Lykawka PS, Ito T. Terrestrial planet and asteroid belt formation by Jupiter-Saturn chaotic excitation.
Sci Rep 2023;
13:4708. [PMID:
36973305 PMCID:
PMC10042868 DOI:
10.1038/s41598-023-30382-9]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
The terrestrial planets formed by accretion of asteroid-like objects within the inner solar system's protoplanetary disk. Previous works have found that forming a small-mass Mars requires the disk to contain little mass beyond ~ 1.5 au (i.e., the disk mass was concentrated within this boundary). The asteroid belt also holds crucial information about the origin of such a narrow disk. Several scenarios may produce a narrow disk. However, simultaneously replicating the four terrestrial planets and the inner solar system properties remains elusive. Here, we found that chaotic excitation of disk objects generated by a near-resonant configuration of Jupiter-Saturn can create a narrow disk, allowing the formation of the terrestrial planets and the asteroid belt. Our simulations showed that this mechanism could typically deplete a massive disk beyond ~ 1.5 au on a 5-10 Myr timescale. The resulting terrestrial systems reproduced the current orbits and masses of Venus, Earth and Mars. Adding an inner region disk component within ~ 0.8-0.9 au allowed several terrestrial systems to simultaneously form analogues of the four terrestrial planets. Our terrestrial systems also frequently satisfied additional constraints: Moon-forming giant impacts occurring after a median ~ 30-55 Myr, late impactors represented by disk objects formed within 2 au, and effective water delivery during the first 10-20 Myr of Earth's formation. Finally, our model asteroid belt explained the asteroid belt's orbital structure, small mass and taxonomy (S-, C- and D/P-types).
Collapse