1
|
Brandt PC, Provornikova E, Bale SD, Cocoros A, DeMajistre R, Dialynas K, Elliott HA, Eriksson S, Fields B, Galli A, Hill ME, Horanyi M, Horbury T, Hunziker S, Kollmann P, Kinnison J, Fountain G, Krimigis SM, Kurth WS, Linsky J, Lisse CM, Mandt KE, Magnes W, McNutt RL, Miller J, Moebius E, Mostafavi P, Opher M, Paxton L, Plaschke F, Poppe AR, Roelof EC, Runyon K, Redfield S, Schwadron N, Sterken V, Swaczyna P, Szalay J, Turner D, Vannier H, Wimmer-Schweingruber R, Wurz P, Zirnstein EJ. Future Exploration of the Outer Heliosphere and Very Local Interstellar Medium by Interstellar Probe. SPACE SCIENCE REVIEWS 2023; 219:18. [PMID: 36874191 PMCID: PMC9974711 DOI: 10.1007/s11214-022-00943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
A detailed overview of the knowledge gaps in our understanding of the heliospheric interaction with the largely unexplored Very Local Interstellar Medium (VLISM) are provided along with predictions of with the scientific discoveries that await. The new measurements required to make progress in this expanding frontier of space physics are discussed and include in-situ plasma and pick-up ion measurements throughout the heliosheath, direct sampling of the VLISM properties such as elemental and isotopic composition, densities, flows, and temperatures of neutral gas, dust and plasma, and remote energetic neutral atom (ENA) and Lyman-alpha (LYA) imaging from vantage points that can uniquely discern the heliospheric shape and bring new information on the interaction with interstellar hydrogen. The implementation of a pragmatic Interstellar Probe mission with a nominal design life to reach 375 Astronomical Units (au) with likely operation out to 550 au are reported as a result of a 4-year NASA funded mission study.
Collapse
Affiliation(s)
- P. C. Brandt
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - E. Provornikova
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - S. D. Bale
- University of California Berkeley, Berkeley, CA USA
| | - A. Cocoros
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - R. DeMajistre
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - K. Dialynas
- Office of Space Research and Technology, Academy of Athens, Athens, 10679 Greece
| | | | - S. Eriksson
- Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, Boulder, CO USA
| | - B. Fields
- University of Illinois Urbana-Champaign, Urbana, IL USA
| | - A. Galli
- University of Bern, Bern, Switzerland
| | - M. E. Hill
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - M. Horanyi
- Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, Boulder, CO USA
| | | | | | - P. Kollmann
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - J. Kinnison
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - G. Fountain
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - S. M. Krimigis
- Office of Space Research and Technology, Academy of Athens, Athens, 10679 Greece
| | | | - J. Linsky
- University of Colorado Boulder, Boulder, CO USA
| | - C. M. Lisse
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - K. E. Mandt
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - W. Magnes
- Space Research Institute, Austrian Academy of Sciences, Graz, Austria
| | - R. L. McNutt
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | | | - E. Moebius
- University of New Hampshire, Durham, NH USA
| | - P. Mostafavi
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - M. Opher
- Boston University, Boston, MA USA
| | - L. Paxton
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - F. Plaschke
- Technical University Braunschweig, Braunschweig, Germany
| | - A. R. Poppe
- University of California Berkeley, Berkeley, CA USA
| | - E. C. Roelof
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - K. Runyon
- Planetary Science Institute, Tucson, AZ USA
| | | | | | | | | | - J. Szalay
- Princeton University, Princeton, NJ USA
| | - D. Turner
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | | | | | - P. Wurz
- University of Bern, Bern, Switzerland
| | | |
Collapse
|
2
|
Galli A, Baliukin II, Bzowski M, Izmodenov VV, Kornbleuth M, Kucharek H, Möbius E, Opher M, Reisenfeld D, Schwadron NA, Swaczyna P. The Heliosphere and Local Interstellar Medium from Neutral Atom Observations at Energies Below 10 keV. SPACE SCIENCE REVIEWS 2022; 218:31. [PMID: 35673597 PMCID: PMC9165285 DOI: 10.1007/s11214-022-00901-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/05/2022] [Indexed: 05/08/2023]
Abstract
As the heliosphere moves through the surrounding interstellar medium, a fraction of the interstellar neutral helium, hydrogen, and heavier species crossing the heliopause make it to the inner heliosphere as neutral atoms with energies ranging from few eV to several hundred eV. In addition, energetic neutral hydrogen atoms originating from solar wind protons and from pick-up ions are created through charge-exchange with interstellar atoms. This review summarizes all observations of heliospheric energetic neutral atoms and interstellar neutrals at energies below 10 keV. Most of these data were acquired with the Interstellar Boundary Explorer launched in 2008. Among many other IBEX breakthroughs, it provided the first ever all-sky maps of energetic neutral atoms from the heliosphere and enabled the science community to measure in-situ interstellar neutral hydrogen, oxygen, and neon for the first time. These observations have revolutionized and keep challenging our understanding of the heliosphere shaped by the combined forces of the local interstellar flow, the local interstellar magnetic field, and the time-dependent solar wind.
Collapse
Affiliation(s)
- André Galli
- Physics Institute, University of Bern, Bern, Switzerland
| | - Igor I. Baliukin
- Space Research Institute of Russian Academy of Sciences, Moscow, Russia
- Moscow Center for Fundamental and Applied Mathematics, Lomonosov Moscow State University, Moscow, Russia
| | - Maciej Bzowski
- Space Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Vladislav V. Izmodenov
- Space Research Institute of Russian Academy of Sciences, Moscow, Russia
- Moscow Center for Fundamental and Applied Mathematics, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | | | | | | - Paweł Swaczyna
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ USA
| |
Collapse
|