1
|
Arputharaj E, Huang YH, Singh S, Zhuang CH, Lin KY, Sudewi S, Wu YR, Huang YL. Bio-inspired chitosan/polydopamine-nanoparticle based sorbent bead: A versatile platform for separation and HPLC analysis of tetracycline antibiotics from various sample matrix. J Food Drug Anal 2024; 32:520-531. [PMID: 39752864 PMCID: PMC11698588 DOI: 10.38212/2224-6614.3510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/21/2024] [Indexed: 01/07/2025] Open
Abstract
This study introduces an innovative bio-based sorbent bead crafted by integrating chitosan (CS) biopolymers, Fe(NO3)3 and polydopamine nanoparticles (PDA NPs) via glutaraldehyde crosslinking. The primary focus of this study was the concurrent separation of diverse tetracycline antibiotics (TCs), followed by rigorous reversed-phase liquid chromatography analysis. The fabricated CS/Fe@PDA sorbent beads were comprehensively characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy, revealing a surface rich in active carbon (C), nitrogen (N), and oxygen (O) moieties. The proposed method demonstrated substantial analytical robustness, enabling the sorbent bead to detect low concentrations of TCs, with limit of detection values ranging from 142 to 303 μg L-1. Notably, the established linear range of 450-2000 μg L-1 extended the applicability of this approach to food and pharmaceutical product analysis. This study anticipated a paradigm shift in sample pre-treatment methodologies for TC analysis and envisions CS/Fe@PDA beads as a valuable tool for further advancements in separation science. The proposed bio-sorbent introduced a promising avenue for optimizing TC analysis, contributing to broader goals of food safety and pharmaceutical quality assurance. The results and insights from this study are expected to provide valuable inputs for ongoing efforts of the Food and Drug Administration to enhance analytical methodologies for food and drug safety.
Collapse
Affiliation(s)
- Emmanuvel Arputharaj
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung,
Taiwan
| | - Yu-Hui Huang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung,
Taiwan
| | - Shivangi Singh
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung,
Taiwan
| | - Chen-Han Zhuang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung,
Taiwan
| | - Kuei-Ying Lin
- Department of Laboratory Medicine, Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung,
Taiwan
| | - Sri Sudewi
- Department of Pharmacy, Faculty of Mathematics and Natural Science, Universitas Sam Ratulangi, Manado,
Indonesia
| | - You-Rong Wu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung,
Taiwan
| | - Yeou-Lih Huang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung,
Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung,
Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung,
Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung,
Taiwan
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung,
Taiwan
| |
Collapse
|
2
|
Kilianova Z, Cizmarova I, Spaglova M, Piestansky J. Recent Trends in Therapeutic Drug Monitoring of Peptide Antibiotics. J Sep Sci 2024; 47:e202400583. [PMID: 39400453 DOI: 10.1002/jssc.202400583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Antimicrobial peptides take a specific position in the field of antibiotics (ATBs), however, from a large number of available molecules only a few of them were approved and are used in clinics. These therapeutic modalities play a crucial role in the management of diseases caused by multidrug-resistant bacterial pathogens and represent the last-line therapy for bacterial infections. Therefore, there is a demand for a rationale use of such ATBs based on optimization of the dosing strategy to minimize the risk of resistance and ensure the sustainable efficacy of the drug in real clinical practice. Therapeutic drug monitoring, as a measurement of drug concentration in the body fluids or tissues, results in the optimization of the patient´s medication and therapy outcome. This strategy is beneficial and could result in tailored therapy for different types of infection and the prolongation of the use and efficacy of ATBs in hospitals. This review paper provides an actual overview of approved antimicrobial peptides used in clinical practice and covers current trends in their analysis by convenient and advanced methodologies used for their identification and/or quantitation in biological matrices for therapeutic drug monitoring purposes. Special emphasis is given to the methods with perspective clinical outcomes.
Collapse
Affiliation(s)
- Zuzana Kilianova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Ivana Cizmarova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Miroslava Spaglova
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Juraj Piestansky
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
3
|
Song L, Luo K, Liu C, Zhao H, Ye L, Wang H. A bismuth-based double-network hydrogel-mediated synergistic photothermal-chemodynamic therapy for accelerated wound healing. J Mater Chem B 2024; 12:4975-4987. [PMID: 38687157 DOI: 10.1039/d4tb00121d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Multidrug-resistant bacterial infections present a significant challenge to wound healing. Non-antibiotic approaches such as photothermal therapy (PTT) and chemodynamic therapy (CDT) are promising but have suboptimal anti-bacterial efficacy. Herein, we developed a green bismuth-based double-network hydrogel (Bi@P-Cu) as a PTT/CDT synergistic platform for accelerated drug-resistant bacteria-infected wound healing. Bismuth (Bi) nanoparticles fabricated using a microwave method were used as a highly efficient and biocompatible PTT agent while the integration of a small amount of CDT agent Cu2+ endowed the hydrogel with excellent mechanical and self-healing properties, markedly increased photothermal efficiency, promoted cell migration ability, and negligible toxicity. Importantly, PTT enhanced the production of hydroxyl radicals in CDT and the destruction of bacterial cell membranes, which in turn enhanced the thermal sensitivity of bacteria. This synergistic anti-bacterial effect, together with the demonstrated capability to promote angiogenesis and anti-inflammation as well as enhanced fibroblast proliferation, led to accelerated wound healing in a full-thickness mouse model of resistant bacterial infection. This study provides an effective and safe strategy to eliminate drug-resistant bacteria and accelerate wound healing through green, non-antibiotic, double-network hydrogel-mediated synergistic PTT and CDT.
Collapse
Affiliation(s)
- Linyan Song
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China.
| | - Kui Luo
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China.
- Core Facility Center, Capital Medical University, Beijing, 100069, P. R. China
| | - Chen Liu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China.
| | - Huanying Zhao
- Core Facility Center, Capital Medical University, Beijing, 100069, P. R. China
| | - Ling Ye
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China.
| | - Hao Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.
| |
Collapse
|
4
|
Duque HM, Dos Santos C, Brango-Vanegas J, Díaz-Martín RD, Dias SC, Franco OL. Unwrapping the structural and functional features of antimicrobial peptides from wasp venoms. Pharmacol Res 2024; 200:107069. [PMID: 38218356 DOI: 10.1016/j.phrs.2024.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
The study of wasp venoms has captured attention due to the presence of a wide variety of active compounds, revealing a diverse array of biological effects. Among these compounds, certain antimicrobial peptides (AMPs) such as mastoparans and chemotactic peptides have emerged as significant players, characterized by their unique amphipathic short linear alpha-helical structure. These peptides exhibit not only antibiotic properties but also a range of other biological activities, which are related to their ability to interact with biological membranes to varying degrees. This review article aims to provide updated insights into the structure/function relationships of AMPs derived from wasp venoms, linking this knowledge to the potential development of innovative treatments against infections.
Collapse
Affiliation(s)
- Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil.
| | - Cristiane Dos Santos
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| | - José Brango-Vanegas
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| | - Ruben Dario Díaz-Martín
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; Program in Animal Biology, Universidade de Brasília, Brasília, DF70910-900, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| |
Collapse
|
5
|
Moorthy K, Chang KC, Huang HC, Wu WJ, Chiang CK. Evaluating Antioxidant Performance, Biosafety, and Antimicrobial Efficacy of Houttuynia cordata Extract and Microwave-Assisted Synthesis of Biogenic Silver Nano-Antibiotics. Antioxidants (Basel) 2023; 13:32. [PMID: 38247457 PMCID: PMC10812406 DOI: 10.3390/antiox13010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
From the traditional Chinese medicine point of view, although Houttuynia cordata extract (HCE) possesses an incredible amount of phytonutrients and exhibits antioxidant activities, excessive doses of HCE can cause danger to organisms and lead to death. In this study, we first examine HCE's overall phenolic and flavonoid content, antioxidant efficacy, and antibacterial activity. Results show that HCE is suitable as a bio-reducing agent for the microwave-assisted synthesis of silver nanoparticles (HCE-AgNPs) with enhanced antioxidant and antimicrobial performance. Under an optimized microwave condition (i.e., 100 °C for 10 min), the HCE-stabilized AgNPs were confirmed with a UV-visible peak at 430 nm and 19.7 ± 4.2 nm in size. Physicochemical properties of HCE-AgNPs were extensively characterized by zeta-potential, FT-IR, XRD, and XPS measurements. Compared to the HC extract counterpart, HCE-AgNPs display superior antioxidant activity, higher DPPH scavenging efficiency, and enhanced broad-spectrum bactericidal activity to inhibit the growth of all tested bacterial strains at doses of 2 μg/mL. Biosafety evaluation indicated that HCE-AgNPs are noncytotoxic on human red blood cells. These data show that the microwave synthesis of AgNPs exhibits a great antioxidant ability, superior antibacterial activity, and a trivial hemolytic effect, providing another bactericidal therapy strategy to address the increasing healthcare-associated infections.
Collapse
Affiliation(s)
- Kavya Moorthy
- Department of Chemistry, National Dong Hwa University, Shoufeng 97401, Taiwan;
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan; (K.-C.C.); (H.-C.H.); (W.-J.W.)
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
| | - Hsiao-Chi Huang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan; (K.-C.C.); (H.-C.H.); (W.-J.W.)
| | - Wen-Jui Wu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan; (K.-C.C.); (H.-C.H.); (W.-J.W.)
| | - Cheng-Kang Chiang
- Department of Chemistry, National Dong Hwa University, Shoufeng 97401, Taiwan;
| |
Collapse
|
6
|
Kaiser KG, Delattre V, Frost VJ, Buck GW, Phu JV, Fernandez TG, Pavel IE. Nanosilver: An Old Antibacterial Agent with Great Promise in the Fight against Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1264. [PMID: 37627684 PMCID: PMC10451389 DOI: 10.3390/antibiotics12081264] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance in bacteria is a major problem worldwide that costs 55 billion USD annually for extended hospitalization, resource utilization, and additional treatment expenditures in the United States. This review examines the roles and forms of silver (e.g., bulk Ag, silver salts (AgNO3), and colloidal Ag) from antiquity to the present, and its eventual incorporation as silver nanoparticles (AgNPs) in numerous antibacterial consumer products and biomedical applications. The AgNP fabrication methods, physicochemical properties, and antibacterial mechanisms in Gram-positive and Gram-negative bacterial models are covered. The emphasis is on the problematic ESKAPE pathogens and the antibiotic-resistant pathogens of the greatest human health concern according to the World Health Organization. This review delineates the differences between each bacterial model, the role of the physicochemical properties of AgNPs in the interaction with pathogens, and the subsequent damage of AgNPs and Ag+ released by AgNPs on structural cellular components. In closing, the processes of antibiotic resistance attainment and how novel AgNP-antibiotic conjugates may synergistically reduce the growth of antibiotic-resistant pathogens are presented in light of promising examples, where antibiotic efficacy alone is decreased.
Collapse
Affiliation(s)
- Kyra G. Kaiser
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Victoire Delattre
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Victoria J. Frost
- Department of Chemistry, Physics, Geology and the Environment, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA; (V.J.F.); (J.V.P.)
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Gregory W. Buck
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Julianne V. Phu
- Department of Chemistry, Physics, Geology and the Environment, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA; (V.J.F.); (J.V.P.)
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Timea G. Fernandez
- Department of Chemistry, Physics, Geology and the Environment, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA; (V.J.F.); (J.V.P.)
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Ioana E. Pavel
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|