1
|
Wu MD, Cheng MJ. Undescribed Metabolites from an Actinobacteria Acrocarpospora punica and Their Anti-Inflammatory Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227982. [PMID: 36432083 PMCID: PMC9694197 DOI: 10.3390/molecules27227982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022]
Abstract
In an effort to explore bioactive anti-inflammatory compounds from natural Actinobacteria resources from all over Taiwan and various ecological environments, an active strain of Acrocarpospora punica was collected at Taitung County in Taiwan, prepared from soil origin. A bioassay-guided fractionation of the BuOH extract of a culture broth of a new strain of the actinomycete Acrocarpospora punica led to the isolation of five previously undescribed compounds: acrocarpunicains A-F (1-6). The structures were elucidated by 1D and 2D Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry. Furthermore, the isolated compounds were subjected to in vitro testing to evaluate their anti-inflammatory activity. Of these isolates, acrocarpunicains A (1), B (2), C (3) and F (6) showed NO inhibitory activity with IC50 values of 9.36 ± 0.25, 10.11 ± 0.47, 5.15 ± 0.18, and 27.17 ± 1.87 μM, stronger than the positive control, quercetin (IC50 = 35.95 ± 2.34 μM). To the best of our knowledge, this is the first report on azaphilone and phenanthrene-type metabolites from the genus Acrocarpospora.
Collapse
Affiliation(s)
- Ming-Der Wu
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsinchu 300, Taiwan
| | - Ming-Jen Cheng
- Department of Life Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Correspondence:
| |
Collapse
|
2
|
Liu Q, Zhong S, Wang X, Gao S, Yang X, Chen F, Molnár I. An Integrated Approach to Determine the Boundaries of the Azaphilone Pigment Biosynthetic Gene Cluster of Monascus ruber M7 Grown on Potato Dextrose Agar. Front Microbiol 2021; 12:680629. [PMID: 34220766 PMCID: PMC8241920 DOI: 10.3389/fmicb.2021.680629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Monascus-type azaphilone pigments (MonAzPs) are produced in multi-thousand ton quantities each year and used as food colorants and nutraceuticals in East Asia. Several groups, including ours, described MonAzPs biosynthesis as a highly complex pathway with many branch points, affording more than 110 MonAzP congeners in a small group of fungi in the Eurotiales order. MonAzPs biosynthetic gene clusters (BGCs) are also very complex and mosaic-like, with some genes involved in more than one pathway, while other genes playing no apparent role in MonAzPs production. Due to this complexity, MonAzPs BGCs have been delimited differently in various fungi. Since most of these predictions rely primarily on bioinformatic analyses, it is possible that genes immediately outside the currently predicted BGC borders are also involved, especially those whose function cannot be predicted from sequence similarities alone. Conversely, some peripheral genes presumed to be part of the BGC may in fact lay outside the boundaries. This study uses a combination of computational and transcriptional analyses to predict the extent of the MonAzPs BGC in Monascus ruber M7. Gene knockouts and analysis of MonAzPs production of the mutants are then used to validate the prediction, revealing that the BGC consists of 16 genes, extending from mrpigA to mrpigP. We further predict that two strains of Talaromyces marneffei, ATCC 18224 and PM1, encode an orthologous but non-syntenic MonAzPs BGC with 14 genes. This work highlights the need to use comprehensive, integrated approaches for the more precise determination of secondary metabolite BGC boundaries.
Collapse
Affiliation(s)
- Qingpei Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Southwest Center for Natural Products Research, The University of Arizona, Tucson, AZ, United States
| | - Siyu Zhong
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xinrui Wang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Shuaibiao Gao
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiaolong Yang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - István Molnár
- Southwest Center for Natural Products Research, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
3
|
Chen D, Wang Y, Chen M, Fan P, Li G, Wang C. Ammonium nitrate regulated the color characteristic changes of pigments in Monascus purpureus M9. AMB Express 2021; 11:3. [PMID: 33398480 PMCID: PMC7782668 DOI: 10.1186/s13568-020-01165-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/08/2020] [Indexed: 01/18/2023] Open
Abstract
Monascus pigments (MPs) with different color characteristics, produced by submerged fermentation of Monascus purpureus M9, have potential application in food industry. In the present study, the effects and regulatory mechanisms of ammonium nitrate (AN) on the color characteristics of MPs were investigated. The concentration of intracellular pigments was significantly decreased when subjected to AN. The hue and lightness value indicated AN altered the total pigments appearance from original red to orange. The HPLC analysis for six major components of MPs showed that the production of rubropunctatin or monascorubrin, was significantly reduced to the undetectable level, whereas the yields of monascin, ankaflavin, rubropunctamine and monascorubramine, were apparently increased with AN supplement. To be noted, via real-time quantitative PCR strategy, the expression level of mppG, closely relative to orange pigments biosynthesis, was significantly down-regulated. However, the expression of mppE, involved in yellow pigments pathway, was up-regulated. Moreover, the broth pH value was dropped to 2.5–3.5 in the fermentation process resulted from AN treatment, along with the increased extracellular polysaccharide biosynthesis. Taken together, the change of MPs categories and amounts by AN might be the driving force for the color characteristics variation in M. purpureus M9. The present study provided useful data for producing MPs with different compositions and modified color characteristics.
Collapse
|
4
|
Guo X, Li Y, Zhang R, Yu J, Ma X, Chen M, Wang Y. Transcriptional regulation contributes more to Monascus pigments diversity in different strains than to DNA sequence variation. World J Microbiol Biotechnol 2019; 35:138. [PMID: 31451937 DOI: 10.1007/s11274-019-2711-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
Monascus azaphilone pigments, including red, orange, and yellow, are world-famous food colorants. However, the pigments produced by different Monascus species vary in yields and compositions. The underlying mechanism is unclear. In this study, four wild-type Monascus strains, namely M. anka M7, M. purpureus M9, M. ruber C100, and M. aurantiacus M15, were selected as research objects according to the diversification of their pigments fermented in the same mediums and conditions. Twenty-three 3 kbp segments (300 bp overlap with adjacent segments) of the pigment gene cluster were amplified, sequenced, and assembled into the DNA sequences of the clusters. The DNA sequences of pigment biosynthetic gene clusters of the four strains showed 99.94% similarity according to the results of multiple alignment. The expression levels of 17 pigment biosynthetic genes of four strains were determined by using real-time quantitative PCR. The transcriptional regulation contributed more than the DNA sequence variation in Monascus pigments metabolism. Our result gives insight into the study of Monascus pigment biosynthesis.
Collapse
Affiliation(s)
- Xiaoyu Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Yao Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Rui Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Jiyuan Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Xinbao Ma
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Mianhua Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Yurong Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
5
|
Lim YJ, Lee DW, Park SH, Kwon HJ. Extractive fermentation of Monascus purpureus promotes the production of oxidized congeners of the pigment azaphilone. ACTA ACUST UNITED AC 2018. [DOI: 10.3839/jabc.2018.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yoon Ji Lim
- Department of Biological Sciences and Bioinformatics, Myongji University, Yongin-si, Gyunggi-do 17058, Republic of Korea
| | - Doh Won Lee
- Department of Biological Sciences and Bioinformatics, Myongji University, Yongin-si, Gyunggi-do 17058, Republic of Korea
| | - Si-Hyung Park
- Department of Oriental Medicine Resources and Institute for Traditional Korean Medicine Industry, Mokpo National University, Muan-gun, Jeollanam-do 58554, Republic of Korea
| | - Hyung-Jin Kwon
- Department of Biological Sciences and Bioinformatics, Myongji University, Yongin-si, Gyunggi-do 17058, Republic of Korea
| |
Collapse
|
6
|
Liu L, Zhao J, Huang Y, Xin Q, Wang Z. Diversifying of Chemical Structure of Native Monascus Pigments. Front Microbiol 2018; 9:3143. [PMID: 30622522 PMCID: PMC6308397 DOI: 10.3389/fmicb.2018.03143] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
Red Yeast Rice, produced by solid state fermentation of Monascus species on rice, is a traditional food additive and traditional Chinese medicine. With the introduction of modern microbiology and biotechnology to the traditional edible filamentous fungi Monascus species, it has been revealed that the production of red colorant by fermentation of Monascus species involves the biosynthesis of orange Monascus pigments and further chemical modification of orange Monascus pigments into the corresponding derivates with various amine residues. Further study indicates that non-Monascus species also produce Monascus pigments as well as Monascus-like pigments. Based on the chemical modification of orange Monascus pigments, the diversification of native Monascus pigments, including commercial food additives of Red Monascus Pigments® and Yellow Monascus Pigments® in Chinese market, was reviewed. Furthermore, Monascus pigments as well as their derivates as enzyme inhibitors for anti-obesity, hyperlipidemia, and hyperglycemia was also summarized.
Collapse
Affiliation(s)
- Lujie Liu
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jixing Zhao
- Shandong Zhonghui Biotechnology Co., Ltd., Binzhou, China
| | - Yaolin Huang
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Qiao Xin
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhilong Wang
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|