1
|
Owens MJ, Barnard L, Arge CN. The importance of boundary evolution for solar-wind modelling. Sci Rep 2024; 14:28975. [PMID: 39578600 PMCID: PMC11584705 DOI: 10.1038/s41598-024-80162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
The solar wind is a continual outflow of plasma and magnetic field from the Sun's upper atmosphere-the corona-that expands to fills the solar system. Variability in the near-Earth solar-wind conditions can produce adverse space weather that impacts ground- and space-based technologies. Consequently, numerical fluid models of the solar wind are used to forecast conditions a few days ahead. The solar-wind inner-boundary conditions are supplied by models of the corona that are, in turn, constrained by observations of the photospheric magnetic field. While solar eruptions-coronal mass ejections (CMEs)-are treated as time-dependent structures, a single coronal "snapshot" is typically used to determine the ambient solar-wind for a complete model run. Thus, all available time-history information from previous coronal-model solutions is discarded and the solar wind is treated as a steady-state flow, unchanging in the rotating frame of the Sun. In this study, we use 1 year of daily-updated coronal-model solutions to comprehensively compare steady-state solar-wind modelling with a time-dependent method. We demonstrate, for the first time, how the SS approach can fundamentally misrepresent the accuracy of coronal models. We also attribute three key problems with current space-weather forecasting directly to the steady-state approach: (1) the seemingly paradoxical result that forecasts based on observations from 3-days previous are more accurate than forecasts based on the most recent observations; (2) high inconsistency, with forecasts for a given day jumping significantly as new observations become available, changing CME propagation times by up to 17 h; and (3) insufficient variability in the heliospheric magnetic field, which controls solar energetic particle propagation to Earth. The time-dependent approach is shown to alleviate all three issues. It provides a consistent, physical solution which more accurately represents the information present in the coronal models. By incorporating the time history in the solar wind along the Sun-Earth line, the time-dependent approach will provide improvements to forecasting CME propagation to Earth.
Collapse
Affiliation(s)
- Mathew J Owens
- Department of Meteorology, University of Reading, Earley Gate, Reading, Berkshire, RG6 6BB, UK.
| | - Luke Barnard
- Department of Meteorology, University of Reading, Earley Gate, Reading, Berkshire, RG6 6BB, UK
| | - Charles N Arge
- Solar Physics Laboratory, NASA/GSFC, Mail Code 671, Greenbelt, MD, 20771, USA
| |
Collapse
|
2
|
Zhang J, Temmer M, Gopalswamy N, Malandraki O, Nitta NV, Patsourakos S, Shen F, Vršnak B, Wang Y, Webb D, Desai MI, Dissauer K, Dresing N, Dumbović M, Feng X, Heinemann SG, Laurenza M, Lugaz N, Zhuang B. Earth-affecting solar transients: a review of progresses in solar cycle 24. PROGRESS IN EARTH AND PLANETARY SCIENCE 2021; 8:56. [PMID: 34722120 PMCID: PMC8550066 DOI: 10.1186/s40645-021-00426-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/26/2021] [Indexed: 06/13/2023]
Abstract
This review article summarizes the advancement in the studies of Earth-affecting solar transients in the last decade that encompasses most of solar cycle 24. It is a part of the effort of the International Study of Earth-affecting Solar Transients (ISEST) project, sponsored by the SCOSTEP/VarSITI program (2014-2018). The Sun-Earth is an integrated physical system in which the space environment of the Earth sustains continuous influence from mass, magnetic field, and radiation energy output of the Sun in varying timescales from minutes to millennium. This article addresses short timescale events, from minutes to days that directly cause transient disturbances in the Earth's space environment and generate intense adverse effects on advanced technological systems of human society. Such transient events largely fall into the following four types: (1) solar flares, (2) coronal mass ejections (CMEs) including their interplanetary counterparts ICMEs, (3) solar energetic particle (SEP) events, and (4) stream interaction regions (SIRs) including corotating interaction regions (CIRs). In the last decade, the unprecedented multi-viewpoint observations of the Sun from space, enabled by STEREO Ahead/Behind spacecraft in combination with a suite of observatories along the Sun-Earth lines, have provided much more accurate and global measurements of the size, speed, propagation direction, and morphology of CMEs in both 3D and over a large volume in the heliosphere. Many CMEs, fast ones, in particular, can be clearly characterized as a two-front (shock front plus ejecta front) and three-part (bright ejecta front, dark cavity, and bright core) structure. Drag-based kinematic models of CMEs are developed to interpret CME propagation in the heliosphere and are applied to predict their arrival times at 1 AU in an efficient manner. Several advanced MHD models have been developed to simulate realistic CME events from the initiation on the Sun until their arrival at 1 AU. Much progress has been made on detailed kinematic and dynamic behaviors of CMEs, including non-radial motion, rotation and deformation of CMEs, CME-CME interaction, and stealth CMEs and problematic ICMEs. The knowledge about SEPs has also been significantly improved. An outlook of how to address critical issues related to Earth-affecting solar transients concludes this article.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Physics and Astronomy, George Mason University, 4400 University Dr., MSN 3F3, Fairfax, VA 22030 USA
| | | | | | - Olga Malandraki
- National Observatory of Athens, Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, Penteli, Athens Greece
| | - Nariaki V. Nitta
- Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA USA
| | | | - Fang Shen
- SIGMA Weather Group, State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, 100190 China
| | - Bojan Vršnak
- Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kaciceva 26, HR-10000 Zagreb, Croatia
| | - Yuming Wang
- CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026 PR China
| | - David Webb
- ISR, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467 USA
| | - Mihir I. Desai
- Southwest Research Institute, 6220 Culebra Road, San Antonia, TX 78023 USA
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Karin Dissauer
- Institute of Physics, University of Graz, Graz, Austria
- NorthWest Research Association, Boulder, CO USA
| | - Nina Dresing
- Institut fuer Experimentelle und Angewandte Physik, University of Kiel, Kiel, Germany
- Department of Physics and Astronomy, University of Turku, Turku, Finland
| | - Mateja Dumbović
- Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kaciceva 26, HR-10000 Zagreb, Croatia
| | - Xueshang Feng
- SIGMA Weather Group, State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, 100190 China
| | - Stephan G. Heinemann
- Institute of Physics, University of Graz, Graz, Austria
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Monica Laurenza
- INAF-Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere, 100, I-00133 Rome, Italy
| | - Noé Lugaz
- Space Science Center and Department of Physics, University of New Hampshire, Durham, NH USA
| | - Bin Zhuang
- Space Science Center and Department of Physics, University of New Hampshire, Durham, NH USA
| |
Collapse
|
3
|
Lynch BJ, Airapetian VS, DeVore CR, Kazachenko MD, Lüftinger T, Kochukhov O, Rosén L, Abbett WP. Modeling a Carrington-scale Stellar Superflare and Coronal Mass Ejection from κ 1 Cet. THE ASTROPHYSICAL JOURNAL 2019; 880:97. [PMID: 32214410 PMCID: PMC7094772 DOI: 10.3847/1538-4357/ab287e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Observations from the Kepler mission have revealed frequent superflares on young and active solar-like stars. Superflares result from the large-scale restructuring of stellar magnetic fields, and are associated with the eruption of coronal material (a coronal mass ejection, or CME) and energy release that can be orders of magnitude greater than those observed in the largest solar flares. These catastrophic events, if frequent, can significantly impact the potential habitability of terrestrial exoplanets through atmospheric erosion or intense radiation exposure at the surface. We present results from numerical modeling designed to understand how an eruptive superflare from a young solar-type star, κ 1 Cet, could occur and would impact its astrospheric environment. Our data-inspired, three-dimensional magnetohydrodynamic modeling shows that global-scale shear concentrated near the radial-field polarity inversion line can energize the closed-field stellar corona sufficiently to power a global, eruptive superflare that releases approximately the same energy as the extreme 1859 Carrington event from the Sun. We examine proxy measures of synthetic emission during the flare and estimate the observational signatures of our CME-driven shock, both of which could have extreme space-weather impacts on the habitability of any Earth-like exoplanets. We also speculate that the observed 1986 Robinson-Bopp superflare from κ 1 Cet was perhaps as extreme for that star as the Carrington flare was for the Sun.
Collapse
Affiliation(s)
- Benjamin J. Lynch
- Space Sciences Laboratory, University of California–Berkeley, Berkeley, CA 94720, USA
| | - Vladimir S. Airapetian
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- Department of Physics, American University, Washington, D.C. 20016, USA
| | | | - Maria D. Kazachenko
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA
| | - Teresa Lüftinger
- Department of Astrophysics, University of Vienna, Vienna, Austria
| | - Oleg Kochukhov
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Lisa Rosén
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - William P. Abbett
- Space Sciences Laboratory, University of California–Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Vourlidas A, Patsourakos S, Savani NP. Predicting the geoeffective properties of coronal mass ejections: current status, open issues and path forward. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180096. [PMID: 31079585 PMCID: PMC6527953 DOI: 10.1098/rsta.2018.0096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Much progress has been made in the study of coronal mass ejections (CMEs), the main drivers of terrestrial space weather thanks to the deployment of several missions in the last decade. The flow of energy required to power solar eruptions is beginning to be understood. The initiation of CMEs is routinely observed with cadences of tens of seconds with arc-second resolution. Their inner heliospheric evolution can now be imaged and followed routinely. Yet relatively little progress has been made in predicting the geoeffectiveness of a particular CME. Why is that? What are the issues holding back progress in medium-term forecasting of space weather? To answer these questions, we review, here, the measurements, status and open issues on the main CME geoeffective parameters; namely, their entrained magnetic field strength and configuration, their Earth arrival time and speed, and their mass (momentum). We offer strategies for improving the accuracy of the measurements and their forecasting in the near and mid-term future. To spark further discussion, we incorporate our suggestions into a top-level draft action plan that includes suggestions for sensor deployment, technology development and modelling/theory improvements. This article is part of the theme issue 'Solar eruptions and their space weather impact'.
Collapse
Affiliation(s)
- A. Vourlidas
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- IAASARS, Observatory of Athens, Penteli, Greece
| | - S. Patsourakos
- Department of Physics, Section of Astro-geophysics, University of Ioannina, Ioannina, Greece
| | - N. P. Savani
- Goddard Planetary Heliophysics Institute, University of Maryland, Baltimore, MD, USA
- NASA, Goddard Space Flight Center, Greenbelt, MD, USA
| |
Collapse
|
5
|
Gombosi TI, van der Holst B, Manchester WB, Sokolov IV. Extended MHD modeling of the steady solar corona and the solar wind. LIVING REVIEWS IN SOLAR PHYSICS 2018; 15:4. [PMID: 30872981 PMCID: PMC6390891 DOI: 10.1007/s41116-018-0014-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/10/2018] [Indexed: 06/09/2023]
Abstract
The history and present state of large-scale magnetohydrodynamic modeling of the solar corona and the solar wind with steady or quasi-steady coronal physics is reviewed. We put the evolution of ideas leading to the recognition of the existence of an expanding solar atmosphere into historical context. The development and main features of the first generation of global corona and solar wind models are described in detail. This historical perspective is also applied to the present suite of global corona and solar wind models. We discuss the evolution of new ideas and their implementation into numerical simulation codes. We point out the scientific and computational challenges facing these models and discuss the ways various groups tried to overcome these challenges. Next, we discuss the latest, state-of-the art models and point to the expected next steps in modeling the corona and the interplanetary medium.
Collapse
Affiliation(s)
- Tamas I. Gombosi
- Center for Space Environment Modeling, University of Michigan, 2455 Hayward, Ann Arbor, MI 48109 USA
| | - Bart van der Holst
- Center for Space Environment Modeling, University of Michigan, 2455 Hayward, Ann Arbor, MI 48109 USA
| | - Ward B. Manchester
- Center for Space Environment Modeling, University of Michigan, 2455 Hayward, Ann Arbor, MI 48109 USA
| | - Igor V. Sokolov
- Center for Space Environment Modeling, University of Michigan, 2455 Hayward, Ann Arbor, MI 48109 USA
| |
Collapse
|