibition of cell proliferation and induction of apoptosis in vitro, and prolongation of tumor growth inhibition and PSA stabilization in CRPC in vivo. This study provides a preclinical proof-of-concept that combination of an AKT inhibitor with antiandrogen results in prolonged disease stabilization in a model of CRPC.
Collapse
Affiliation(s)
- Christian Thomas
- Corresponding Author: Amina Zoubeidi, The Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 2013; 32:5501-11. [PMID: 23752182 DOI: 10.1038/onc.2013.206] [Citation(s) in RCA: 586] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/10/2013] [Accepted: 04/10/2013] [Indexed: 12/13/2022]
Abstract
Prostate cancer is the second-leading cause of cancer-related mortality in men in Western societies. Androgen receptor (AR) signaling is a critical survival pathway for prostate cancer cells, and androgen-deprivation therapy (ADT) remains the principal treatment for patients with locally advanced and metastatic disease. Although a majority of patients initially respond to ADT, most will eventually develop castrate resistance, defined as disease progression despite serum testosterone levels of <20 ng/dl. The recent discovery that AR signaling persists during systemic castration via intratumoral production of androgens led to the development of novel anti-androgen therapies including abiraterone acetate and enzalutamide. Although these agents effectively palliate symptoms and prolong life, metastatic castration-resistant prostate cancer remains incurable. An increased understanding of the mechanisms that underlie the pathogenesis of castrate resistance is therefore needed to develop novel therapeutic approaches for this disease. The aim of this review is to summarize the current literature on the biology and treatment of castrate-resistant prostate cancer.
Collapse
|
41
|
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is a key signaling pathway that has been linked to both tumorigenesis and resistance to therapy in prostate cancer and other solid tumors. Given the significance of the PI3K/Akt/mTOR pathway in integrating cell survival signals and the high prevalence of activating PI3K/Akt/mTOR pathway alterations in prostate cancer, inhibitors of this pathway have great potential for clinical benefit. Here, we review the role of the PI3K/Akt/mTOR pathway in prostate cancer and discuss the potential use of pathway inhibitors as single agents or in combination in the evolving treatment landscape of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Rhonda L Bitting
- Division of Medical Oncology, Duke Cancer Institute, Duke University, DUMC Box 102002, Durham, North Carolina 27710, USA
| | | |
Collapse
|
42
|
PTEN in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
43
|
Abstract
INTRODUCTION Perifosine is an oral alkylphospholipid which has recently been assessed clinically in patients with advanced renal cell carcinoma (RCC). Perifosine acts primarily by attenuating the activation of Akt by preventing its pleckstrin homology (PH) domain-dependent localization to the cell membrane. AREAS COVERED This review summarizes the therapeutic landscape of RCC including the proposed role of perifosine in patients with advanced RCC. The mechanism of action, pharmacodynamics, pharmacokinetics, clinical efficacy in RCC and safety of perifosine are all addressed as well. EXPERT OPINION Although perifosine has clear clinical activity in RCC, it is not superior to currently available agents and therefore does not appear worthy of further clinical development in RCC as a single agent. Given the observed efficacy and mild toxicity, however, perifosine may have a role in RCC therapy given in combination with other molecularly targeted agents.
Collapse
Affiliation(s)
- Neeharika Srivastava
- Beth Israel Deaconess Medical Center, Division of Hematology and Oncology, 330 Brookline Avenue, MASCO 4th Floor, Boston, MA 02215, USA
| | | |
Collapse
|
44
|
Henke G, Meier V, Lindner LH, Eibl H, Bamberg M, Belka C, Budach W, Jendrossek V. Effects of ionizing radiation in combination with Erufosine on T98G glioblastoma xenograft tumours: a study in NMRI nu/nu mice. Radiat Oncol 2012; 7:172. [PMID: 23078969 PMCID: PMC3539870 DOI: 10.1186/1748-717x-7-172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/13/2012] [Indexed: 01/27/2023] Open
Abstract
Background Erufosine is a promising anticancer drug that increases the efficacy of radiotherapy in glioblastoma cell lines in vitro. Moreover, treatment of nude mice with repeated intraperitoneal or subcutaneous injections of Erufosine is well tolerated and yields drug concentrations in the brain tissue that are higher than the concentrations required for cytotoxic drug effects on glioblastoma cell lines in vitro. Methods In the present study we aimed to evaluate the effects of a combined treatment with radiotherapy and Erufosine on growth and local control of T98G subcutaneous glioblastoma xenograft-tumours in NMRI nu/nu mice. Results We show that repeated intraperitoneal injections of Erufosine resulted in a significant drug accumulation in T98G xenograft tumours on NMRI nu/nu mice. Moreover, short-term treatment with 5 intraperitoneal Erufosine injections caused a transient decrease in the growth of T98G tumours without radiotherapy. Furthermore, an increased radiation-induced growth delay of T98G xenograft tumours was observed when fractionated irradiation was combined with short-term Erufosine-treatment. However, no beneficial drug effects on fractionated radiotherapy in terms of local tumour control were observed. Conclusions We conclude that short-term treatment with Erufosine is not sufficient to significantly improve local control in combination with radiotherapy in T98G glioblastoma xenograft tumours. Further studies are needed to evaluate efficacy of extended drug treatment schedules.
Collapse
Affiliation(s)
- Guido Henke
- Department of Radiooncology, University Hospital Tübingen, Hoppe-Seyler-Str, 3, Tübingen 72076, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Parray A, Siddique HR, Nanda S, Konety BR, Saleem M. Castration-resistant prostate cancer: potential targets and therapies. Biologics 2012; 6:267-76. [PMID: 22956858 PMCID: PMC3430091 DOI: 10.2147/btt.s23954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The treatment landscape for patients with castration-resistant prostate cancer (CRPC) is undergoing significant changes with the advent of new therapies and multidisciplinary efforts by scientists and clinicians. As activation of multiple molecular pathways in the neoplastic prostate makes it impossible for single-target drugs to be completely effective in treating CRPC, this has led to combination therapy strategy, where several molecules involved in tumor growth and disease progression are targeted by a therapeutic regimen. In the present review, we provide an update on the molecular pathways that play an important role in the pathogenesis of CRPC and discuss the current wave of new treatments to combat this lethal disease.
Collapse
Affiliation(s)
- Aijaz Parray
- Molecular Chemoprevention and Therapeutics, The Hormel Institute, University of Minnesota, Austin, TX
| | - Hifzur R Siddique
- Molecular Chemoprevention and Therapeutics, The Hormel Institute, University of Minnesota, Austin, TX
| | - Sanjeev Nanda
- Molecular Chemoprevention and Therapeutics, The Hormel Institute, University of Minnesota, Austin, TX
- Department of Internal Medicine, Mayo Clinic Health Systems, Austin, TX
| | | | - Mohammad Saleem
- Molecular Chemoprevention and Therapeutics, The Hormel Institute, University of Minnesota, Austin, TX
- Department of Urology, University of Minnesota, Minneapolis
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
46
|
Wen PY, Lee EQ, Reardon DA, Ligon KL, Alfred Yung WK. Current clinical development of PI3K pathway inhibitors in glioblastoma. Neuro Oncol 2012; 14:819-29. [PMID: 22619466 PMCID: PMC3379803 DOI: 10.1093/neuonc/nos117] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/28/2012] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary malignant tumor of the central nervous system, and effective therapeutic options are lacking. The phosphatidylinositol 3-kinase (PI3K) pathway is frequently dysregulated in many human cancers, including GBM. Agents inhibiting PI3K and its effectors have demonstrated preliminary activity in various tumor types and have the potential to change the clinical treatment landscape of patients with solid tumors. In this review, we describe the activation of the PI3K pathway in GBM, explore why inhibition of this pathway may be a compelling therapeutic target for this disease, and provide an update of the data on PI3K inhibitors in clinical trials and from earlier investigation.
Collapse
Affiliation(s)
- Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
47
|
Abstract
Phosphoinositide 3-kinases (PI3Ks) control cell growth, proliferation, cell survival, metabolic activity, vesicular trafficking, degranulation, and migration. Through these processes, PI3Ks modulate vital physiology. When over-activated in disease, PI3K promotes tumor growth, angiogenesis, metastasis or excessive immune cell activation in inflammation, allergy and autoimmunity. This chapter will introduce molecular activation and signaling of PI3Ks, and connections to target of rapamycin (TOR) and PI3K-related protein kinases (PIKKs). The focus will be on class I PI3Ks, and extend into current developments to exploit mechanistic knowledge for therapy.
Collapse
Affiliation(s)
- Matthias Wymann
- Institute Biochemistry & Genetics, Department Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland,
| |
Collapse
|
48
|
Vinall RL, Mahaffey CM, Davis RR, Luo Z, Gandour-Edwards R, Ghosh PM, Tepper CG, de Vere White RW. Dual blockade of PKA and NF-κB inhibits H2 relaxin-mediated castrate-resistant growth of prostate cancer sublines and induces apoptosis. Discov Oncol 2011; 2:224-38. [PMID: 21789713 DOI: 10.1007/s12672-011-0076-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
We previously demonstrated that H2 relaxin (RLN2) facilitates castrate-resistant (CR) growth of prostate cancer (CaP) cells through PI3K/Akt/β-catenin-mediated activation of the androgen receptor (AR) pathway. As inhibition of this pathway caused only ~50% reduction in CR growth, the goal of the current study was to identify additional RLN2-activated pathways that contribute to CR growth. Next-generation sequencing-based transcriptome and gene ontology analyses comparing LNCaP stably transfected with RLN2 versus LNCaP-vector identified differential expression of genes associated with cell proliferation (12.7% of differentially expressed genes), including genes associated with the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) and nuclear factor-kappaB (NF-κB) pathways. Subsequent molecular analyses confirmed that the cAMP/PKA and NF-κB pathways play a role in facilitating H2 relaxin-mediated CR growth of CaP cells. Inhibition of PKA-attenuated RLN2-mediated AR activity inhibited proliferation and caused a small but significant increase in apoptosis. Combined inhibition of the PKA and NF-κB signaling pathways via inhibition of PKA and Akt induced significant apoptosis and dramatically reduced clonogenic potential, outperforming docetaxel, the standard of care treatment for CR CaP. Immunohistochemical analysis of tissue microarrays in combination with multispectral quantitative imaging comparing RLN2 levels in patients with benign prostatic hyperplasia (BPH), prostatic intraepithelial neoplasia, and CaP determined that RLN2 is significantly upregulated in CaP vs BPH (p = 0.002). The combined data indicate RLN2 overexpression is frequent in CaP patients and provides a growth advantage to CaP cells. A near-complete inhibition of RLN2-induced CR growth can be achieved by simultaneous blockade of both pathways.
Collapse
Affiliation(s)
- Ruth L Vinall
- Department of Urology, University of California, Davis, School of Medicine and Cancer Center, 4860 Y Street, Suite 3500, Sacramento, CA 95817, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bellmunt J, Oh WK. Castration-resistant prostate cancer: new science and therapeutic prospects. Ther Adv Med Oncol 2011; 2:189-207. [PMID: 21789134 DOI: 10.1177/1758834009359769] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is a growing number of new therapies targeting different pathways that will revolutionize patient management strategies in castration-resistant prostate cancer (CRPC) patients. Today there are more clinical trial options for CRPC treatment than ever before, and there are many promising agents in late-stage clinical testing. The hypothesis that CRPC frequently remains driven by a ligand-activated androgen receptor (AR) and that CRPC tissues exhibit substantial residual androgen levels despite gonadotropin-releasing hormone therapy, has led to the evaluation of new oral compounds such as abiraterone and MDV 3100. Their results, coupled with promising recent findings in immunotherapy (eg sipuleucel-T) and with agents targeting angiogenesis (while awaiting the final results of the CALGB trial 90401) will most probably impact the management of patients with CRPC in the near future. Other new promising agents need further development. With our increased understanding of the biology of this disease, further trial design should incorporate improved patient selection so that patient populations are those who may be most likely to benefit from treatment.
Collapse
Affiliation(s)
- Joaquim Bellmunt
- University Hospital del Mar-IMIM Barcelona, Paseo Maritimo 25-29 Barcelona 08003, Spain
| | | |
Collapse
|
50
|
Bianchini D, Zivi A, Sandhu S, de Bono JS. Horizon scanning for novel therapeutics for the treatment of prostate cancer. Ann Oncol 2011; 21 Suppl 7:vii43-55. [PMID: 20943642 DOI: 10.1093/annonc/mdq369] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Treatment options for patients with advanced prostate cancer (PCa) remain limited. Improved understanding of the underlying molecular drivers of PCa pathogenesis, progression and resistance development has provided the fundamental basis for rational targeted drug design. Key findings in recent years include the identification of ETS gene rearrangements, the dissection of PCa molecular heterogeneity and the discovery that castration-resistant prostate cancer (CRPC) remains androgen driven despite the androgen-depleted milieu, thus making androgen receptor (AR) signaling a continued focus of molecularly targeted treatments. AR ligand-independent activation of tyrosine kinase prosurvival signaling cascades and angiogenesis have also been implicated in disease progression. A multitude of new molecularly targeted agents that abrogate AR signaling, inhibit the mitogenic and prosurvival signal transduction pathways, perturb the tumor-bone microenvironment, impair tumor vasculature, facilitate immune modulation and induce apoptosis are in clinical development and are highly likely to change the current treatment paradigm. It is clear that the success of these molecular targeted therapies hinges in part on optimal patient selection based on the molecular disease profile and an improved understanding of the mechanistic basis of acquired resistance. This review outlines the current clinical development of molecular targeted treatments in CRPC, with particular emphasis on agents that are in the later stages of clinical development, and details the challenges and future direction of developing these antitumor agents.
Collapse
Affiliation(s)
- D Bianchini
- The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, UK
| | | | | | | |
Collapse
|