1
|
Zou R, Zhou Y, Lu Y, Zhao Y, Zhang N, Liu J, Zhang Y, Fu Y. Preparation, pungency and bioactivity transduction of piperine from black pepper (Piper nigrum L.): A comprehensive review. Food Chem 2024; 456:139980. [PMID: 38850607 DOI: 10.1016/j.foodchem.2024.139980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Piperine, derived from black pepper (Piper nigrum L.), is responsible for the pungent sensation. The diverse bioactivities of piperine underscores its promising potential as a functional food ingredient. This review presents a comprehensive overview of the research progress in extraction, synthesis, pungency transduction mechanism and bioactivities of piperine. Piperine can be extracted through various methods, such as traditional, modern, and innovative extraction techniques. Its synthesis mainly included both chemical and biosynthetic approaches. It exhibits a diverse range of bioactivities, including anticancer, anticonvulsant, antidepressant, anti-inflammatory, antioxidant, immunomodulatory, anti-obesity, neuroprotective, antidiabetic, hepatoprotective, and cardiovascular protective activities. Piperine can bind to TRPV1 receptor to elicit pungent sensation. Overall, the present review can provide a theoretical reference for advancing the potential application of piperine in the field of food science.
Collapse
Affiliation(s)
- Ruixuan Zou
- College of Food Science, Southwest University, Chongqing 400715, China; Westa College, Southwest University, Chongqing, 400715, China
| | - Yuhao Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; Westa College, Southwest University, Chongqing, 400715, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Yuchen Zhao
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Jing Liu
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799, Copenhagen V, Denmark
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
2
|
Piombo E, Vetukuri RR, Konakalla NC, Kalyandurg PB, Sundararajan P, Jensen DF, Karlsson M, Dubey M. RNA silencing is a key regulatory mechanism in the biocontrol fungus Clonostachys rosea-wheat interactions. BMC Biol 2024; 22:219. [PMID: 39343898 PMCID: PMC11441109 DOI: 10.1186/s12915-024-02014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Small RNA (sRNAs)- mediated RNA silencing is emerging as a key player in host-microbe interactions. However, its role in fungus-plant interactions relevant to biocontrol of plant diseases is yet to be explored. This study aimed to investigate Dicer (DCL)-mediated endogenous and cross-kingdom gene expression regulation in the biocontrol fungus Clonostachys rosea and wheat roots during interactions. RESULTS C. rosea Δdcl2 strain exhibited significantly higher root colonization than the WT, whereas no significant differences were observed for Δdcl1 strains. Dual RNA-seq revealed the upregulation of CAZymes, membrane transporters, and effector coding genes in C. rosea, whereas wheat roots responded with the upregulation of stress-related genes and the downregulation of growth-related genes. The expression of many of these genes was downregulated in wheat during the interaction with DCL deletion strains, underscoring the influence of fungal DCL genes on wheat defense response. sRNA sequencing identified 18 wheat miRNAs responsive to C. rosea, and three were predicted to target the C. rosea polyketide synthase gene pks29. Two of these miRNAs (mir_17532_x1 and mir_12061_x13) were observed to enter C. rosea from wheat roots with fluorescence analyses and to downregulate the expression of pks29, showing plausible cross-kingdom RNA silencing of the C. rosea gene by wheat miRNAs. CONCLUSIONS We provide insights into the mechanisms underlying the interaction between biocontrol fungi and plant roots. Moreover, the study sheds light on the role of sRNA-mediated gene expression regulation in C. rosea-wheat interactions and provides preliminary evidence of cross-kingdom RNA silencing between plants and biocontrol fungi.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ramesh Raju Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Naga Charan Konakalla
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Pruthvi B Kalyandurg
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Poorva Sundararajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
3
|
El-Shimi BI, Mohareb RM, Ahmed HH, Abohashem RS, Mahmoud KF, Hanna DH. Mechanistic Insights into Bisphenol A-Mediated Male Infertility: Potential Role of Panax Ginseng Extract. Chem Biodivers 2024; 21:e202400480. [PMID: 38818674 DOI: 10.1002/cbdv.202400480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
Male infertility is identified by the inability of a man to successfully impregnate his fertile female partner, even following a year of regular unprotected sexual intercourse. About half of all infertility cases are attributed to what is known as "male factor" infertility. The escalating prevalence of male infertility in the contemporary era across the globe can be largely attributed to environmental pollution, which is the common etiological factor due to the ubiquitous presence of the environmental contaminants. Bisphenol A is recognized as an endocrine-disrupting chemical that has adverse effects on both male and female reproductive systems. On the other hand, numerous studies have demonstrated that Panax ginseng possessed the potential to improve male infertility parameters; promote spermatogenesis, recover the quality and motility of sperm and enhance testicular functions as it acted as a natural androgen supplement. The objective of this review is to offer a summary of the findings obtained from the current research data on the insult of bisphenol A (BPA) on male infertility and its supposed mode of action, as well as shed light on the potent ameliorative role of Panax ginseng extract, with a special focus on the mechanism behind its action. This review delivers a clear understanding of BPA mechanism of action on male infertility and the presumed risks deriving from its exposure. Also, this review provides evidence for the functional role of Panax ginseng extract in restoring male fertility.
Collapse
Affiliation(s)
- Basma I El-Shimi
- Chemistry Department, Faculty of Sciences, Cairo University, Giza, Egypt
| | - Rafat M Mohareb
- Chemistry Department, Faculty of Sciences, Cairo University, Giza, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Stem Cell Lab., Centre of Excellence for Advanced Science, National Research Centre, Dokki, Giza, Egypt
| | - Rehab S Abohashem
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Stem Cell Lab., Centre of Excellence for Advanced Science, National Research Centre, Dokki, Giza, Egypt
| | - Khaled F Mahmoud
- Food Technology Department, National Research Centre, Dokki, Giza, Egypt
| | - Demiana H Hanna
- Chemistry Department, Faculty of Sciences, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Uğurlu P, Satar Eİ, Ünlü E. Toxic effects of commercial grade indoxacarb and endosulfan on Gammarus kischineffensis (Schellenberg, 1937) (Crustacea: Amphipoda). CHEMOSPHERE 2024; 360:142387. [PMID: 38801905 DOI: 10.1016/j.chemosphere.2024.142387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/22/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
This study was designed to investigate the toxic effects of two frequently used commercial insecticides containing endosulfan and indoxacarb on a freshwater amphipod Gammarus kischineffensis. In this context, the 24, 48, 72 and 96 h LC50 values of these pesticides were determined for G. kischineffensis. Then the histopathological effects of these pesticides on the gill tissues of this species were evaluated. At the end of the study, the 96 h LC50 values of commercial-grade endosulfan and indoxacarb for G. kischineffensis were determined as 1.861 μg L-1 and 20.212 mg L-1, respectively. Histopathologically, the most common histopathological alterations in individuals exposed to sublethal concentrations of commercial-grade endosulfan and indoxacarb were pillar cell hypertrophy resulting in atrophy of the hemocoelic space and hemocytic infiltration. Considering these results, it can be said that commercial-grade endosulfan is extremely and indoxacarb is slightly toxic to G. kischineffensis.
Collapse
Affiliation(s)
- Pelin Uğurlu
- Dicle University Science and Technology Application and Research Center, 21280, Diyarbakır, Turkey; Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Dicle University, 21280, Diyarbakir, Turkey.
| | - Elif İpek Satar
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Dicle University, 21280, Diyarbakir, Turkey
| | - Erhan Ünlü
- Department of Biology, Section of Hydrobiology, Faculty of Science, Dicle University, 21280, Diyarbakir, Turkey
| |
Collapse
|
5
|
Wang Z, Yang T, Zeng M, Wang Z, Chen Q, Chen J, Christian M, He Z. Miquelianin in Folium Nelumbinis extract promotes white-to-beige fat conversion via blocking AMPK/DRP1/mitophagy and modulating gut microbiota in HFD-fed mice. Food Chem Toxicol 2023; 181:114089. [PMID: 37804915 DOI: 10.1016/j.fct.2023.114089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
The main purpose of the present study was to investigate the effect of miquelianin (quercetin 3-O-glucuronide, Q3G), one of the main flavonoids in the Folium Nelumbinis extract (FNE), on beige adipocyte formation and its underlying mechanisms. In 3T3-L1 adipocytes Q3G (12.8%)-rich FNE treatment upregulated beige-related markers such as SIRT1, COX2, PGC-1α, TFAM, and UCP1. Furthermore, Q3G enhanced mitochondrial biosynthesis and inhibited mitophagy by downregulating the expression of PINK1, PARKIN, BECLIN1 and LC-3B in 3T3-L1 cells. Moreover, in high-fat-diet (HFD)-fed mice, Q3G markedly inhibited body weight gain, reduced blood glucose/lipid levels, reduced white adipose tissues (WAT) and mitigated hepatic steatosis. Meanwhile, the induced beiging accompanied by suppressed mitophagy was also demonstrated in inguinal WAT (iWAT). Chemical intervention of AMPK activity with Compound C (Com C) and Acadesine (AICAR) revealed that AMPK/DRP1 signaling was involved in Q3G-mediated mitophagy and the beiging process. Importantly, 16S rRNA sequencing analysis showed that Q3G beneficially reshaped gut microbiota structure, specifically inhibiting unclassified_Lachnospiraceae, Faecalibaculum, Roseburia and Colidextribacter while increasing Bacteroides, Akkermansia and Mucispirillum, which may potentially facilitate WAT beiging. Collectively, our findings provide a novel biological function for Folium Nelumbinis and Q3G in the fight against obesity through activating the energy-dissipating capacity of beige fat.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tian Yang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Mark Christian
- School of Science and Technology, Trent University, Clifton, Nottingham, NG11 8NS, United Kingdom.
| | - Zhiyong He
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
6
|
Das P, Chandra T, Negi A, Jaiswal S, Iquebal MA, Rai A, Kumar D. A comprehensive review on genomic resources in medicinally and industrially important major spices for future breeding programs: Status, utility and challenges. Curr Res Food Sci 2023; 7:100579. [PMID: 37701635 PMCID: PMC10494321 DOI: 10.1016/j.crfs.2023.100579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023] Open
Abstract
In the global market, spices possess a high-value but low-volume commodities of commerce. The food industry depends largely on spices for taste, flavor, and therapeutic properties in replacement of cheap synthetic ones. The estimated growth rate for spices demand in the world is ∼3.19%. Since spices grow in limited geographical regions, India is one of the leading producer of spices, contributing 25-30 percent of total world trade. Hitherto, there has been no comprehensive review of the genomic resources of industrially important major medicinal spices to overcome major impediments in varietal improvement and management. This review focuses on currently available genomic resources of 24 commercially significant spices, namely, Ajwain, Allspice, Asafoetida, Black pepper, Cardamom large, Cardamom small, Celery, Chillies, Cinnamon, Clove, Coriander, Cumin, Curry leaf, Dill seed, Fennel, Fenugreek, Garlic, Ginger, Mint, Nutmeg, Saffron, Tamarind, Turmeric and Vanilla. The advent of low-cost sequencing machines has contributed immensely to the voluminous data generation of these spices, cracking the complex genomic architecture, marker discovery, and understanding comparative and functional genomics. This review of spice genomics resources concludes the perspective and way forward to provide footprints by uncovering genome assemblies, sequencing and re-sequencing projects, transcriptome-based studies, non-coding RNA-mediated regulation, organelles-based resources, developed molecular markers, web resources, databases and AI-directed resources in candidate spices for enhanced breeding potential in them. Further, their integration with molecular breeding could be of immense use in formulating a strategy to protect and expand the production of the spices due to increased global demand.
Collapse
Affiliation(s)
- Parinita Das
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ankita Negi
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
7
|
Ali I, Anwar S, Ali A, Ullah Z, Binjawhar DN, Sher H, Abdel-Hameed UK, Khan MA, Majeed K, Jaremko M. Biochemical and phenological characterization of diverse wheats and their association with drought tolerance genes. BMC PLANT BIOLOGY 2023; 23:326. [PMID: 37331960 DOI: 10.1186/s12870-023-04278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/11/2023] [Indexed: 06/20/2023]
Abstract
Drought is one of the most important wheat production limiting factor, and can lead to severe yield losses. This study was designed to examine the effect of drought stress on wheat physiology and morphology under three different field capacities (FC) viz. 80% (control), 50% (moderate) and 30% (severe drought stress) in a diverse collection of wheat germplasm including cultivars, landraces, synthetic hexaploid and their derivatives. Traits like grain weight, thousand grain weight and biomass were reduced by 38.23%, 18.91% and 26.47% respectively at 30% FC, whereas the reduction rate for these traits at 50% FC were 19.57%, 8.88% and 18.68%. In principal component analysis (PCA), the first two components PC1 and PC2 accounted for 58.63% of the total variation and separated the cultivars and landraces from synthetic-based germplasm. Landraces showed wide range of phenotypic variations at 30% FC compared to synthetic-based germplasm and improved cultivars. However, least reduction in grain weight was observed in improved cultivars which indicated the progress in developing drought resilient cultivars. Allelic variations of the drought-related genes including TaSnRK2.9-5A, TaLTPs-11, TaLTPs-12, TaSAP-7B-, TaPPH-13, Dreb-B1 and 1fehw3 were significantly associated with the phenological traits under drought stress in all 91 wheats including 40 landraces, 9 varieties, 34 synthetic hexaploids and 8 synthetic derivatives. The favorable haplotypes of 1fehw3, Dreb-B1, TaLTPs-11 and TaLTPs-12 increased grain weight, and biomass. Our results iterated the fact that landraces could be promising source to deploy drought adaptability in wheat breeding. The study further identified drought tolerant wheat genetic resources across various backgrounds and identified favourable haplotypes of water-saving genes which should be considered to develop drought tolerant varieties.
Collapse
Affiliation(s)
- Iftikhar Ali
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan.
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, 999077, Hong Kong.
| | - Saeed Anwar
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan
| | - Ahmad Ali
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan.
| | - Zahid Ullah
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan
| | - Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| | - Hassan Sher
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan
| | - Usama K Abdel-Hameed
- Biology Department, College of Science, Taibah University, Al-Madinah Al-Munawarah, 42353, Saudi Arabia
- Botany Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | | | - Khawar Majeed
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 329555-6900, Saudi Arabia
| |
Collapse
|
8
|
Shojaee S, Ravash R, Shiran B, Ebrahimie E. Meta-analysis highlights the key drought responsive genes in genes: PEPC and TaSAG7 are hubs response networks. J Genet Eng Biotechnol 2022; 20:127. [PMID: 36053361 PMCID: PMC9468207 DOI: 10.1186/s43141-022-00395-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
Background Wheat is the most important cereal. One of the environmental stresses is drought that harm the production of many cereals and every year due to low rainfall and frequent droughts, the need to produce plants resistant to this stress is felt. Therefore, identification and evaluation of the genes involved in the production of this resistance in plants are of great importance. By identifying these genes and changing their expression, it is possible to produce resistant plants that can tolerate dehydration and drought, with at least a qualitative and quantitative reduction in yield. Results Based on the meta-analysis results obtained in this study, in resistant cultivars ~ 4% (2394/61290) of the probe IDs decreased and ~ 4.5% (2670/61290) increased expression, furthermore in susceptible cultivars ~ 7% (4183/61290) of probe IDs decreased and ~ 6% (3591/61290) increased expression (P value ≤ 0.05). List of up- and downregulated genes was revealed, among the expressed genes of transcription factors Myb3, ethylene-responsive 5a, MIKC-type MADS-box WM24B, and salinity inducible ERF4 in resistant cultivars and transcription factors WRKY15, MADS-box TaAGL8, WRKY39, and Myb in susceptible cultivars, they showed a significant increase in expression, these transcription factors are of great importance in drought stress. Among them, ethylene responsive 5a in resistant cultivars by 3 times and Myb in susceptible cultivars by 2.6 times have shown the highest expression change. Using Cytoscape Hub software, the Phosphoenolpyruvate carboxylase (PEPC) and lyase isocitrate (TaSAG7) genes, which have significantly different expressions in resistant and susceptible wheat cultivars. PEPC and TaSAG7 genes were upregulated in resistant wheat cultivars as well as down regulated in susceptible cultivars. Also, the qPCR results of selected genes were consistent with the outcomes of the meta-analysis. Conclusions All microarray data were collected from the NCBI Gene Expression Omnibus site. Libraries with drought-tolerant and susceptible cultivars for wheat were considered under the stress and control conditions from whole leaf tissue. By meta-analysis combined the purposeful results of multiple experiments, and found list of genes expressed in reverse between the two cultivars. These genes can distinguish between different susceptible and resistant wheat cultivars. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00395-4.
Collapse
Affiliation(s)
- Sahar Shojaee
- Department of Plant Breeding and Biotechnology, Shahrekord University, Shahr-e Kord, Iran
| | - Rudabeh Ravash
- Department of Plant Breeding and Biotechnology Faculty of Agriculture, Shahrekord University, Shahr-e Kord, Iran.
| | - Behrouz Shiran
- Department of Plant Breeding and Biotechnology Faculty of Agriculture, Shahrekord University, Shahr-e Kord, Iran
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Agriculture, Biomedicine and Environment, Melbourne, La Trobe University, Victoria, 3086, Australia.,Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, South Australia, 5371, Australia
| |
Collapse
|
9
|
Potential Pro-Tumorigenic Effect of Bisphenol A in Breast Cancer via Altering the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14123021. [PMID: 35740686 PMCID: PMC9221131 DOI: 10.3390/cancers14123021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Bisphenol A (BPA) is primarily used to produce polycarbonate plastics, such as water bottles. Exposure to BPA has been shown to increase the growth of breast cancer cells that depend on estrogen for growth due to its ability to mimic estrogen. More recent studies have suggested that BPA also affects the cellular and non-cellular components that compose tumor microenvironments (TMEs), namely the environment around a tumor, thereby potentially promoting breast cancer growth via altering the TME. The TME plays an essential role in cancer development and promotion. Therefore, it is crucial to understand the effect of BPA on breast TMEs to assess its role in the risk of breast cancer adequately. This review examines the potential effects of BPA on immune cells, fibroblasts, extracellular matrices, and adipocytes to highlight their roles in mediating the carcinogenic effect of BPA, and thereby proposes considerations for the risk assessment of BPA exposure. Abstract BPA, a chemical used in the preparation of polycarbonate plastics, is an endocrine disruptor. Exposure to BPA has been suggested to be a risk factor for breast cancer because of its potential to induce estrogen receptor signaling in breast cancer cells. More recently, it has been recognized that BPA also binds to the G protein-coupled estrogen receptor and other nuclear receptors, in addition to estrogen receptors, and acts on immune cells, adipocytes, and fibroblasts, potentially modulating the TME. The TME significantly impacts the behavior of cancer cells. Therefore, understanding how BPA affects stromal components in breast cancer is imperative to adequately assess the association between exposure to BPA and the risk of breast cancer. This review examines the effects of BPA on stromal components of tumors to highlight their potential role in the carcinogenic effect of BPA. As a result, I propose considerations for the risk assessment of BPA exposure and studies needed to improve understanding of the TME-mediated, breast cancer-promoting effect of BPA.
Collapse
|
10
|
Comparative Study of Natural Antioxidants from Glycine max, Anethum graveolensand Pimpinella anisum Seed and Sprout Extracts Obtained by Ultrasound-Assisted Extraction. SEPARATIONS 2022. [DOI: 10.3390/separations9060152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The study aimed to evaluate the antioxidant potential of sprout and seed extracts from three species of plants, namely Glycine max (GMsp-sprouts, GMsd-seeds), Anethum graveolens (AGsp-sprouts, AGsd-seeds) and Pimpinella anisum (PAsp-sprouts, PAsd-seeds), which are widely accepted by consumers and have various applications in food flavoring, and also in natural medical treatments in the pharmaceutical industries. These plants are rich in valuable compounds that show a remarkable antioxidant power and are associated with many health benefits. Ethanol extracts were obtained by ultrasound-assisted extraction and they were comparatively evaluated for their in vitro antioxidant properties. The extracts were characterized by HPTLC, HPLC-DAD, total phenol content (TPC), total flavonoid content (TFC) analysis and antioxidant activities with different assays, such as total antioxidant capacity (TAC), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical cation decolorization assay (ABTS), 1,1-diphenyl 1-2-picryl-hydrazyl (DPPH) and iron binding ability of chelators. Our results showed that the sprout and seed extracts of the studied plants exhibited a high content of phytochemicals and promising antioxidant properties. The highest polyphenols content was detected for AGsd (53.02 ± 0.57 mg/g DW), PAsd (48.75 ± 0.34 mg/g DW) and the highest flavonoids content for PAsp (26.84 ± 0.57 mg/g DW). Moreover, the presence of valuable compounds was demonstrated by using HPTLC, FT-IR and HPLC-DAD techniques. In order to have a better understanding of the relationship between the biological properties and the electronic structure, a molecular modelling study of genistein was also conducted. Our approach to the comparative assessment of these three plant species was based on a priori knowledge from literature data; however, this study demonstrated that these plant extracts of seeds and also sprouts are excellent sources of natural antioxidants. Significant additional differences that were found in the phytochemical composition could be exploited in future research for pharmaceutical purposes.
Collapse
|
11
|
Magalhaes MS, Potter HG, Ahlback A, Gentek R. Developmental programming of macrophages by early life adversity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:213-259. [PMID: 35636928 DOI: 10.1016/bs.ircmb.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Macrophages are central elements of all organs, where they have a multitude of physiological and pathological functions. The first macrophages are produced during fetal development, and most adult organs retain populations of fetal-derived macrophages that self-maintain without major input of hematopoietic stem cell-derived monocytes. Their developmental origins make macrophages highly susceptible to environmental perturbations experienced in early life, in particular the fetal period. It is now well recognized that such adverse developmental conditions contribute to a wide range of diseases later in life. This chapter explores the notion that macrophages are key targets of environmental adversities during development, and mediators of their long-term impact on health and disease. We first briefly summarize our current understanding of macrophage ontogeny and their biology in tissues and consider potential mechanisms by which environmental stressors may mediate fetal programming. We then review evidence for programming of macrophages by adversities ranging from maternal immune activation and diet to environmental pollutants and toxins, which have disease relevance for different organ systems. Throughout this chapter, we contemplate appropriate experimental strategies to study macrophage programming. We conclude by discussing how our current knowledge of macrophage programming could be conceptualized, and finally highlight open questions in the field and approaches to address them.
Collapse
Affiliation(s)
- Marlene S Magalhaes
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Harry G Potter
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Ahlback
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
12
|
Rodwihok C, Tam TV, Choi WM, Suwannakaew M, Woo SW, Wongratanaphisan D, Kim HS. Preparation and Characterization of Photoluminescent Graphene Quantum Dots from Watermelon Rind Waste for the Detection of Ferric Ions and Cellular Bio-Imaging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:702. [PMID: 35215030 PMCID: PMC8878562 DOI: 10.3390/nano12040702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Graphene quantum dots (GQDs) were synthesized using watermelon rind waste as a photoluminescent (PL) agent for ferric ion (Fe3+) detection and in vitro cellular bio-imaging. A green and simple one-pot hydrothermal technique was employed to prepare the GQDs. Their crystalline structures corresponded to the lattice fringe of graphene, possessing amide, hydroxyl, and carboxyl functional groups. The GQDs exhibited a relatively high quantum yield of approximately 37%. Prominent blue emission under UV excitation and highly selective PL quenching for Fe3+ were observed. Furthermore, Fe3+ could be detected at concentrations as low as 0.28 μM (limit of detection), allowing for high sensitivity toward Fe3+ detection in tap and drinking water samples. In the bio-imaging experiment, the GQDs exhibited a low cytotoxicity for the HeLa cells, and they were clearly illuminated at an excitation wavelength of 405 nm. These results can serve as the basis for developing an environment-friendly, simple, and cost-effective approach of using food waste by converting them into photoluminescent nanomaterials for the detection of metal ions in field water samples and biological cellular studies.
Collapse
Affiliation(s)
- Chatchai Rodwihok
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (C.R.); (M.S.); (S.W.W.)
| | - Tran Van Tam
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44160, Korea; (T.V.T.); (W.M.C.)
| | - Won Mook Choi
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44160, Korea; (T.V.T.); (W.M.C.)
| | - Mayulee Suwannakaew
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (C.R.); (M.S.); (S.W.W.)
| | - Sang Woon Woo
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (C.R.); (M.S.); (S.W.W.)
| | - Duangmanee Wongratanaphisan
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Han S. Kim
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (C.R.); (M.S.); (S.W.W.)
| |
Collapse
|
13
|
Ademuyiwa OH, Fasogbon BM, Adebo OA. The potential role of Piper guineense (black pepper) in managing geriatric brain aging: a review. Crit Rev Food Sci Nutr 2021; 63:2840-2850. [PMID: 34609267 DOI: 10.1080/10408398.2021.1980764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Brain aging is one of the unavoidable aspects of geriatric life. As one ages, changes such as the shrinking of certain parts (particularly the frontal cortex, which is vital to learning and other complex mental activities) of the brain may occur. Consequently, communications between neurons are less effective, and blood flow to the brain could also decrease. Efforts made at the biological level for repair become inadequate, leading to the accumulation of β-amyloid peptide in the brain faster than its probable degradation mechanism, resulting in cognitive malfunction. Subsequent clinical usage of drugs in battling related brain-aging ailments has been associated with several undesirable side effects. However, recent research has investigated the potential use of natural compounds from food in combating such occurrences. This review provides information about the use of Piper guineense (black pepper) as a possible agent in managing brain aging because of its implications for practical brain function. P. guineense contains an alkaloid (piperine) reported to be an antioxidant, anti-depressant, and central nervous system stimulant. This alkaloid and other related compounds are neuroprotective agents that reduce lipid oxidation and inhibit tangles in the brain tissues.
Collapse
Affiliation(s)
| | - Beatrice Mofoluwaso Fasogbon
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doorfontein, Gauteng, South Africa
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doorfontein, Gauteng, South Africa
| |
Collapse
|
14
|
Tefera M, Tessema M, Admassie S, Guadie A. Electrochemical determination of endosulfan in vegetable samples using mercury film modified glassy carbon electrode. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
15
|
Yan J, Wang D, Meng Z, Yan S, Teng M, Jia M, Li R, Tian S, Weiss C, Zhou Z, Zhu W. Effects of incremental endosulfan sulfate exposure and high fat diet on lipid metabolism, glucose homeostasis and gut microbiota in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115697. [PMID: 33070067 DOI: 10.1016/j.envpol.2020.115697] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/29/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
The influence of pollutants on metabolic diseases such as type 2 diabetes mellitus is an emerging field in environmental medicine. Here, we explored the effects of a low-dose endosulfan sulfate (ES), a major metabolite of the pesticide endosulfan and a bio-persistent contaminant detected in environmental and human samples, on the progress of obesity and metabolic disorders. Pregnant CD-1 mice were given ES from gestational day 6 to postnatal day 21 (short-term). After weaning, male pups of exposed dams were provided with a low-fat or a high-fat diet (LFD or HFD) and assessed after an additional 12 weeks. At the same time, one group of male pups continuously received ES (long-term). Treatment with low-dose ES, short or long-term, alleviated the development of obesity and accumulation of hepatic triglycerides induced by HFD. Analysis of gene expression, metabolic profile and gut microbiome indicates that ES treatment inhibits adipogenesis induced by HFD due to enhanced lipid catabolism, fatty acid oxidation and disturbance of gut microbiota composition. However, impaired glucose and insulin homeostasis were still conserved in HFD-fed mice exposed to ES. Furthermore, ES treatment impaired glucose tolerance, affected hepatic gene expression, fatty acids composition and serum metabolic profile, as well as disturbed gut microbiota in LFD-fed mice. In conclusion, ES treatment at levels close to the accepted daily intake during fetal development directly impact glucose homeostasis, hepatic lipid metabolism, and gut microbiome dependent on the type of diet consumed. These findings provide a better understanding of the complex interactions of environmental pollutants and diet at early life stages also in the context of metabolic disease.
Collapse
Affiliation(s)
- Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Zhiyuan Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Sen Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Miaomiao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Ming Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Ruisheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Sinuo Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Carsten Weiss
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|