1
|
Ragini R, Murukan N, Sekhon NK, Chugh C, Agarwal P, Yadav P, Mallick N, Jha SK, Iquebal MA, Tandon G, Verma A, Singh B, Jacob SR, Raghunandan K, Prabhu KV, Tomar SS, Vinod. Breaking the association between gametocidal gene(s) and leaf rust resistance gene ( LrS2427) in Triticum aestivum- Aegilops speltoides derivative by gamma irradiation. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:54. [PMID: 39148502 PMCID: PMC11322474 DOI: 10.1007/s11032-024-01491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Utilization of crop wild relatives of wheat can be very effective in building the genetic diversity to cater to the evolving strains of disease pathogens. Aegilops speltoides is a rich source of rust resistance genes however transferring those to wheat genome can be tedious due to co-transfer and preferential transmission of undesirable genes causing gametocidal activity. Such an unholy association was observed in Triticum aestivum-Ae. speltoides derivative line Sel. 2427 which possess the broad-spectrum leaf rust seedling resistance gene (LrS2427). Molecular analysis based on 35 K wheat breeder's array revealed the maximum percentage of Ae. speltoides genome introgression on homoeologous group 2. In situ hybridization studies revealed the presence of S genome in Sel. 2427, showing six translocations on four chromosomes. Karyotyping using repetitive probe (AAG)6 revealed that the two chromosomes involved are 2D and 2B. Genic regions causing gametocidal activity were identified by dissecting it into component traits and QTLs on 2D and 2B chromosomes were revealed in case of the trait seed shrivelling index. To break the inadvertent association of LrS2427 with gametocidal genes, F1(Agra Local X Sel. 2427) seeds were irradiated with gamma rays and stable leaf rust resistant mutants lacking gametocidal activity were developed. These mutants showed resistance to different races of leaf rust pathogen and showed superior agronomic performance as well. These mutants could be a great resource in wheat improvement for utilization of the leaf rust resistance gene LrS2427 without any yield penalty. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01491-8.
Collapse
Affiliation(s)
- R. Ragini
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Niranjana Murukan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Navpreet Kaur Sekhon
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Chetna Chugh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Priyanka Agarwal
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prachi Yadav
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Niharika Mallick
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shailendra Kumar Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Gitanjali Tandon
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Aakriti Verma
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Bhupinder Singh
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sherry Rachel Jacob
- Division of Germplasm Conservation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - K. Raghunandan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kumble Vinod Prabhu
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
2
|
King J, Grewal S, Othmeni M, Coombes B, Yang CY, Walter N, Ashling S, Scholefield D, Walker J, Hubbart-Edwards S, Hall A, King IP. Introgression of the Triticum timopheevii Genome Into Wheat Detected by Chromosome-Specific Kompetitive Allele Specific PCR Markers. FRONTIERS IN PLANT SCIENCE 2022; 13:919519. [PMID: 35720607 PMCID: PMC9198554 DOI: 10.3389/fpls.2022.919519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/12/2022] [Indexed: 05/08/2023]
Abstract
Triticum timopheevii (2n = 28, A t A t GG) is a tetraploid wild relative species with great potential to increase the genetic diversity of hexaploid wheat Triticum aestivum (2n = 42, AABBDD) for various important agronomic traits. A breeding scheme that propagated advanced backcrossed populations of wheat-T. timopheevii introgression lines through further backcrossing and self-fertilisation resulted in the generation of 99 introgression lines (ILs) that carried 309 homozygous segments from the A t and G subgenomes of T. timopheevii. These introgressions contained 89 and 74 unique segments from the A t and G subgenomes, respectively. These overlapping segments covered 98.9% of the T. timopheevii genome that has now been introgressed into bread wheat cv. Paragon including the entirety of all T. timopheevii chromosomes via varying sized segments except for chromosomes 3A t , 4G, and 6G. Homozygous ILs contained between one and eight of these introgressions with an average of three per introgression line. These homozygous introgressions were detected through the development of a set of 480 chromosome-specific Kompetitive allele specific PCR (KASP) markers that are well-distributed across the wheat genome. Of these, 149 were developed in this study based on single nucleotide polymorphisms (SNPs) discovered through whole genome sequencing of T. timopheevii. A majority of these KASP markers were also found to be T. timopheevii subgenome specific with 182 detecting A t subgenome and 275 detecting G subgenome segments. These markers showed that 98% of the A t segments had recombined with the A genome of wheat and 74% of the G genome segments had recombined with the B genome of wheat with the rest recombining with the D genome of wheat. These results were validated through multi-colour in situ hybridisation analysis. Together these homozygous wheat-T. timopheevii ILs and chromosome-specific KASP markers provide an invaluable resource to wheat breeders for trait discovery to combat biotic and abiotic stress factors affecting wheat production due to climate change.
Collapse
Affiliation(s)
- Julie King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Manel Othmeni
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | | | - Cai-yun Yang
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Nicola Walter
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Stephen Ashling
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Duncan Scholefield
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Jack Walker
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Stella Hubbart-Edwards
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | | | - Ian Phillip King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
3
|
Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat Commun 2022; 13:1607. [PMID: 35338132 PMCID: PMC8956640 DOI: 10.1038/s41467-022-29132-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
The wild relatives and progenitors of wheat have been widely used as sources of disease resistance (R) genes. Molecular identification and characterization of these R genes facilitates their manipulation and tracking in breeding programmes. Here, we develop a reference-quality genome assembly of the wild diploid wheat relative Aegilops sharonensis and use positional mapping, mutagenesis, RNA-Seq and transgenesis to identify the stem rust resistance gene Sr62, which has also been transferred to common wheat. This gene encodes a tandem kinase, homologues of which exist across multiple taxa in the plant kingdom. Stable Sr62 transgenic wheat lines show high levels of resistance against diverse isolates of the stem rust pathogen, highlighting the utility of Sr62 for deployment as part of a polygenic stack to maximize the durability of stem rust resistance. Aegilops sharonensis is a wild diploid relative of wheat. Here, the authors assemble the genome of Ae. sharonensis and use the assembly as an aid to clone the Ae. sharonensis-derived stem rust resistance gene Sr62 in the allohexaploid genome of wheat.
Collapse
|
4
|
Grewal S, Othmeni M, Walker J, Hubbart-Edwards S, Yang CY, Scholefield D, Ashling S, Isaac P, King IP, King J. Development of Wheat- Aegilops caudata Introgression Lines and Their Characterization Using Genome-Specific KASP Markers. FRONTIERS IN PLANT SCIENCE 2020; 11:606. [PMID: 32477394 PMCID: PMC7240103 DOI: 10.3389/fpls.2020.00606] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/21/2020] [Indexed: 05/23/2023]
Abstract
Aegilops caudata L. [syn. Ae. markgrafii (Greuter) Hammer], is a diploid wild relative of wheat (2n = 2x = 14, CC) and a valuable source for new genetic diversity for wheat improvement. It has a variety of disease resistance factors along with tolerance for various abiotic stresses and can be used for wheat improvement through the generation of genome-wide introgressions resulting in different wheat-Ae. caudata recombinant lines. Here, we report the generation of nine such wheat-Ae. caudata recombinant lines which were characterized using wheat genome-specific KASP (Kompetitive Allele Specific PCR) markers and multi-color genomic in situ hybridization (mcGISH). Of these, six lines have stable homozygous introgressions from Ae. caudata and will be used for future trait analysis. Using cytological techniques and molecular marker analysis of the recombinant lines, 182 KASP markers were physically mapped onto the seven Ae. caudata chromosomes, of which 155 were polymorphic specifically with only one wheat subgenome. Comparative analysis of the physical positions of these markers in the Ae. caudata and wheat genomes confirmed that the former had chromosomal rearrangements with respect to wheat, as previously reported. These wheat-Ae. caudata recombinant lines and KASP markers are useful resources that can be used in breeding programs worldwide for wheat improvement. Additionally, the genome-specific KASP markers could prove to be a valuable tool for the rapid detection and marker-assisted selection of other Aegilops species in a wheat background.
Collapse
Affiliation(s)
- Surbhi Grewal
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Manel Othmeni
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Jack Walker
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Stella Hubbart-Edwards
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Cai-yun Yang
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Duncan Scholefield
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Stephen Ashling
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Peter Isaac
- IDna Genetics Ltd., Norwich Research Park, Norwich, United Kingdom
| | - Ian P. King
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Julie King
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
5
|
Gardiner LJ. Understanding DNA Methylation Patterns in Wheat. Methods Mol Biol 2020; 2093:33-46. [PMID: 32088887 DOI: 10.1007/978-1-0716-0179-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The bread wheat genome is large (17 Gb), allohexaploid, and highly repetitive (80-90% of the genome), which makes genomic and epigenomic analyses expensive to conduct and a challenge to analyze. Here we provide an overview of recent bioinformatic and experimental methods that have been developed to understand DNA methylation patterns in the complex polyploid genome of wheat.
Collapse
|
6
|
Gardiner LJ, Brabbs T, Akhunov A, Jordan K, Budak H, Richmond T, Singh S, Catchpole L, Akhunov E, Hall A. Integrating genomic resources to present full gene and putative promoter capture probe sets for bread wheat. Gigascience 2019; 8:5304888. [PMID: 30715311 PMCID: PMC6461119 DOI: 10.1093/gigascience/giz018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/21/2018] [Accepted: 01/27/2019] [Indexed: 11/17/2022] Open
Abstract
Background Whole-genome shotgun resequencing of wheat is expensive because of its large, repetitive genome. Moreover, sequence data can fail to map uniquely to the reference genome, making it difficult to unambiguously assign variation. Resequencing using target capture enables sequencing of large numbers of individuals at high coverage to reliably identify variants associated with important agronomic traits. Previous studies have implemented complementary DNA/exon or gene-based probe sets in which the promoter and intron sequence is largely missing alongside newly characterized genes from the recent improved reference sequences. Results We present and validate 2 gold standard capture probe sets for hexaploid bread wheat, a gene and a putative promoter capture, which are designed using recently developed genome sequence and annotation resources. The captures can be combined or used independently. We demonstrate that the capture probe sets effectively enrich the high-confidence genes and putative promoter regions that were identified in the genome alongside a large proportion of the low-confidence genes and associated promoters. Finally, we demonstrate successful sample multiplexing that allows generation of adequate sequence coverage for single-nucleotide polymorphism calling while significantly reducing cost per sample for gene and putative promoter capture. Conclusions We show that a capture design employing an “island strategy” can enable analysis of the large gene/putative promoter space of wheat with only 2 × 160 Mbp probe sets. Furthermore, these assays extend the regions of the wheat genome that are amenable to analyses beyond its exome, providing tools for detailed characterization of these regulatory regions in large populations.
Collapse
Affiliation(s)
- Laura-Jayne Gardiner
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.,IBM Research, The Hartree Centre STFC Laboratory, Sci-Tech Daresbury, Warrington, WA4 4AD, UK
| | - Thomas Brabbs
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Alina Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Katherine Jordan
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Hikmet Budak
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Todd Richmond
- Roche Sequencing Solutions, 500 S Rosa Road, Madison, WI, 53719, USA
| | - Sukhwinder Singh
- CIMMYT, Calle Dr Norman E Borlaug, Ciudad Obregon, 85208, Mexico
| | - Leah Catchpole
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
| |
Collapse
|
7
|
Gardiner LJ, Brabbs T, Akhunov A, Jordan K, Budak H, Richmond T, Singh S, Catchpole L, Akhunov E, Hall A. Integrating genomic resources to present full gene and putative promoter capture probe sets for bread wheat. Gigascience 2019. [PMID: 30715311 DOI: 10.1101/363663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Whole-genome shotgun resequencing of wheat is expensive because of its large, repetitive genome. Moreover, sequence data can fail to map uniquely to the reference genome, making it difficult to unambiguously assign variation. Resequencing using target capture enables sequencing of large numbers of individuals at high coverage to reliably identify variants associated with important agronomic traits. Previous studies have implemented complementary DNA/exon or gene-based probe sets in which the promoter and intron sequence is largely missing alongside newly characterized genes from the recent improved reference sequences. RESULTS We present and validate 2 gold standard capture probe sets for hexaploid bread wheat, a gene and a putative promoter capture, which are designed using recently developed genome sequence and annotation resources. The captures can be combined or used independently. We demonstrate that the capture probe sets effectively enrich the high-confidence genes and putative promoter regions that were identified in the genome alongside a large proportion of the low-confidence genes and associated promoters. Finally, we demonstrate successful sample multiplexing that allows generation of adequate sequence coverage for single-nucleotide polymorphism calling while significantly reducing cost per sample for gene and putative promoter capture. CONCLUSIONS We show that a capture design employing an "island strategy" can enable analysis of the large gene/putative promoter space of wheat with only 2 × 160 Mbp probe sets. Furthermore, these assays extend the regions of the wheat genome that are amenable to analyses beyond its exome, providing tools for detailed characterization of these regulatory regions in large populations.
Collapse
Affiliation(s)
- Laura-Jayne Gardiner
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- IBM Research, The Hartree Centre STFC Laboratory, Sci-Tech Daresbury, Warrington, WA4 4AD, UK
| | - Thomas Brabbs
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Alina Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Katherine Jordan
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Hikmet Budak
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Todd Richmond
- Roche Sequencing Solutions, 500 S Rosa Road, Madison, WI, 53719, USA
| | - Sukhwinder Singh
- CIMMYT, Calle Dr Norman E Borlaug, Ciudad Obregon, 85208, Mexico
| | - Leah Catchpole
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
| |
Collapse
|
8
|
Gardiner LJ, Brabbs T, Akhunov A, Jordan K, Budak H, Richmond T, Singh S, Catchpole L, Akhunov E, Hall A. Integrating genomic resources to present full gene and putative promoter capture probe sets for bread wheat. Gigascience 2019. [PMID: 30715311 DOI: 10.5524/100554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Whole-genome shotgun resequencing of wheat is expensive because of its large, repetitive genome. Moreover, sequence data can fail to map uniquely to the reference genome, making it difficult to unambiguously assign variation. Resequencing using target capture enables sequencing of large numbers of individuals at high coverage to reliably identify variants associated with important agronomic traits. Previous studies have implemented complementary DNA/exon or gene-based probe sets in which the promoter and intron sequence is largely missing alongside newly characterized genes from the recent improved reference sequences. RESULTS We present and validate 2 gold standard capture probe sets for hexaploid bread wheat, a gene and a putative promoter capture, which are designed using recently developed genome sequence and annotation resources. The captures can be combined or used independently. We demonstrate that the capture probe sets effectively enrich the high-confidence genes and putative promoter regions that were identified in the genome alongside a large proportion of the low-confidence genes and associated promoters. Finally, we demonstrate successful sample multiplexing that allows generation of adequate sequence coverage for single-nucleotide polymorphism calling while significantly reducing cost per sample for gene and putative promoter capture. CONCLUSIONS We show that a capture design employing an "island strategy" can enable analysis of the large gene/putative promoter space of wheat with only 2 × 160 Mbp probe sets. Furthermore, these assays extend the regions of the wheat genome that are amenable to analyses beyond its exome, providing tools for detailed characterization of these regulatory regions in large populations.
Collapse
Affiliation(s)
- Laura-Jayne Gardiner
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- IBM Research, The Hartree Centre STFC Laboratory, Sci-Tech Daresbury, Warrington, WA4 4AD, UK
| | - Thomas Brabbs
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Alina Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Katherine Jordan
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Hikmet Budak
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Todd Richmond
- Roche Sequencing Solutions, 500 S Rosa Road, Madison, WI, 53719, USA
| | - Sukhwinder Singh
- CIMMYT, Calle Dr Norman E Borlaug, Ciudad Obregon, 85208, Mexico
| | - Leah Catchpole
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
| |
Collapse
|
9
|
Grewal S, Yang C, Edwards SH, Scholefield D, Ashling S, Burridge AJ, King IP, King J. Characterisation of Thinopyrum bessarabicum chromosomes through genome-wide introgressions into wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:389-406. [PMID: 29101420 PMCID: PMC5787220 DOI: 10.1007/s00122-017-3009-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/26/2017] [Indexed: 05/07/2023]
Abstract
Genome-wide introgressions of Thinopyrum bessarabicum into wheat resulted in 12 recombinant lines. Cytological and molecular techniques allowed mapping of 1150 SNP markers across all seven chromosomes of the J genome. Thinopyrum bessarabicum (2n = 2x = 14, JJ) is an important source for new genetic variation for wheat improvement due to its salinity tolerance and disease resistance. Its practical utilisation in wheat improvement can be facilitated through development of genome-wide introgressions leading to a variety of different wheat-Th . bessarabicum translocation lines. In this study, we report the generation of 12 such wheat-Th . bessarabicum recombinant lines, through two different crossing strategies, which were characterized using sequential single colour and multi-colour genomic in situ hybridization (sc-GISH and mc-GISH), multi-colour fluorescent in situ hybridization (mc-FISH) and single nucleotide polymorphic (SNP) DNA markers. We also detected 13 lines containing different Th. bessarabicum chromosome aberrations through sc-GISH. Through a combination of molecular and cytological analysis of all the 25 lines containing Th. bessarabicum recombinants and chromosome aberrations we were able to physically map 1150 SNP markers onto seven Th. bessarabicum J chromosomes which were divided into 36 segmental blocks. Comparative analysis of the physical map of Th. bessarabicum and the wheat genome showed that synteny between the two species is highly conserved at the macro-level and confirmed that Th. bessarabicum contains the 4/5 translocation also present in the A genome of wheat. These wheat-Th . bessarabicum recombinant lines and SNP markers provide a useful genetic resource for wheat improvement with the latter having a wider impact as a tool for detection of introgressions from other Thinopyrum species containing the J or a closely-related genome such as Thinopyrum intermedium (JrJrJvsJvsStSt) and Thinopyrum elongatum (EeEe), respectively.
Collapse
Affiliation(s)
- Surbhi Grewal
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Caiyun Yang
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Stella Hubbart Edwards
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Duncan Scholefield
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Stephen Ashling
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | | | - Ian P King
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Julie King
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| |
Collapse
|
10
|
Harnessing Genetic Diversity of Wild Gene Pools to Enhance Wheat Crop Production and Sustainability: Challenges and Opportunities. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9040055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wild species are extremely rich resources of useful genes not available in the cultivated gene pool. For species providing staple food to mankind, such as the cultivated Triticum species, including hexaploid bread wheat (Triticum aestivum, 6x) and tetraploid durum wheat (T. durum, 4x), widening the genetic base is a priority and primary target to cope with the many challenges that the crop has to face. These include recent climate changes, as well as actual and projected demographic growth, contrasting with reduction of arable land and water reserves. All of these environmental and societal modifications pose major constraints to the required production increase in the wheat crop. A sustainable approach to address this task implies resorting to non-conventional breeding strategies, such as “chromosome engineering”. This is based on cytogenetic methodologies, which ultimately allow for the incorporation into wheat chromosomes of targeted, and ideally small, chromosomal segments from the genome of wild relatives, containing the gene(s) of interest. Chromosome engineering has been successfully applied to introduce into wheat genes/QTL for resistance to biotic and abiotic stresses, quality attributes, and even yield-related traits. In recent years, a substantial upsurge in effective alien gene exploitation for wheat improvement has come from modern technologies, including use of molecular markers, molecular cytogenetic techniques, and sequencing, which have greatly expanded our knowledge and ability to finely manipulate wheat and alien genomes. Examples will be provided of various types of stable introgressions, including pyramiding of different alien genes/QTL, into the background of bread and durum wheat genotypes, representing valuable materials for both species to respond to the needed novelty in current and future breeding programs. Challenging contexts, such as that inherent to the 4x nature of durum wheat when compared to 6x bread wheat, or created by presence of alien genes affecting segregation of wheat-alien recombinant chromosomes, will also be illustrated.
Collapse
|