1
|
Borges SR, Jones GG, Robinson TD. Detectability of Surface Biosignatures for Directly Imaged Rocky Exoplanets. ASTROBIOLOGY 2024; 24:283-299. [PMID: 38377582 DOI: 10.1089/ast.2023.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Modeling the detection of life has never been more opportune. With next-generation space telescopes, such as the currently developing Habitable Worlds Observatory (HWO) concept, we will begin to characterize rocky exoplanets potentially similar to Earth. However, few realistic planetary spectra containing surface biosignatures have been paired with direct imaging telescope instrument models. Therefore, we use a HWO instrument noise model to assess the detection of surface biosignatures affiliated with oxygenic, anoxygenic, and nonphotosynthetic extremophiles. We pair the HWO telescope model to a one-dimensional radiative transfer model to estimate the required exposure times necessary for detecting each biosignature on planets with global microbial coverage and varying atmospheric water vapor concentrations. For modeled planets with 0-50% cloud coverage, we determine pigments and the red edge could be detected within 1000 hr (100 hr) at distances within 15 pc (11 pc). However, tighter telescope inner working angles (2.5 λ/D) would allow surface biosignature detection at further distances. Anoxygenic photosynthetic biosignatures could also be more easily detectable than nonphotosynthetic pigments and the photosynthetic red edge when compared against a false positive iron oxide slope. Future life detection missions should evaluate the influence of false positives on the detection of multiple surface biosignatures.
Collapse
Affiliation(s)
- Schuyler R Borges
- Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, Arizona, USA
- Habitability, Atmospheres, and Biosignatures Laboratory, University of Arizona, Tucson, Arizona, USA
| | - Gabrielle G Jones
- Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, Arizona, USA
- Habitability, Atmospheres, and Biosignatures Laboratory, University of Arizona, Tucson, Arizona, USA
| | - Tyler D Robinson
- Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, Arizona, USA
- Habitability, Atmospheres, and Biosignatures Laboratory, University of Arizona, Tucson, Arizona, USA
- Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA
- NASA Nexus for Exoplanet System Science Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Bean JL, Raymond SN, Owen JE. The Nature and Origins of Sub-Neptune Size Planets. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021; 126:e2020JE006639. [PMID: 33680689 PMCID: PMC7900964 DOI: 10.1029/2020je006639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
Planets intermediate in size between the Earth and Neptune, and orbiting closer to their host stars than Mercury does the Sun, are the most common type of planet revealed by exoplanet surveys over the last quarter century. Results from NASA's Kepler mission have revealed a bimodality in the radius distribution of these objects, with a relative underabundance of planets between 1.5 and 2.0R ⊕ . This bimodality suggests that sub-Neptunes are mostly rocky planets that were born with primary atmospheres a few percent by mass accreted from the protoplanetary nebula. Planets above the radius gap were able to retain their atmospheres ("gas-rich super-Earths"), while planets below the radius gap lost their atmospheres and are stripped cores ("true super-Earths"). The mechanism that drives atmospheric loss for these planets remains an outstanding question, with photoevaporation and core-powered mass loss being the prime candidates. As with the mass-loss mechanism, there are two contenders for the origins of the solids in sub-Neptune planets: the migration model involves the growth and migration of embryos from beyond the ice line, while the drift model involves inward-drifting pebbles that coagulate to form planets close-in. Atmospheric studies have the potential to break degeneracies in interior structure models and place additional constraints on the origins of these planets. However, most atmospheric characterization efforts have been confounded by aerosols. Observations with upcoming facilities are expected to finally reveal the atmospheric compositions of these worlds, which are arguably the first fundamentally new type of planetary object identified from the study of exoplanets.
Collapse
Affiliation(s)
- Jacob L. Bean
- Department of Astronomy & AstrophysicsUniversity of ChicagoChicagoILUSA
| | - Sean N. Raymond
- Laboratoire d'Astrophysique de BordeauxCNRS and Université de BordeauxPessacFrance
| | - James E. Owen
- Department of PhysicsAstrophysics GroupImperial College LondonLondonUK
| |
Collapse
|
3
|
|