1
|
Realini FM, Escobedo VM, Ueno AC, Bastías DA, Schardl CL, Biganzoli F, Gundel PE. Anti-herbivory defences delivered by Epichloë fungal endophytes: a quantitative review of alkaloid concentration variation among hosts and plant parts. ANNALS OF BOTANY 2024; 133:509-520. [PMID: 38320313 PMCID: PMC11037487 DOI: 10.1093/aob/mcae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND AND AIMS In the subfamily Poöideae (Poaceae), certain grass species possess anti-herbivore alkaloids synthesized by fungal endophytes that belong to the genus Epichloë (Clavicipitaceae). The protective role of these symbiotic endophytes can vary, depending on alkaloid concentrations within specific plant-endophyte associations and plant parts. METHODS We conducted a literature review to identify articles containing alkaloid concentration data for various plant parts in six important pasture species, Lolium arundinaceum, Lolium perenne, Lolium pratense, Lolium multiflorum|Lolium rigidum and Festuca rubra, associated with their common endophytes. We considered the alkaloids lolines (1-aminopyrrolizidines), peramine (pyrrolopyrazines), ergovaline (ergot alkaloids) and lolitrem B (indole-diterpenes). While all these alkaloids have shown bioactivity against insect herbivores, ergovaline and lolitrem B are harmful for mammals. KEY RESULTS Loline alkaloid levels were higher in the perennial grasses L. pratense and L. arundinaceum compared to the annual species L. multiflorum and L. rigidum, and higher in reproductive tissues than in vegetative structures. This is probably due to the greater biomass accumulation in perennial species that can result in higher endophyte mycelial biomass. Peramine concentrations were higher in L. perenne than in L. arundinaceum and not affected by plant part. This can be attributed to the high within-plant mobility of peramine. Ergovaline and lolitrem B, both hydrophobic compounds, were associated with plant parts where fungal mycelium is usually present, and their concentrations were higher in plant reproductive tissues. Only loline alkaloid data were sufficient for below-ground tissue analyses and concentrations were lower than in above-ground parts. CONCLUSIONS Our study provides a comprehensive synthesis of fungal alkaloid variation across host grasses and plant parts, essential for understanding the endophyte-conferred defence extent. The patterns can be understood by considering endophyte growth within the plant and alkaloid mobility. Our study identifies research gaps, including the limited documentation of alkaloid presence in roots and the need to investigate the influence of different environmental conditions.
Collapse
Affiliation(s)
- Florencia M Realini
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Departamento de Ecología, Genética y Evolución, Laboratorio de Citogenética y Evolución (LaCyE), Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Ecología, Genética y Evolución (IEGEBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Víctor M Escobedo
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Campus Talca, Chile
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Andrea C Ueno
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Campus Talca, Chile
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Daniel A Bastías
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | | | - Fernando Biganzoli
- Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro E Gundel
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
2
|
Epichloë scottii sp. nov., a new endophyte isolated from Melica uniflora is the missing ancestor of Epichloë disjuncta. IMA Fungus 2022; 13:2. [PMID: 35109929 PMCID: PMC8812020 DOI: 10.1186/s43008-022-00088-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Here we describe a new, haploid and stroma forming species within the genus Epichloë, as Epichloë scottii sp. nov. The fungus was isolated from Melica uniflora growing in Bad Harzburg, Germany. Phylogenetic reconstruction using a combined dataset of the tubB and tefA genes strongly support that E. scottii is a distinct species and the so far unknown ancestor species of the hybrid E. disjuncta. A distribution analysis showed a high infection rate in close vicinity of the initial sampling site and only two more spots with low infection rates. Genetic variations in key genes required for alkaloid production suggested that E. scottii sp. nov. might not be capable of producing any of the major alkaloids including ergot alkaloid, loline, indole-diterpene and peramine. All isolates and individuals found in the distribution analysis were identified as mating-type B explaining the lack of mature stromata during this study. We further release a telomere-to-telomere de novo assembly of all seven chromosomes and the mitogenome of E. scottii sp. nov.
Collapse
|
3
|
Casas C, Gundel PE, Deliens E, Iannone LJ, García Martinez G, Vignale MV, Schnyder H. Loss of fungal symbionts at the arid limit of the distribution range in a native Patagonian grass—Resource eco‐physiological relations. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cecilia Casas
- Facultad de Agronomía Departamento de Recursos Naturales y Ambiente Universidad de Buenos Aires Cátedra de Edafología Buenos Aires Argentina
- Facultad de Agronomía IFEVA Universidad de Buenos Aires CONICET Buenos Aires Argentina
- Lehrstuhl für Grünlandlehre Technische Universität München Freising‐Weihenstephan Germany
| | - Pedro E. Gundel
- Facultad de Agronomía IFEVA Universidad de Buenos Aires CONICET Buenos Aires Argentina
- Instituto de Ciencias Biológicas Universidad de Talca Talca Chile
| | - Eluney Deliens
- Facultad de Agronomía Departamento de Recursos Naturales y Ambiente Universidad de Buenos Aires Cátedra de Edafología Buenos Aires Argentina
| | - Leopoldo J. Iannone
- Facultad de Ciencias Exactas y Naturales Departamento de Biodiversidad y Biología Experimental Laboratorio de Micología Fitopatología y Liquenología Universidad de Buenos Aires Buenos Aires Argentina
- Instituto de Micología y Botánica (INMIBO) CONICET—Universidad de Buenos Aires Buenos Aires Argentina
| | | | - María V. Vignale
- Facultad de Ciencias Exactas y Naturales Departamento de Biodiversidad y Biología Experimental Laboratorio de Micología Fitopatología y Liquenología Universidad de Buenos Aires Buenos Aires Argentina
- Instituto de Micología y Botánica (INMIBO) CONICET—Universidad de Buenos Aires Buenos Aires Argentina
- Facultad de Ciencias Exactas Químicas y Naturales Instituto de Biotecnología Misiones (InBioMis) Universidad Nacional de Misiones e Instituto Misionero de Biodiversidad (IMiBio) Posadas Argentina
| | - Hans Schnyder
- Lehrstuhl für Grünlandlehre Technische Universität München Freising‐Weihenstephan Germany
| |
Collapse
|
4
|
Wiewióra B, Żurek G. The Response of the Associations of Grass and Epichloë Endophytes to the Increased Content of Heavy Metals in the Soil. PLANTS (BASEL, SWITZERLAND) 2021; 10:429. [PMID: 33668289 PMCID: PMC7996287 DOI: 10.3390/plants10030429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/04/2021] [Accepted: 02/20/2021] [Indexed: 12/04/2022]
Abstract
The rapid development of civilization increases the area of land exposed to the accumulation of toxic compounds, including heavy metals, both in water and soil. Endophytic fungi associated with many species of grasses are related to the resistance of plants to biotic and abiotic stresses, which include heavy metals. This paper reviews different aspects of symbiotic interactions between grass species and fungal endophytes from the genera Epichloë with special attention paid to the elevated concentration of heavy metals in growing substrates. The evidence shows the high resistance variation of plant endophyte symbiosis on the heavy metals in soil outcome. The fungal endophytes confer high heavy metal tolerance, which is the key feature in its practical application with their host plants, i.e., grasses in phytoremediation.
Collapse
Affiliation(s)
- Barbara Wiewióra
- Department of Seed Science and Technology, Plant Breeding and Acclimatization Institute-NRI, Radzików, 05-870 Błonie, Poland
| | - Grzegorz Żurek
- Department of Grasses, Legumes and Energy Plants, Plant Breeding and Acclimatization Institute-NRI, Radzików, 05-870 Błonie, Poland;
| |
Collapse
|
5
|
Caradus JR, Johnson LJ. Epichloë Fungal Endophytes-From a Biological Curiosity in Wild Grasses to an Essential Component of Resilient High Performing Ryegrass and Fescue Pastures. J Fungi (Basel) 2020; 6:E322. [PMID: 33261217 PMCID: PMC7720123 DOI: 10.3390/jof6040322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
The relationship between Epichloë endophytes found in a wide range of temperate grasses spans the continuum from antagonistic to mutualistic. The diversity of asexual mutualistic types can be characterised by the types of alkaloids they produce in planta. Some of these are responsible for detrimental health and welfare issues of ruminants when consumed, while others protect the host plant from insect pests and pathogens. In many temperate regions they are an essential component of high producing resilient tall fescue and ryegrass swards. This obligate mutualism between fungus and host is a seed-borne technology that has resulted in several commercial products being used with high uptake rates by end-user farmers, particularly in New Zealand and to a lesser extent Australia and USA. However, this has not happened by chance. It has been reliant on multi-disciplinary research teams undertaking excellent science to understand the taxonomic relationships of these endophytes, their life cycle, symbiosis regulation at both the cellular and molecular level, and the impact of secondary metabolites, including an understanding of their mammalian toxicity and bioactivity against insects and pathogens. Additionally, agronomic trials and seed biology studies of these microbes have all contributed to the delivery of robust and efficacious products. The supply chain from science, through seed companies and retailers to the end-user farmer needs to be well resourced providing convincing information on the efficacy and ensuring effective quality control to result in a strong uptake of these Epichloë endophyte technologies in pastoral agriculture.
Collapse
Affiliation(s)
- John R. Caradus
- Grasslanz Technology Ltd., Palmerston North PB11008, New Zealand
| | | |
Collapse
|
6
|
Tian P, Xu W, Li C, Song H, Wang M, Schardl CL, Nan Z. Phylogenetic relationship and taxonomy of a hybrid Epichloë species symbiotic with Festuca sinensis. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01618-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Yi M, Hendricks WQ, Kaste J, Charlton ND, Nagabhyru P, Panaccione DG, Young CA. Molecular identification and characterization of endophytes from uncultivated barley. Mycologia 2018; 110:453-472. [PMID: 29923795 DOI: 10.1080/00275514.2018.1464818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Epichloë species (Clavicipitaceae, Ascomycota) are endophytic symbionts of many cool-season grasses. Many interactions between Epichloë and their host grasses contribute to plant growth promotion, protection from many pathogens and insect pests, and tolerance to drought stress. Resistance to insect herbivores by endophytes associated with Hordeum species has been previously shown to vary depending on the endophyte-grass-insect combination. We explored the genetic and chemotypic diversity of endophytes present in wild Hordeum species. We analyzed seeds of Hordeum bogdanii, H. brevisubulatum, and H. comosum obtained from the US Department of Agriculture's (USDA) National Plant Germplasm System (NPGS), of which some have been reported as endophyte-infected. Using polymerase chain reaction (PCR) with primers specific to Epichloë species, we were able to identify endophytes in seeds from 17 of the 56 Plant Introduction (PI) lines, of which only 9 lines yielded viable seed. Phylogenetic analyses of housekeeping, alkaloid biosynthesis, and mating type genes suggest that the endophytes of the infected PI lines separate into five taxa: Epichloë bromicola, Epichloë tembladerae, and three unnamed interspecific hybrid species. One PI line contained an endophyte that is considered a new taxonomic group, Epichloë sp. HboTG-3 (H. bogdanii Taxonomic Group 3). Phylogenetic analyses of the interspecific hybrid endophytes from H. bogdanii and H. brevisubulatum indicate that these taxa all have an E. bromicola allele but the second allele varies. We verified in planta alkaloid production from the five genotypes yielding viable seed. Morphological characteristics of the isolates from the viable Hordeum species were analyzed for their features in culture and in planta. In the latter, we observed epiphyllous growth and in some cases sporulation on leaves of infected plants.
Collapse
Affiliation(s)
- Mihwa Yi
- a Noble Research Institute, LLC , Ardmore , Oklahoma 73401
| | | | - Joshua Kaste
- a Noble Research Institute, LLC , Ardmore , Oklahoma 73401
| | | | - Padmaja Nagabhyru
- b Department of Plant Pathology , University of Kentucky , Lexington , Kentucky 40546
| | - Daniel G Panaccione
- c Division of Plant and Soil Sciences , West Virginia University , Morgantown , West Virginia 26506
| | | |
Collapse
|
8
|
Shi C, An S, Yao Z, Young CA, Panaccione DG, Lee ST, Schardl CL, Li C. Toxin-producing Epichloë bromicola strains symbiotic with the forage grass Elymus dahuricus in China. Mycologia 2018. [PMID: 29528270 DOI: 10.1080/00275514.2018.1426941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cool-season grasses (Poaceae subfamily Poöideae) are an important forage component for livestock in western China, and many have seed-transmitted symbionts of the genus Epichloë, fungal endophytes that are broadly distributed geographically and in many tribes of the Poöideae. Epichloë strains can produce any of several classes of alkaloids, of which ergot alkaloids and indole-diterpenes can be toxic to mammalian and invertebrate herbivores, whereas lolines and peramine are more selective against invertebrates. The authors characterized genotypes and alkaloid profiles of Epichloë bromicola isolates symbiotic with Elymus dahuricus, an important forage grass in rangelands of China. The endophyte was seed-transmitted and occasionally produced fruiting bodies (stromata), but its sexual state was not observed on this host. The genome sequence of E. bromicola isolate E7626 from El. dahuricus in Xinjiang Province revealed gene sets for peramine, ergot alkaloids, and indole-diterpenes. In multiplex polymerase chain reaction (PCR) screens of El. dahuricus-endophyte isolates from Beijing and two locations in Shanxi Province, most were also positive for these genes. Ergovaline and other ergot alkaloids, terpendoles and other indole-diterpenes, and peramine were confirmed in El. dahuricus plants with E. bromicola. The presence of ergot alkaloids and indole-diterpenes in this grass is a potential concern for managers of grazing livestock.
Collapse
Affiliation(s)
- Chong Shi
- a College of Grassland and Environmental Science, Xinjiang Agricultural University , Urumqi , Xinjiang , China 830052
| | - Shazhou An
- a College of Grassland and Environmental Science, Xinjiang Agricultural University , Urumqi , Xinjiang , China 830052
| | - Zhengpei Yao
- b College of Agriculture, Xinjiang Agricultural University , Urumqi , Xinjiang , China 830052
| | - Carolyn A Young
- c Noble Research Institute , 2510 Sam Noble Parkway, Ardmore , Oklahoma 73401
| | - Daniel G Panaccione
- d Division of Plant and Soil Sciences , West Virginia University , Morgantown , West Virginia 26506-6108
| | - Stephen T Lee
- e Poisonous Plant Research Laboratory, Agricultural Research Service , United States Department of Agriculture , 1150 E. 1400 N., Logan , Utah 84341
| | - Christopher L Schardl
- f Department of Plant Pathology , University of Kentucky , Lexington , Kentucky 40546-0312
| | - Chunjie Li
- g State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University , Lanzhou , Gansu , China 730000
| |
Collapse
|
9
|
Song H, Nan Z, Song Q, Xia C, Li X, Yao X, Xu W, Kuang Y, Tian P, Zhang Q. Advances in Research on Epichloë endophytes in Chinese Native Grasses. Front Microbiol 2016; 7:1399. [PMID: 27656171 PMCID: PMC5013147 DOI: 10.3389/fmicb.2016.01399] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 08/24/2016] [Indexed: 11/24/2022] Open
Abstract
Epichloë fungal endophytes are broadly found in cool-season grasses. The symbiosis between these grasses and Epichloë may improve the abiotic and biotic resistance of the grass plant, but some Epichloë species produce alkaloids that are toxic for livestock. Therefore, it is important to understand the characteristics of the grass-Epichloë s symbiosis so that the beneficial aspects can be preserved and the toxic effects to livestock can be avoided. Since the 1990s, Chinese researchers have conducted a series of studies on grass-Epichloë symbiosis. In this review, we describe the current state of Epichloë endophyte research in Chinese native grasses. We found that more than 77 species of native grasses in China are associated with Epichloë endophytes. In addition, we review the effects of various Epichloë species on native grass responses to abiotic and biotic stress, phylogeny, and alkaloid production. We provide an overview of the study of Epichloë species on native grasses in China and directions for future research.
Collapse
Affiliation(s)
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Saikkonen K, Young CA, Helander M, Schardl CL. Endophytic Epichloë species and their grass hosts: from evolution to applications. PLANT MOLECULAR BIOLOGY 2016; 90:665-75. [PMID: 26542393 PMCID: PMC4819788 DOI: 10.1007/s11103-015-0399-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/26/2015] [Indexed: 05/21/2023]
Abstract
The closely linked fitness of the Epichloë symbiont and the host grass is presumed to align the coevolution of the species towards specialization and mutually beneficial cooperation. Ecological observations demonstrating that Epichloë-grass symbioses can modulate grassland ecosystems via both above- and belowground ecosystem processes support this. In many cases the detected ecological importance of Epichloë species is directly or indirectly linked to defensive mutualism attributable to alkaloids of fungal-origin. Now, modern genetic and molecular techniques enable the precise studies on evolutionary origin of endophytic Epichloë species, their coevolution with host grasses and identification the genetic variation that explains phenotypic diversity in ecologically relevant characteristics of Epichloë-grass associations. Here we briefly review the most recent findings in these areas of research using the present knowledge of the genetic variation that explains the biosynthetic pathways driving the diversity of alkaloids produced by the endophyte. These findings underscore the importance of genetic interplay between the fungus and the host in shaping their coevolution and ecological role in both natural grass ecosystems, and in the agricultural arena.
Collapse
Affiliation(s)
- Kari Saikkonen
- Management and Production of Renewable Resources, Natural Resources Institute Finland (Luke), Itäinen Pitkäkatu 3, 20520, Turku, Finland.
| | - Carolyn A Young
- The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Marjo Helander
- Management and Production of Renewable Resources, Natural Resources Institute Finland (Luke), Itäinen Pitkäkatu 3, 20520, Turku, Finland
- Section of Ecology, Department of Biology, University of Turku, 20014, Turku, Finland
| | - Christopher L Schardl
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546-0312, USA
| |
Collapse
|
11
|
A foliar endophyte increases the diversity of phosphorus-solubilizing rhizospheric fungi and mycorrhizal colonization in the wild grass Bromus auleticus. FUNGAL ECOL 2015. [DOI: 10.1016/j.funeco.2015.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
McGranahan DA, Burgdorf R, Kirkman KP. Epichloae infection in a native South African grass, Festuca costata Nees. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:914-921. [PMID: 25619128 DOI: 10.1111/plb.12307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 06/04/2023]
Abstract
Fungal endophytes have been documented in almost all terrestrial plant groups. Although the endophyte infection syndrome in agronomic cultivars is well studied, relatively little work addresses questions of spatial ecology and fire effects on epichloae endophyte infection in native grasses, and none, to our knowledge, in sub-Saharan Africa. We sampled seven populations of the native Festuca costata Nees along the spline of the Drakensberg range in South Africa at several spatial scales, including both recently burned and unburned stands. We tested epichloae presence and prevalence with immunoblot assays, PCR and genetic sequencing. We found epichloae endophytes were present and prevalent (38-98% infection rates depending on location). Variation in infection rates occurred primarily among locations, but also among bunches. There was little evidence that endophyte infection rates varied with fire. Novel evidence of epichloae infection of a native Festuca in South Africa opens the door to several new research questions, from the phylogenetic relationship between epichloae of sub-Saharan Africa and other continents to the ecological advantages or disadvantages that endophytes confer upon their hosts, especially in a fire-prone ecosystem vulnerable to global environmental change.
Collapse
Affiliation(s)
- D A McGranahan
- School of Natural Resource Sciences - Range Science, North Dakota State University, Fargo, ND, USA
| | - R Burgdorf
- Plant Pathology, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - K P Kirkman
- Grassland Science, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
13
|
Li X, Zhou Y, Zhu M, Qin J, Ren A, Gao Y. Stroma-bearing endophyte and its potential horizontal transmission ability in Achnatherum sibiricum. Mycologia 2014; 107:21-31. [PMID: 25344262 DOI: 10.3852/13-355] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Stromata occasionally are observed in Achnatherum sibiricum distributed in northern China. However, endophyte species that form stromata on that host have not been studied. Here we identified the first Epichloë sp. endophyte in stroma-bearing A. sibiricum. Isolated colonies of this Epichloë sp. were smoother and more compact than previously described for Epichloë gansuensis and also had longer phialides and faster growth in culture. However, phylogenetic relationships based on intron sequences of genes encoding β-tubulin (tubB) and translation elongation factor 1-α (tefA) grouped all isolates from the stromata in a clade with a close relationship to E. gansuensis. We identified the new isolates as E. gansuensis. The analysis of the stromata revealed no perithecium or ascospores during morphological and paraffin section observation. Furthermore, the ability of conidia formed on stromata to germinate and initiate infection of new seedlings was tested. After 3 mo 20% endophyte-free seedlings became infected by E. gansuensis, whereas the control group showed no endophyte infection. The results indicated the potential of cultures from conidia to mediate horizontal transmission.
Collapse
Affiliation(s)
- Xia Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Yong Zhou
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Minjie Zhu
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Junhua Qin
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Anzhi Ren
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Yubao Gao
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P.R. China
| |
Collapse
|
14
|
Charlton ND, Craven KD, Afkhami ME, Hall BA, Ghimire SR, Young CA. Interspecific hybridization and bioactive alkaloid variation increases diversity in endophytic Epichloë species of Bromus laevipes. FEMS Microbiol Ecol 2014; 90:276-89. [PMID: 25065688 DOI: 10.1111/1574-6941.12393] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/27/2014] [Accepted: 07/18/2014] [Indexed: 11/29/2022] Open
Abstract
Studying geographic variation of microbial mutualists, especially variation in traits related to benefits they provide their host, is critical for understanding how these associations impact key ecological processes. In this study, we investigate the phylogenetic population structure of Epichloë species within Bromus laevipes, a native cool-season bunchgrass found predominantly in California. Phylogenetic classification supported inference of three distinct Epichloë taxa, of which one was nonhybrid and two were interspecific hybrids. Inheritance of mating-type idiomorphs revealed that at least one of the hybrid species arose from independent hybridization events. We further investigated the geographic variation of endophyte-encoded alkaloid genes, which is often associated with key benefits of natural enemy protection for the host. Marker diversity at the ergot alkaloid, loline, indole-diterpene, and peramine loci revealed four alkaloid genotypes across the three identified Epichloë species. Predicted chemotypes were tested using endophyte-infected plant material that represented each endophyte genotype, and 11 of the 13 predicted alkaloids were confirmed. This multifaceted approach combining phylogenetic, genotypic, and chemotypic analyses allowed us to reconstruct the diverse evolutionary histories of Epichloë species present within B. laevipes and highlight the complex and dynamic processes underlying these grass-endophyte symbioses.
Collapse
Affiliation(s)
- Nikki D Charlton
- Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK, USA
| | | | | | | | | | | |
Collapse
|
15
|
Tadych M, Bergen MS, White JF. Epichloë spp. associated with grasses: new insights on life cycles, dissemination and evolution. Mycologia 2014; 106:181-201. [PMID: 24877257 DOI: 10.3852/106.2.181] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epichloë species with their asexual states are specialized fungi associated with cool-season grasses. they grow endophytically in tissues of aerial parts of host plants to form systemic and mostly asymptomatic associations. Their life cycles may involve vertical transmission through host seeds and/or horizontal transmission from one plant to other plants of the same species through fungal propagules. Vertical transmission has been well studied, but comparatively little research has been done on horizontal dissemination. The goal of this review is to provide new insights on modes of dissemination of systemic grass endophytes. The review addresses recent progress in research on (i) the process of growth of Epichloë endophytes in the host plant tissues, (ii) the types and development of reproductive structures of the endophyte, (iii) the role of the reproductive structures in endophyte dissemination and host plant infection processes and (iv) some ecological and evolutionary implications of their modes of dissemination. Research in the Epichloë grass endophytes has accelerated in the past 25 y and has demonstrated the enormous complexity in endophyte-grass symbioses. There still remain large gaps in our understanding of the role and functions of these fungi in agricultural systems and understanding the functions, ecology and evolution of these endophytes in natural grass populations.
Collapse
|