1
|
Daly FC, Douglas-Walker TE, Palotás J, Anstöter CS, Zheng A, Campbell EK. Electronic and vibrational spectroscopy of benzonitrile cation for astrochemical consideration. J Chem Phys 2024; 161:074305. [PMID: 39145559 DOI: 10.1063/5.0223270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
The electronic and vibrational spectra of benzonitrile cation, C6H5CN+ (BZN+), in the gas phase at low temperatures are reported. Measurements were carried out using a cryogenic ion trapping apparatus. The mid-infrared spectrum shows a strong CN stretch at 2130 ± 1 cm-1 (4.694 ± 0.002 µm). The electronic spectrum is reported in the range 5040-5750 Å. This covers the forbidden B2B2 ← X2B1 and allowed C2B1 ← X2B1 transitions. The spectrum is dominated by a broad absorption feature at wavelengths shorter than 5250 Å, with the strongest absorption located at 5140 Å. Experimental data are complemented with quantum chemical calculations carried out at the density functional theory and extended multi-configurational quasi-degenerate perturbation theory level. The spectroscopic results are discussed in the context of astronomical observations in the infrared and visible.
Collapse
Affiliation(s)
- F C Daly
- School of Chemistry, University of Edinburgh, Joseph Black Building, King's Buildings, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - T E Douglas-Walker
- School of Chemistry, University of Edinburgh, Joseph Black Building, King's Buildings, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - J Palotás
- School of Chemistry, University of Edinburgh, Joseph Black Building, King's Buildings, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - C S Anstöter
- School of Chemistry, University of Edinburgh, Joseph Black Building, King's Buildings, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - A Zheng
- School of Chemistry, University of Edinburgh, Joseph Black Building, King's Buildings, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - E K Campbell
- School of Chemistry, University of Edinburgh, Joseph Black Building, King's Buildings, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
2
|
Rap D, Schrauwen JGM, Redlich B, Brünken S. Noncovalent Interactions Steer the Formation of Polycyclic Aromatic Hydrocarbons. J Am Chem Soc 2024; 146:23022-23033. [PMID: 39110663 PMCID: PMC11345775 DOI: 10.1021/jacs.4c03395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024]
Abstract
Aromatic molecules play an important role in the chemistry of astronomical environments such as the cold interstellar medium (ISM) and (exo)planetary atmospheres. The observed abundances of (polycyclic) aromatic hydrocarbons such as benzonitrile and cyanonaphthalenes are, however, highly underestimated by astrochemical models. This demonstrates the need for more experimentally verified reaction pathways. The low-temperature ion-molecule reaction of benzonitrile•+ with acetylene is studied here using a multifaceted approach involving kinetics and spectroscopic probing of the reaction products. A fast radiative association reaction via an in situ experimentally observed prereactive complex shows the importance of noncovalent interactions in steering the pathway during cold ion-molecule reactions. Product structures of subsequent reactions are unambiguously identified using infrared action spectroscopy and reveal the formation of nitrogen-containing, linked bicyclic structures such as phenylpyridine•+ and benzo-N-pentalene+ structures. The results, contradicting earlier assumptions on the product structure, demonstrate the importance of spectroscopic probing of reaction products and emphasize the possible formation of linked bicyclic molecules and benzo-N-pentalene+ structures in astronomical environments.
Collapse
Affiliation(s)
- Daniël
B. Rap
- FELIX Laboratory, Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 ED, The Netherlands
| | - Johanna G. M. Schrauwen
- FELIX Laboratory, Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 ED, The Netherlands
| | - Britta Redlich
- FELIX Laboratory, Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 ED, The Netherlands
| | - Sandra Brünken
- FELIX Laboratory, Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 ED, The Netherlands
| |
Collapse
|
3
|
Chen X, Li Y, Xie M, Hu Y. Growth mechanism of aromatic prebiotic molecules: insights from different processes of ion-molecule reactions in benzonitrile-ammonia and benzonitrile-methylamine clusters. Phys Chem Chem Phys 2024; 26:21548-21557. [PMID: 39082110 DOI: 10.1039/d4cp01603c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Benzonitrile (BN, C6H5CN) has been detected in the cold molecular cloud Taurus molecular cloud-1 (TMC-1) in 2018, which is suggested to be a precursor in the formation of more complex nitrogen-containing aromatic interstellar compounds. In this study, we utilized mass-selected infrared (IR) photodissociation spectroscopy and quantum chemical calculations to investigate the structures and gaseous ion-molecule reactions of benzonitrile-ammonia (BN-NH3) and benzonitrile-methylamine (BN-MA) clusters. The spectral observations indicate that the cyclic hydrogen bonding structure predominates in both neutral clusters. After VUV (118 nm) single-photon ionization, a new C-N covalent bond formed between BN and NH3 in the (BN-NH3)+ cluster. However, proton sharing constitutes the primary structure of the (BN-MA)+ cluster. The two nitrogen-containing interstellar molecules react with BN to yield distinct products due to difference in charge distribution and molecular polarity in the ionized clusters. The reactions of BN with other molecules contribute to our understanding of the growth mechanisms of complex interstellar molecules.
Collapse
Affiliation(s)
- Xutao Chen
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Yujian Li
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Min Xie
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
4
|
Li J, Li Y, Wu B, Xie M, Hu Y. Proton Transfer Processes in 2-Butenenitrile Dimer Cation Studied by Mass-Selective Infrared Spectroscopy. J Phys Chem A 2024; 128:4694-4700. [PMID: 38833155 DOI: 10.1021/acs.jpca.4c01989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
2-Butenenitrile (2-Bu) is a recently discovered crucial interstellar molecule. Herein, an abnormal NH band was observed in the infrared spectrum of the 2-Bu dimer cation, suggestive of a proton transfer reaction within the cluster. Through a comprehensive theoretical analysis of the IR spectrum of (2-Bu)2+, we discovered not only the formation of a new C-N bond through the attachment of one 2-Bu to another but also the occurrence of a proton transfer reaction in the cluster. This proton was identified as originating from the methyl group of the attaching 2-Bu in the cluster based on the analysis of IR spectra of (2-Bu)+ and [2-Bu-acrylonitrile (AN)]+. Furthermore, the detailed reaction process of this ion-molecule reaction is examined with theoretical calculation. This finding contributes significantly to our deeper understanding of ion-molecule reactions in the gas phase and the formation of nitrogen-containing prebiotic molecules in the interstellar medium.
Collapse
Affiliation(s)
- Jingyu Li
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yujian Li
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Bingbing Wu
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Min Xie
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
5
|
Rubli PT, Dopfer O. Infrared spectrum of the 1-cyanoadamantane cation: evidence of hydrogen transfer and cage-opening upon ionization. Phys Chem Chem Phys 2023; 25:22734-22743. [PMID: 37584199 DOI: 10.1039/d3cp03417h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The radical cations of diamondoids are important intermediates in their functionalization reactions and are also candidates as carriers for astronomical absorption and emission features. Although neutral diamondoids have been studied extensively, information regarding their radical cations is largely lacking, particularly for functionalized diamondoid derivatives. Herein, we characterize the structure of the 1-cyanoadamantane radical cation (C10H15CN+, AdCN+) using infrared photodissociation (IRPD) spectroscopy of mass selected AdCN+N2 clusters in the XH stretch range (2400-3500 cm-1) and dispersion-corrected density functional theory calculations (B3LYP-D3BJ/cc-pVTZ). A group of three distinct CH stretch bands are observed in the 2800-3000 cm-1 range, in addition to a highly redshifted absorption at 2580 cm-1 attributed to the acidic CH proton predicted by calculations. An unexpected broad absorption peaking at 3320 cm-1 is also detected and assigned to an NH stretch mode based on its width and frequency. Calculations indicate that hydrogen atom transfer (HAT) from the adamantyl cage (C10H15, Ady) to the N atom of the CN group yields lower energy structures, with an open-cage isomer exhibiting such hydrogen transfer being the global minimum on the potential energy surface. The energy barriers involved in the formation of this open-cage isomer are also lower than those calculated for generation of the analogous open-cage 1-amantadine cation isomer which has previously been identified by IRPD. The combined consideration of IRPD spectra and calculations indicates a major population of the nascent canonical closed-cage isomer and a smaller population of the global minimum isomer featuring both cage-opening and hydrogen transfer.
Collapse
Affiliation(s)
- Peter Theodore Rubli
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| |
Collapse
|
6
|
Xie M, Sun X, Li W, Guan J, Liang Z, Hu Y. A Facile Route for the Formation of Complex Nitrogen-Containing Prebiotic Molecules in the Interstellar Medium. J Phys Chem Lett 2022; 13:8207-8213. [PMID: 36006401 DOI: 10.1021/acs.jpclett.2c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Prebiotic molecules have often been identified in the interstellar medium and meteorite samples. However, we still have only a fragmentary knowledge of the mechanism of the evolutionary process of these prebiotic molecules. With the aid of state-of-the-art vacuum ultraviolet (VUV)-infrared (IR) spectroscopy and ab initio calculations, we reveal a new pathway leading to the formation of the biorelevant molecules carrying amine groups or peptide bonds via the single-photon ionization induced Michael/cyclization reaction of acrylonitrile (AN)-alcohol heterodimer complexes in the gas phase. In the reactions, not only N-H nitrilium cations with H+-N≡C-R Lewis structure but also cyclic amine cations with a peptide bond can be formed when the AN reacts with alcohols of increasing molecular size (such as ethanol, propanol, or butanol). This study suggests the possibility of unsaturated nitriles being reduced by ionized alcohols in space, which can further drive sequential Michael addition/cyclization reactions to form more complex biorelevant molecules.
Collapse
Affiliation(s)
- Min Xie
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaonan Sun
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Weixing Li
- Department of Chemistry, Fudan University, Songhu Rd. 2005, 200438 Shanghai, China
| | - Jiwen Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Zhenhao Liang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
7
|
Sakhtemanian L, Ghatee MH. Simulation Investigation of Bulk and Surface Properties of Liquid Benzonitrile: Ring Stacking-Assessment and Deconvolution. ACS OMEGA 2022; 7:25693-25704. [PMID: 35910170 PMCID: PMC9330290 DOI: 10.1021/acsomega.2c00953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The content and the molecular dynamics (MD) simulation analysis here are inspired by our recent ab initio calculation on benzonitrile (BZN), whereas the present results are to expand and develop macroscopic documentation involving data verification. MD simulations of the bulk liquid BZN in the range of 293-323 K unravel the hydrogen bond (-C≡N···H) formation with strength in the order of ortho-H ≫ meta-H ∼> para-H. The possibility for ortho-Hs to get involved in the formation of two bonds simultaneously confirms each having σ- and π-bonding features. Accordingly, we used vast efforts for structural analysis particularly based on the deconvolution of the corresponding complex correlation functions. Specific angle-dependent correlation functions led to the recognition of the molecular stacking with a strict anti-parallel orientation. The in-plane dimer and trimer also take part in the structural recognition. A singularity, found in the trend of the simulated temperature-dependent viscosity and diffusion coefficient of liquid BZN, is centered at about 313 K and quite fascinatingly emulates the reported experiment viscosity. An interplay between a small change in the trend of density and a large change in the corresponding viscosity is a key factor in supporting the singularity. Deconvolution of the simulation results allows attributing the singularity to structural alteration involving H-bonding of different types and extent. Approaching the range of 308-313 K, an alteration between hydrogen bond formation involving mostly ortho-Hs and mixed ortho-Hs + meta-H is possible and supports the singularity.
Collapse
|
8
|
Mason KA, Pearcy AC, Christensen ZA, Attah IK, Meot-Ner Mautner M, El-Shall MS. Water-Assisted Proton Transfer in the Sequential Hydration of Benzonitrile Radical Cation C 6H 5CN •+(H 2O) n: Transition to Hydrated Distonic Cation •C 6H 4CNH +(H 2O) n with n ≥ 4. J Am Chem Soc 2022; 144:9684-9694. [PMID: 35609235 DOI: 10.1021/jacs.2c01143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stepwise hydration of the benzonitrile•+ radical cation with one-seven H2O molecules was investigated experimentally and computationally with density functional theory in C6H5CN•+(H2O)n clusters. The stepwise binding energies (ΔHn-1,n°) were determined by equilibrium measurements for C6H5CN•+(H2O) and for •C6H4CNH+(H2O)n with n = 5, 6, and 7 to be 8.8 and 11.3, 11.0, and 10.0 kcal/mol, respectively. The populations of n = 2 and 3 of the C6H5CN•+(H2O)n clusters were observed only in trace abundance due to fast depletion processes leading to the formation of the hydrated distonic cations •C6H4CNH+(H2O)n with n = 4-7. The observed transition occurs between conventional radical cations hydrated on the ring in C6H5CN•+(H2O)n clusters with n = 1-3 and the protonated radical •C6H4CNH+ (distonic ion) formed by a proton transfer to the CN nitrogen and ionic hydrogen bonding to water molecules in •C6H4CNH+(H2O)n clusters with n = 4-7. The measured binding energy of the hydrated ion C6H5CN•+(H2O) (8.8 kcal/mol) is similar to that of the hydrated benzene radical cation (8.5 kcal/mol) that involves a relatively weak CHδ+···O hydrogen bonding interaction. Also, the measured binding energies of the •C6H4CNH+(H2O)n clusters with n = 5-7 are similar to those of the protonated benzonitrile (methanol)n clusters [C6H5CNH+(CH3OH)n, n = 5-7] that involve CNH+···O ionic hydrogen bonds. The proton shift from the para-•C ring carbon to the nitrogen of the benzonitrile radical cation is endothermic without solvent but thermoneutral for n = 1 and exothermic for n = 2-4 in C6H5CN•+(H2O)n clusters to form the distonic •C6H4CN···H+(OH2)n clusters. The distonic clusters •C6H4CN···H+(OH2)n constitute a new class of structures in radical ion/solvent clusters.
Collapse
Affiliation(s)
- Kyle A Mason
- Department of Chemistry, Virginia Commonwealth University, Richmond 23284-2006 Virginia, United States
| | - Adam C Pearcy
- Department of Chemistry, Virginia Commonwealth University, Richmond 23284-2006 Virginia, United States
| | - Zachary A Christensen
- Department of Chemistry, Virginia Commonwealth University, Richmond 23284-2006 Virginia, United States
| | - Isaac K Attah
- Department of Chemistry, Virginia Commonwealth University, Richmond 23284-2006 Virginia, United States
| | - Michael Meot-Ner Mautner
- Department of Chemistry, Virginia Commonwealth University, Richmond 23284-2006 Virginia, United States
| | - M Samy El-Shall
- Department of Chemistry, Virginia Commonwealth University, Richmond 23284-2006 Virginia, United States
| |
Collapse
|
9
|
Khatri J, Roy TK, Chatterjee K, Schwaab G, Havenith M. Vibrational Spectroscopy of Benzonitrile-(Water) 1-2 Clusters in Helium Droplets. J Phys Chem A 2021; 125:6954-6963. [PMID: 34355893 DOI: 10.1021/acs.jpca.1c04553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polycyclic aromatic hydrocarbons are considered as primary carriers of the unidentified interstellar bands. The recent discovery of the first interstellar aromatic molecule, benzonitrile (C6H5CN), suggests a repository of aromatic hydrocarbons in the outer earth environment. Herein, we report an infrared (IR) study of benzonitrile-(D2O)n clusters using mass-selective detection in helium nanodroplets. In this work, we use isotopically substituted water, D2O, instead of H2O because of our restricted IR frequency range (2565-3100 cm-1). A comparison of the experimental and predicted spectra computed at the MP2/6-311++G(d,p) level of benzonitrile-(water)1-2 clusters reveals the formation of a unique local minimum structure, which was not detected in previous gas-phase molecular beam experiments. Here, the solvent water forms a nearly linear hydrogen bond (H-bond) with the nitrile nitrogen of benzonitrile, while the previously reported most stable cyclic H-bonded isomer is not observed. This can be rationalized by the stepwise aggregation process of precooled monomers. The addition of a second water molecule results in the formation of two different isomers. In one of the observed isomers, a H-bonded water chain binds linearly to the nitrile nitrogen similar to the monohydrated benzonitrile-water complex. In the other observed isomer, the water dimer forms a ring-type structure, where a H-bonded water dimer simultaneously interacts with the nitrile nitrogen and the adjacent ortho CH group. Finally, we compare the water-binding motif in the neutral benzonitrile-water complex with the corresponding positively and negatively charged benzonitrile-water monohydrates to comprehend the charge-induced alteration of the solvent binding motif.
Collapse
Affiliation(s)
- Jai Khatri
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Tarun Kumar Roy
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Kuntal Chatterjee
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Gerhard Schwaab
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Martina Havenith
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
10
|
Simbizi R, Gahungu G, Nguyen MT. Theoretical investigation of protonated thiophene and two of its nitrile substituted derivatives (2-cyanothiophene and 3-cyanothiophene). Phys Chem Chem Phys 2020; 22:24735-24743. [PMID: 33107518 DOI: 10.1039/d0cp03154b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theoretical and experimental spectroscopic data for protonated cyano-thiophenes (R-CNH+ with R = C4H3S), which are needed for their interstellar search and/or detection, are still lacking in the literature. Considering the high abundance and reactivity of H3+ in the interstellar medium (ISM), a quantum chemical investigation on protonated thiophene and two of its nitrile-substituted derivatives (2-cyanothiophene and 3-cyanothiophene) is undertaken for their characterization. The geometrical structures for the title species are calculated at the M06-2X/6-31G(d,p) level of theory, followed by an empirical correction for systematic errors. At the same level of theory, IR and Raman spectra are explored and the rotational parameters are calculated. The proton affinity (PA) of R-CN and the enthalpy, entropy and Gibbs free energy changes (ΔrH, ΔrS and ΔrG) of the reactions producing R-CNH+ are computed at the G2(MP2) and G3B3 levels of theory and at different temperatures. The PA calculations show that the protonation favors the nitrogen atom, while ΔrH, ΔrS, and ΔrG reveal the spontaneous reactions producing R-CNH+ and their neutral forms. In addition, quadrupole hyperfine structures are predicted, while the region where the brightest lines fall at different temperatures is discussed. These results are expected to assist astrophysicists and astrochemists in the search for new species in the ISM.
Collapse
Affiliation(s)
- René Simbizi
- Département de Physique, Faculté des Sciences Université du Burundi, B.P. 2700 Bujumbura, Burundi.
| | | | | |
Collapse
|
11
|
Chatterjee K, Dopfer O. Spectroscopic identification of fragment ions of DNA/RNA building blocks: the case of pyrimidine. Phys Chem Chem Phys 2020; 22:17275-17290. [PMID: 32685941 DOI: 10.1039/d0cp02919j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pyrimidine (Pym, 1,3-diazine, 1,3-diazabenzene) is an important N-heterocyclic building block of nucleobases. Understanding the structures of its fragment and precursor ions provides insight into its prebiotic and abiotic synthetic route. The long-standing controversial debate about the structures of the primary fragment ions of the Pym+ cation (C4H4N2+, m/z 80) resulting from loss of HCN, C3H3N+ (m/z 53), is closed herein with the aid of a combined approach utilizing infrared photodissociation (IRPD) spectroscopy in the CH and NH stretch ranges (νCH/NH) and density functional theory (DFT) calculations. IRPD spectra of cold Ar/N2-tagged fragment ions reveal that the C3H3N+ population is dominated by cis-/trans-HCCHNCH+ ions (∼90%) along with a minor contribution of the most stable H2CCCNH+ and cis-/trans-HCCHCNH+ isomers (∼10%). We also spectroscopically confirm that the secondary fragment resulting from further loss of HCN, C2H2+ (m/z 26), is the acetylene cation (HCCH+). The spectroscopic characterization of the identified C3H3N+ isomers and their hydrogen-bonded dimers with Ar and N2 provides insight into the acidity of their CH and NH groups. Finally, the vibrational properties of Pym+ in the 3 μm range are probed by IRPD of Pym+-(N2)1-2 clusters, which shows a high π-binding affinity of Pym+ toward a nonpolar hydrophobic ligand. Its νCH spectrum confirms the different acidity of the three nonequivalent CH groups.
Collapse
Affiliation(s)
- Kuntal Chatterjee
- Institut für Optik und Atomare Physik, TU Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, TU Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| |
Collapse
|
12
|
Borocci S, Grandinetti F, Sanna N. Complexes of the noble-gas atoms with unsaturated ions: A theoretical investigation on the exemplary (H2C = NH2+)Ar. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Chatterjee K, Dopfer O. Microhydration of protonated biomolecular building blocks: protonated pyrimidine. Phys Chem Chem Phys 2020; 22:13092-13107. [PMID: 32490447 DOI: 10.1039/d0cp02110e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protonation and hydration of biomolecules govern their structure, conformation, and function. Herein, we explore the microhydration structure in mass-selected protonated pyrimidine-water clusters (H+Pym-Wn, n = 1-4) by a combination of infrared photodissociation spectroscopy (IRPD) between 2450 and 3900 cm-1 and density functional theory (DFT) calculations at the dispersion-corrected B3LYP-D3/aug-cc-pVTZ level. We further present the IR spectrum of H+Pym-N2 to evaluate the effect of solvent polarity on the intrinsic molecular parameters of H+Pym. Our combined spectroscopic and computational approach unequivocally shows that protonation of Pym occurs at one of the two equivalent basic ring N atoms and that the ligands in H+Pym-L (L = N2 or W) preferentially form linear H-bonds to the resulting acidic NH group. Successive addition of water ligands results in the formation of a H-bonded solvent network which increasingly weakens the NH group. Despite substantial activation of the N-H bond upon microhydration, no intracluster proton transfer occurs up to n = 4 because of the balance of relative proton affinities of Pym and Wn and the involved solvation energies. Comparison to neutral Pym-Wn clusters reveals the drastic effects of protonation on microhydration with respect to both structure and interaction strength.
Collapse
Affiliation(s)
- Kuntal Chatterjee
- Institut für Optik und Atomare Physik, TU Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | | |
Collapse
|
14
|
Chatterjee K, Dopfer O. Protonation of Naphthalene–(Water)n Nanoclusters: Intracluster Proton Transfer to Hydration Shell Revealed by Infrared Photodissociation Spectroscopy. J Phys Chem A 2020; 124:1134-1151. [DOI: 10.1021/acs.jpca.9b11779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kuntal Chatterjee
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| |
Collapse
|
15
|
Miyazaki M, Chatterjee K, Hattori K, Otsuka R, Ishiuchi SI, Dopfer O, Fujii M. Ionization-Induced π → H Site Switching in Resorcinol-Ar n ( n = 1 and 2) Clusters Probed by Infrared Spectroscopy. J Phys Chem A 2019; 123:6828-6839. [PMID: 31304754 DOI: 10.1021/acs.jpca.9b04460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infrared (IR) spectra of resorcinol (Rs)-Arn clusters (n = 1 and 2) have been measured in the neutral and cationic ground states (S0 and D0) by IR dip and resonance-enhanced multiphoton ionization (REMPI)-IR spectroscopy. The OH stretching vibrations in S0 keep their frequency regardless of the number of Ar atoms and the conformation of the OH groups in Rs (rotamers RsI and RsII), demonstrating that the Ar atoms are attached to the aromatic π-ring (π-bound structure) in S0. In the D0 state, the IR spectra of Rs+-Arn reflect the difference in the Rs conformations (RsI+ and RsII+). For n = 1, the IR spectra of both rotamers are almost the same as those of the corresponding monomer cations, indicating that Ar ligands essentially remain π-bonded after ionization. In contrast, the IR spectra of Rs+-Ar2 show hydrogen-bonded and free OH stretching vibrations, demonstrating that for a significant fraction of the clusters, the Ar atoms migrate from the π-bound site to the OH groups. The ionization-induced π → H migration yields are not unity for both rotamers RsI+-Ar2 and RsII+-Ar2. This result is in sharp contrast to phenol+-Ar2, in which one of the Ar atoms migrates to the OH site with 100% yield. The mechanism leading to the nonunity yield in Rs+-Ar2 is discussed in terms of the number of OH binding sites and Franck-Condon factors. The ionization excess energy dependence of the IR spectra of Rs+-Ar2 and its Rs+-Ar fragments is discussed in terms of the Ar binding energies estimated from the photoionization and photodissociation efficiency spectra.
Collapse
Affiliation(s)
- Mitsuhiko Miyazaki
- Institut für Optik und Atomare Physik , Technische Universität Berlin , Hardenbergstrasse 36 , 10623 Berlin , Germany
| | - Kuntal Chatterjee
- Institut für Optik und Atomare Physik , Technische Universität Berlin , Hardenbergstrasse 36 , 10623 Berlin , Germany
| | | | | | | | - Otto Dopfer
- Institut für Optik und Atomare Physik , Technische Universität Berlin , Hardenbergstrasse 36 , 10623 Berlin , Germany
| | | |
Collapse
|
16
|
Affiliation(s)
- Kuntal Chatterjee
- Institut für Optik und Atomare Physik, TU Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, TU Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
17
|
Mason KA, Pearcy AC, Hamid AM, El-Shall MS. Structures of benzonitrile dimer radical cation and the protonated dimer: Observation of hydronium ion core solvated by benzonitrile molecules. J Chem Phys 2019; 150:124303. [DOI: 10.1063/1.5094648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kyle A. Mason
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| | - Adam C. Pearcy
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| | - Ahmed M. Hamid
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| | - M. Samy El-Shall
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| |
Collapse
|
18
|
Chatterjee K, Matsumoto Y, Dopfer O. Aromatic Charge Resonance Interaction Probed by Infrared Spectroscopy. Angew Chem Int Ed Engl 2019; 58:3351-3355. [DOI: 10.1002/anie.201811432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/22/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Kuntal Chatterjee
- Institut für Optik und Atomare PhysikTechnische Universität Berlin Hardenbergstr. 36 10623 Berlin Germany
| | - Yoshiteru Matsumoto
- Department of ChemistryFaculty of ScienceShizuoka University 836 Ohya, Suruga Shizuoka 422-8529 Japan
| | - Otto Dopfer
- Institut für Optik und Atomare PhysikTechnische Universität Berlin Hardenbergstr. 36 10623 Berlin Germany
| |
Collapse
|
19
|
Chatterjee K, Dopfer O. Unraveling the protonation site of oxazole and solvation with hydrophobic ligands by infrared photodissociation spectroscopy. Phys Chem Chem Phys 2019; 21:15157-15166. [DOI: 10.1039/c9cp02787d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infrared spectroscopy reveals exclusive N-protonation of the oxazole ring and bifurcated or linear hydrogen bonding with hydrophobic N2and Ar ligands.
Collapse
Affiliation(s)
| | - Otto Dopfer
- Institut für Optik und Atomare Physik
- TU Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
20
|
Chatterjee K, Dopfer O. Intracluster proton transfer in protonated benzonitrile–(H2O)n≤6 nanoclusters: hydrated hydronium core for n ≥ 2. Phys Chem Chem Phys 2019; 21:25226-25246. [DOI: 10.1039/c9cp05042f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infrared spectroscopy and density functional theory calculations of protonated benzonitrile–(H2O)n clusters reveal proton transfer to solvent for n ≥ 2 and the drastic effects of the aromatic dopant molecule on the network of H+(H2O)n+1.
Collapse
Affiliation(s)
- Kuntal Chatterjee
- Institut für Optik und Atomare Physik
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Otto Dopfer
- Institut für Optik und Atomare Physik
- Technische Universität Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
21
|
Chatterjee K, Matsumoto Y, Dopfer O. Aromatic Charge Resonance Interaction Probed by Infrared Spectroscopy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kuntal Chatterjee
- Institut für Optik und Atomare PhysikTechnische Universität Berlin Hardenbergstr. 36 10623 Berlin Germany
| | - Yoshiteru Matsumoto
- Department of ChemistryFaculty of ScienceShizuoka University 836 Ohya, Suruga Shizuoka 422-8529 Japan
| | - Otto Dopfer
- Institut für Optik und Atomare PhysikTechnische Universität Berlin Hardenbergstr. 36 10623 Berlin Germany
| |
Collapse
|
22
|
Chatterjee K, Dopfer O. Switching of binding site from nonpolar to polar ligands toward cationic benzonitrile revealed by infrared spectroscopy. J Chem Phys 2018; 149:174315. [DOI: 10.1063/1.5057430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kuntal Chatterjee
- Institut für Optik und Atomare Physik, TU Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, TU Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|