1
|
Dannenmann M, Klenner F, Bönigk J, Pavlista M, Napoleoni M, Hillier J, Khawaja N, Olsson-Francis K, Cable ML, Malaska MJ, Abel B, Postberg F. Toward Detecting Biosignatures of DNA, Lipids, and Metabolic Intermediates from Bacteria in Ice Grains Emitted by Enceladus and Europa. ASTROBIOLOGY 2023; 23:60-75. [PMID: 36454287 DOI: 10.1089/ast.2022.0063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The reliable identification of biosignatures is key to the search for life elsewhere. On ocean worlds like Enceladus or Europa, this can be achieved by impact ionization mass spectrometers, such as the SUrface Dust Analyzer (SUDA) on board NASA's upcoming Europa Clipper mission. During spacecraft flybys, these instruments can sample ice grains formed from subsurface water and emitted by these moons. Previous laboratory analog experiments have demonstrated that SUDA-type instruments could identify amino acids, fatty acids, and peptides in ice grains and discriminate between their abiotic and biotic origins. Here, we report experiments simulating impact ionization mass spectra of ice grains containing DNA, lipids, and metabolic intermediates extracted from two bacterial cultures: Escherichia coli and Sphingopyxis alaskensis. Salty Enceladan or Europan ocean waters were simulated using matrices with different NaCl concentrations. Characteristic mass spectral signals, such as DNA nucleobases, are clearly identifiable at part-per-million-level concentrations. Mass spectra of all substances exhibit unambiguous biogenic patterns, which in some cases show significant differences between the two bacterial species. Sensitivity to the biosignatures decreases with increasing matrix salinity. The experimental parameters indicate that future impact ionization mass spectrometers will be most sensitive to the investigated biosignatures for ice grain encounter speeds of 4-6 km/s.
Collapse
Affiliation(s)
- Marie Dannenmann
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Fabian Klenner
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Janine Bönigk
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Miriam Pavlista
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Maryse Napoleoni
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Jon Hillier
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Nozair Khawaja
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Karen Olsson-Francis
- AstrobiologyOU, Faculty of Science, Technology, Engineering & Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Morgan L Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Michael J Malaska
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Bernd Abel
- Leibniz-Institute of Surface Engineering (IOM), Leipzig, Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Leipzig, Germany
| | - Frank Postberg
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
MacKenzie SM, Neveu M, Davila AF, Lunine JI, Cable ML, Phillips-Lander CM, Eigenbrode JL, Waite JH, Craft KL, Hofgartner JD, McKay CP, Glein CR, Burton D, Kounaves SP, Mathies RA, Vance SD, Malaska MJ, Gold R, German CR, Soderlund KM, Willis P, Freissinet C, McEwen AS, Brucato JR, de Vera JPP, Hoehler TM, Heldmann J. Science Objectives for Flagship-Class Mission Concepts for the Search for Evidence of Life at Enceladus. ASTROBIOLOGY 2022; 22:685-712. [PMID: 35290745 PMCID: PMC9233532 DOI: 10.1089/ast.2020.2425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/21/2022] [Indexed: 05/07/2023]
Abstract
Cassini revealed that Saturn's Moon Enceladus hosts a subsurface ocean that meets the accepted criteria for habitability with bio-essential elements and compounds, liquid water, and energy sources available in the environment. Whether these conditions are sufficiently abundant and collocated to support life remains unknown and cannot be determined from Cassini data. However, thanks to the plume of oceanic material emanating from Enceladus' south pole, a new mission to Enceladus could search for evidence of life without having to descend through kilometers of ice. In this article, we outline the science motivations for such a successor to Cassini, choosing the primary science goal to be determining whether Enceladus is inhabited and assuming a resource level equivalent to NASA's Flagship-class missions. We selected a set of potential biosignature measurements that are complementary and orthogonal to build a robust case for any life detection result. This result would be further informed by quantifications of the habitability of the environment through geochemical and geophysical investigations into the ocean and ice shell crust. This study demonstrates that Enceladus' plume offers an unparalleled opportunity for in situ exploration of an Ocean World and that the planetary science and astrobiology community is well equipped to take full advantage of it in the coming decades.
Collapse
Affiliation(s)
| | - Marc Neveu
- Department of Astronomy, University of Maryland, College Park, Maryland, USA
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Alfonso F. Davila
- Division of Space Science and Astrobiology, NASA Ames Research Center, Moffett Field, California, USA
| | - Jonathan I. Lunine
- Department of Astronomy, Cornell University, Ithaca, New York, USA
- Carl Sagan Institute, Cornell University, Ithaca, New York, USA
| | - Morgan L. Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Jennifer L. Eigenbrode
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - J. Hunter Waite
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas, USA
| | - Kate L. Craft
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
| | - Jason D. Hofgartner
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Chris P. McKay
- Division of Space Science and Astrobiology, NASA Ames Research Center, Moffett Field, California, USA
| | - Christopher R. Glein
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas, USA
| | - Dana Burton
- Department of Anthropology, George Washington University, Washington, District of Columbia, USA
| | | | - Richard A. Mathies
- Chemistry Department and Space Sciences Laboratory, University of California, Berkeley, Berkeley, California, USA
| | - Steven D. Vance
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Michael J. Malaska
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Robert Gold
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
| | - Christopher R. German
- Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Krista M. Soderlund
- Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Peter Willis
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Alfred S. McEwen
- Lunar and Planetary Lab, University of Arizona, Tucson, Arizona, USA
| | | | - Jean-Pierre P. de Vera
- Space Operations and Astronaut Training, MUSC, German Aerospace Center (DLR), Cologne, Germany
| | - Tori M. Hoehler
- Division of Space Science and Astrobiology, NASA Ames Research Center, Moffett Field, California, USA
| | - Jennifer Heldmann
- Division of Space Science and Astrobiology, NASA Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
3
|
Joliat J, Picaud S, Patt A, Jedlovszky P. Adsorption of C2-C5 alcohols on ice. A grand canonical Monte Carlo simulation study. J Chem Phys 2022; 156:224702. [DOI: 10.1063/5.0096013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, we report Grand Canonical Monte Carlo simulations performed to characterize the adsorption of four linear alcohol molecules, comprising between 2 and 5 carbon atoms (namely, ethanol, n-propanol, n-butanol, and n-pentanol) on crystalline ice in a temperature range typical of the Earth's troposphere.The adsorption details analysed at 228 K show that, at low coverage of the ice surface, the polar head of the adsorbed molecules tend to optimize its hydrogen bonding with the surrounding water, whereas the aliphatic chain lie more or less parallel to the ice surface. With increasing coverage, the lateral interactions between the adsorbed alcohol molecules lead to the reorientation of the aliphatic chains which tend to become perpendicular to the surface, the adsorbed molecules pointing thus their terminal methyl group up to the gas phase. When compared to the experimental data, the simulated and measured isotherms show a very good agreement, although a small temperature shift between simulations and experiments could be inferred from simulations at various temperatures. In addition, this agreement appears to be better for ethanol and n-propanol than for n-butanol and n-pentanol, especially at the highest pressures investigated, pointing to a possible slight underestimation of the lateral interactions between the largest alcohol molecules by the interaction potential model used. Nevertheless, the global accuracy of the approach used, as tested in tropospheric conditions, opens the way for its use in modeling studies also relevant to another (e.g., astrophysical) context.
Collapse
Affiliation(s)
| | - Sylvain Picaud
- U.F.R. des Sciences et des techniques, Institut UTINAM, France
| | | | - Pál Jedlovszky
- Department of Chemistry, Eszterhazy Karoly University, Hungary
| |
Collapse
|
4
|
Salter TL, Magee BA, Waite JH, Sephton MA. Mass Spectrometric Fingerprints of Bacteria and Archaea for Life Detection on Icy Moons. ASTROBIOLOGY 2022; 22:143-157. [PMID: 35021862 DOI: 10.1089/ast.2020.2394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The icy moons of the outer Solar System display evidence of subsurface liquid water and, therefore, potential habitability for life. Flybys of Saturn's moon Enceladus by the Cassini spacecraft have provided measurements of material from plumes that suggest hydrothermal activity and the presence of organic matter. Jupiter's moon Europa may have similar plumes and is the target for the forthcoming Europa Clipper mission that carries a high mass resolution and high sensitivity mass spectrometer, called the MAss Spectrometer for Planetary EXploration (MASPEX), with the capability for providing detailed characterization of any organic materials encountered. We have performed a series of experiments using pyrolysis-gas chromatography-mass spectrometry to characterize the mass spectrometric fingerprints of microbial life. A range of extremophile Archaea and Bacteria have been analyzed and the laboratory data converted to MASPEX-type signals. Molecular characteristics of protein, carbohydrate, and lipid structures were detected, and the characteristic fragmentation patterns corresponding to these different biological structures were identified. Protein pyrolysis fragments included phenols, nitrogen heterocycles, and cyclic dipeptides. Oxygen heterocycles, such as furans, were detected from carbohydrates. Our data reveal how mass spectrometry on Europa Clipper can aid in the identification of the presence of life, by looking for characteristic bacterial fingerprints that are similar to those from simple Earthly organisms.
Collapse
Affiliation(s)
- Tara L Salter
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Brian A Magee
- Space Science and Engineering Division, Southwest Research Institute, Boulder, Colorado, USA
| | - J Hunter Waite
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas, USA
| | - Mark A Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Joliat J, Patt A, Simon JM, Picaud S. Adsorption of organic compounds at the surface of Enceladus’ ice grains. A grand canonical Monte Carlo simulation study. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1900571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Julien Joliat
- Institut UTINAM, UMR 6213, CNRS, Université Bourgogne Franche-Comté, Besançon, France
| | - Antoine Patt
- Institut UTINAM, UMR 6213, CNRS, Université Bourgogne Franche-Comté, Besançon, France
| | - Jean Marc Simon
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS, Université de Bourgogne Franche-Comté, Cedex Dijon, France
| | - Sylvain Picaud
- Institut UTINAM, UMR 6213, CNRS, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
6
|
Klenner F, Postberg F, Hillier J, Khawaja N, Cable ML, Abel B, Kempf S, Glein CR, Lunine JI, Hodyss R, Reviol R, Stolz F. Discriminating Abiotic and Biotic Fingerprints of Amino Acids and Fatty Acids in Ice Grains Relevant to Ocean Worlds. ASTROBIOLOGY 2020; 20:1168-1184. [PMID: 32493049 DOI: 10.1089/ast.2019.2188] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Identifying and distinguishing between abiotic and biotic signatures of organic molecules such as amino acids and fatty acids is key to the search for life on extraterrestrial ocean worlds. Impact ionization mass spectrometers can potentially achieve this by sampling water ice grains formed from ocean water and ejected by moons such as Enceladus and Europa, thereby exploring the habitability of their subsurface oceans in spacecraft flybys. Here, we extend previous high-sensitivity laser-based analog experiments of biomolecules in pure water to investigate the mass spectra of amino acids and fatty acids at simulated abiotic and biotic relative abundances. To account for the complex background matrix expected to emerge from a salty Enceladean ocean that has been in extensive chemical exchange with a carbonaceous rocky core, other organic and inorganic constituents are added to the biosignature mixtures. We find that both amino acids and fatty acids produce sodiated molecular peaks in salty solutions. Under the soft ionization conditions expected for low-velocity (2-6 km/s) encounters of an orbiting spacecraft with ice grains, the unfragmented molecular spectral signatures of amino acids and fatty acids accurately reflect the original relative abundances of the parent molecules within the source solution, enabling characteristic abiotic and biotic relative abundance patterns to be identified. No critical interferences with other abiotic organic compounds were observed. Detection limits of the investigated biosignatures under Enceladus-like conditions are salinity dependent (decreasing sensitivity with increasing salinity), at the μM or nM level. The survivability and ionization efficiency of large organic molecules during impact ionization appear to be significantly improved when they are protected by a frozen water matrix. We infer from our experimental results that encounter velocities of 4-6 km/s are most appropriate for impact ionization mass spectrometers to detect and discriminate between abiotic and biotic signatures.
Collapse
Affiliation(s)
- Fabian Klenner
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
- Institute of Earth Sciences, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Frank Postberg
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
- Institute of Earth Sciences, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Jon Hillier
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Nozair Khawaja
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
- Institute of Earth Sciences, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Morgan L Cable
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Bernd Abel
- Leibniz-Institute of Surface Engineering, Leipzig, Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Universität Leipzig, Leipzig, Germany
| | - Sascha Kempf
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA
| | - Christopher R Glein
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas, USA
| | - Jonathan I Lunine
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Astronomy and Carl Sagan Institute, Cornell University, Ithaca, New York, USA
| | - Robert Hodyss
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - René Reviol
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
- Institute of Earth Sciences, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Ferdinand Stolz
- Leibniz-Institute of Surface Engineering, Leipzig, Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Universität Leipzig, Leipzig, Germany
| |
Collapse
|