1
|
Rúa-Giraldo ÁL. Fungal taxonomy: A puzzle with many missing pieces. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:288-311. [PMID: 37721899 PMCID: PMC10588969 DOI: 10.7705/biomedica.7052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/24/2023] [Indexed: 09/20/2023]
Abstract
Fungi are multifaceted organisms found in almost all ecosystems on Earth, where they establish various types of symbiosis with other living beings. Despite being recognized by humans since ancient times, and the high number of works delving into their biology and ecology, much is still unknown about these organisms. Some criteria classically used for their study are nowadays limited, generating confusion in categorizing them, and even more, when trying to understand their genealogical relationships. To identify species within Fungi, phenotypic characters to date are not sufficient, and to construct a broad phylogeny or a phylogeny of a particular group, there are still gaps affecting the generated trees, making them unstable and easily debated. For health professionals, fungal identification at lower levels such as genus and species, is enough to select the most appropriate therapy for their control, understand the epidemiology of clinical pictures associated, and recognize outbreaks and antimicrobial resistance. However, the taxonomic location within the kingdom, information with apparently little relevance, can allow phylogenetic relationships to be established between fungal taxa, facilitating the understanding of their biology, distribution in nature, and pathogenic potential evolution. Advances in molecular biology and computer science techniques from the last 30 years have led to crucial changes aiming to establish the criteria to define a fungal species, allowing us to reach a kind of stable phylogenetic construction. However, there is still a long way to go, and it requires the joint work of the scientific community at a global level and support for basic research.
Collapse
|
2
|
Gryganskyi AP, Golan J, Muszewska A, Idnurm A, Dolatabadi S, Mondo SJ, Kutovenko VB, Kutovenko VO, Gajdeczka MT, Anishchenko IM, Pawlowska J, Tran NV, Ebersberger I, Voigt K, Wang Y, Chang Y, Pawlowska TE, Heitman J, Vilgalys R, Bonito G, Benny GL, Smith ME, Reynolds N, James TY, Grigoriev IV, Spatafora JW, Stajich JE. Sequencing the Genomes of the First Terrestrial Fungal Lineages: What Have We Learned? Microorganisms 2023; 11:1830. [PMID: 37513002 PMCID: PMC10386755 DOI: 10.3390/microorganisms11071830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
The first genome sequenced of a eukaryotic organism was for Saccharomyces cerevisiae, as reported in 1996, but it was more than 10 years before any of the zygomycete fungi, which are the early-diverging terrestrial fungi currently placed in the phyla Mucoromycota and Zoopagomycota, were sequenced. The genome for Rhizopus delemar was completed in 2008; currently, more than 1000 zygomycete genomes have been sequenced. Genomic data from these early-diverging terrestrial fungi revealed deep phylogenetic separation of the two major clades-primarily plant-associated saprotrophic and mycorrhizal Mucoromycota versus the primarily mycoparasitic or animal-associated parasites and commensals in the Zoopagomycota. Genomic studies provide many valuable insights into how these fungi evolved in response to the challenges of living on land, including adaptations to sensing light and gravity, development of hyphal growth, and co-existence with the first terrestrial plants. Genome sequence data have facilitated studies of genome architecture, including a history of genome duplications and horizontal gene transfer events, distribution and organization of mating type loci, rDNA genes and transposable elements, methylation processes, and genes useful for various industrial applications. Pathogenicity genes and specialized secondary metabolites have also been detected in soil saprobes and pathogenic fungi. Novel endosymbiotic bacteria and viruses have been discovered during several zygomycete genome projects. Overall, genomic information has helped to resolve a plethora of research questions, from the placement of zygomycetes on the evolutionary tree of life and in natural ecosystems, to the applied biotechnological and medical questions.
Collapse
Affiliation(s)
- Andrii P. Gryganskyi
- Division of Biological & Nanoscale Technologies, UES, Inc., Dayton, OH 45432, USA
| | - Jacob Golan
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Anna Muszewska
- Institute of Biochemistry & Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland;
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Somayeh Dolatabadi
- Biology Department, Hakim Sabzevari University, Sabzevar 96179-76487, Iran;
| | - Stephen J. Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.J.M.); (I.V.G.)
| | - Vira B. Kutovenko
- Department of Agrobiology, National University of Life & Environmental Sciences, 03041 Kyiv, Ukraine; (V.B.K.)
| | - Volodymyr O. Kutovenko
- Department of Agrobiology, National University of Life & Environmental Sciences, 03041 Kyiv, Ukraine; (V.B.K.)
| | | | - Iryna M. Anishchenko
- MG Kholodny Institute of Botany, National Academy of Sciences, 01030 Kyiv, Ukraine;
| | - Julia Pawlowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological & Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland;
| | - Ngoc Vinh Tran
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (N.V.T.); (G.L.B.); (M.E.S.)
| | - Ingo Ebersberger
- Leibniz Institute for Natural Product Research & Infection Biology, 07745 Jena, Germany; (I.E.); (K.V.)
| | - Kerstin Voigt
- Leibniz Institute for Natural Product Research & Infection Biology, 07745 Jena, Germany; (I.E.); (K.V.)
| | - Yan Wang
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Ying Chang
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore;
| | - Teresa E. Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA; (T.E.P.); (N.R.)
| | - Joseph Heitman
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Rytas Vilgalys
- Biology Department, Duke University, Durham, NC 27708, USA;
| | - Gregory Bonito
- Department of Plant, Soil & Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Gerald L. Benny
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (N.V.T.); (G.L.B.); (M.E.S.)
| | - Matthew E. Smith
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (N.V.T.); (G.L.B.); (M.E.S.)
| | - Nicole Reynolds
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA; (T.E.P.); (N.R.)
| | - Timothy Y. James
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.J.M.); (I.V.G.)
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Joseph W. Spatafora
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
| | - Jason E. Stajich
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 93106, USA;
| |
Collapse
|
3
|
Reynolds NK, Stajich JE, Benny GL, Barry K, Mondo S, LaButti K, Lipzen A, Daum C, Grigoriev IV, Ho HM, Crous PW, Spatafora JW, Smith ME. Mycoparasites, Gut Dwellers, and Saprotrophs: Phylogenomic Reconstructions and Comparative Analyses of Kickxellomycotina Fungi. Genome Biol Evol 2023; 15:evac185. [PMID: 36617272 PMCID: PMC9866270 DOI: 10.1093/gbe/evac185] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Improved sequencing technologies have profoundly altered global views of fungal diversity and evolution. High-throughput sequencing methods are critical for studying fungi due to the cryptic, symbiotic nature of many species, particularly those that are difficult to culture. However, the low coverage genome sequencing (LCGS) approach to phylogenomic inference has not been widely applied to fungi. Here we analyzed 171 Kickxellomycotina fungi using LCGS methods to obtain hundreds of marker genes for robust phylogenomic reconstruction. Additionally, we mined our LCGS data for a set of nine rDNA and protein coding genes to enable analyses across species for which no LCGS data were obtained. The main goals of this study were to: 1) evaluate the quality and utility of LCGS data for both phylogenetic reconstruction and functional annotation, 2) test relationships among clades of Kickxellomycotina, and 3) perform comparative functional analyses between clades to gain insight into putative trophic modes. In opposition to previous studies, our nine-gene analyses support two clades of arthropod gut dwelling species and suggest a possible single evolutionary event leading to this symbiotic lifestyle. Furthermore, we resolve the mycoparasitic Dimargaritales as the earliest diverging clade in the subphylum and find four major clades of Coemansia species. Finally, functional analyses illustrate clear variation in predicted carbohydrate active enzymes and secondary metabolites (SM) based on ecology, that is biotroph versus saprotroph. Saprotrophic Kickxellales broadly lack many known pectinase families compared with saprotrophic Mucoromycota and are depauperate for SM but have similar numbers of predicted chitinases as mycoparasitic.
Collapse
Affiliation(s)
| | - Jason E Stajich
- Department of Microbiology & Plant Pathology and Institute for Integrative Genome Biology, University of California–Riverside
| | | | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory
| | - Stephen Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory
| | - Chris Daum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory
- Department of Plant and Microbial Biology, University of California Berkeley
| | - Hsiao-Man Ho
- Department of Science Education, University of Education, 134, Section 2, Heping E. Road, National Taipei, Taipei 106, Taiwan
| | - Pedro W Crous
- Department of Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | | | |
Collapse
|
4
|
Ri T, Suyama M, Takashima Y, Seto K, Degawa Y. A new genus Unguispora in Kickxellales shows an intermediate lifestyle between saprobic and gut-inhabiting fungi. Mycologia 2022; 114:934-946. [PMID: 36166197 DOI: 10.1080/00275514.2022.2111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Kickxellomycotina encompasses two fungal groups: a saprobic group in excrement and soil and an arthropod gut-inhabiting group. The evolutionary transition between these two lifestyles is unclear due to the lack of knowledge on intermediate forms and lifestyles. Here, we describe a new species, Unguispora rhaphidophoridarum, that was isolated from the excrement of cave crickets (Rhaphidophoridae) in Japan. This species has a novel lifestyle that is intermediate between the saprobic and gut-inhabiting groups. The new genus Unguispora is a member of the Kickxellales and characterized by the sterile appendages born on the sporocladium and by the claw-like ornamentation of the sporangiole. Phylogenetic analysis based on 18S and 28S nuclear ribosomal DNA showed that this fungus is distinct from all known kickxellalean genera and is sister to Linderina. The sporangiospore of the new species germinated only in anaerobiosis and grew in a yeast-like form. The yeast-like cells, defined as "secondary spores," germinated into hyphae in aerobiosis. In the alimentary tract of cave crickets, the sporangiola are attached to the proventriculus (foregut) by the claw-like ornamentation and multiplicate in the same yeast-like form as under culture. We introduce a new term, "amphibious fungi," to describe fungi that have two life stages, one outside and the other inside the host gut, like U. rhaphidophoridarum. The discovery of an amphibious fungus in Kickxellales, which was formerly considered to be only saprobic, suggests that Kickxellomycotina has evolved in association with the animal gut.
Collapse
Affiliation(s)
- Tomohiko Ri
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, 1278-294 Sugadaira-Kogen, Ueda, Nagano 386-2204, Japan
| | - Mai Suyama
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, 1278-294 Sugadaira-Kogen, Ueda, Nagano 386-2204, Japan
| | - Yusuke Takashima
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, 1278-294 Sugadaira-Kogen, Ueda, Nagano 386-2204, Japan
| | - Kensuke Seto
- Faculty of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya, Yokohama 240-8051, Japan
| | - Yousuke Degawa
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, 1278-294 Sugadaira-Kogen, Ueda, Nagano 386-2204, Japan
| |
Collapse
|
5
|
Senanayake IC, Pem D, Rathnayaka AR, Wijesinghe SN, Tibpromma S, Wanasinghe DN, Phookamsak R, Kularathnage ND, Gomdola D, Harishchandra D, Dissanayake LS, Xiang MM, Ekanayaka AH, McKenzie EHC, Hyde KD, Zhang HX, Xie N. Predicting global numbers of teleomorphic ascomycetes. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00498-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractSexual reproduction is the basic way to form high genetic diversity and it is beneficial in evolution and speciation of fungi. The global diversity of teleomorphic species in Ascomycota has not been estimated. This paper estimates the species number for sexual ascomycetes based on five different estimation approaches, viz. by numbers of described fungi, by fungus:substrate ratio, by ecological distribution, by meta-DNA barcoding or culture-independent studies and by previous estimates of species in Ascomycota. The assumptions were made with the currently most accepted, “2.2–3.8 million” species estimate and results of previous studies concluding that 90% of the described ascomycetes reproduce sexually. The Catalogue of Life, Species Fungorum and published research were used for data procurement. The average value of teleomorphic species in Ascomycota from all methods is 1.86 million, ranging from 1.37 to 2.56 million. However, only around 83,000 teleomorphic species have been described in Ascomycota and deposited in data repositories. The ratio between described teleomorphic ascomycetes to predicted teleomorphic ascomycetes is 1:22. Therefore, where are the undiscovered teleomorphic ascomycetes? The undescribed species are no doubt to be found in biodiversity hot spots, poorly-studied areas and species complexes. Other poorly studied niches include extremophiles, lichenicolous fungi, human pathogens, marine fungi, and fungicolous fungi. Undescribed species are present in unexamined collections in specimen repositories or incompletely described earlier species. Nomenclatural issues, such as the use of separate names for teleomorph and anamorphs, synonyms, conspecific names, illegitimate and invalid names also affect the number of described species. Interspecies introgression results in new species, while species numbers are reduced by extinctions.
Collapse
|
6
|
Phylogenomic Analyses of Nucleotide-Sugar Biosynthetic and Interconverting Enzymes Illuminate Cell Wall Composition in Fungi. mBio 2021; 12:mBio.03540-20. [PMID: 33849982 PMCID: PMC8092308 DOI: 10.1128/mbio.03540-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fungi are an enormously successful eukaryotic lineage that has colonized every aerobic habitat on Earth. This spectacular expansion is reflected in the dynamism and diversity of the fungal cell wall, a matrix of polysaccharides and glycoproteins pivotal to fungal life history strategies and a major target in the development of antifungal compounds. Cell wall polysaccharides are typically synthesized by Leloir glycosyltransferases, enzymes that are notoriously difficult to characterize, but their nucleotide-sugar substrates are well known and provide the opportunity to inspect the monosaccharides available for incorporation into cell wall polysaccharides and glycoproteins. In this work, we have used phylogenomic analyses of the enzymatic pathways that synthesize and interconvert nucleotide-sugars to predict potential cell wall monosaccharide composition across 491 fungal taxa. The results show a complex evolutionary history of these cell wall enzyme pathways and, by association, of the fungal cell wall. In particular, we see a significant reduction in monosaccharide diversity during fungal evolution, most notably in the colonization of terrestrial habitats. However, monosaccharide distribution is also shown to be varied across later-diverging fungal lineages.IMPORTANCE This study provides new insights into the complex evolutionary history of the fungal cell wall. We analyzed fungal enzymes that convert sugars acquired from the environment into the diverse sugars that make up the fundamental building blocks of the cell wall. Species-specific profiles of these nucleotide-sugar interconverting (NSI) enzymes for 491 fungi demonstrated multiple losses and gains of NSI proteins, revealing the rich diversity of cell wall architecture across the kingdom. Pragmatically, because cell walls are essential to fungi, our observations of variation in sugar diversity have important implications for the development of antifungal compounds that target the sugar profiles of specific pathogens.
Collapse
|
7
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: cellular, genomic and metabolic complexity. Biol Rev Camb Philos Soc 2020; 95:1198-1232. [PMID: 32301582 PMCID: PMC7539958 DOI: 10.1111/brv.12605] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The question of how phenotypic and genomic complexity are inter-related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adaptations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental Sciences, Universitat Pompeu Fabra (UPF)Dr. Aiguader 88, 08003BarcelonaSpain
- ICREAPg. Lluís Companys 23, 08010BarcelonaSpain
| |
Collapse
|
8
|
Menolli N, Sánchez-García M. Brazilian fungal diversity represented by DNA markers generated over 20 years. Braz J Microbiol 2020; 51:729-749. [PMID: 31828716 PMCID: PMC7203393 DOI: 10.1007/s42770-019-00206-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/01/2019] [Indexed: 10/25/2022] Open
Abstract
Molecular techniques using fungal DNA barcoding (ITS) and other markers have been key to identifying the biodiversity of different geographic areas, mainly in megadiverse countries. Here, we provide an overview of the fungal diversity in Brazil based on DNA markers of phylogenetic importance generated since 1996. We retrieved fungal sequences of ITS, LSU, SSU, tef1-α, β-tubulin, rpb1, rpb2, actin, chitin synthase, and ATP6 from GenBank using different field keywords that indicated their origin in Brazil. A total of 19,440 sequences were recovered. ITS is the most representative marker (11,209 sequences), with 70.1% belonging to Ascomycota, 18.6% Basidiomycota, 10.2% unidentified, 1.1% Mucoromycota, two sequences of Olpidium bornovanus (Fungi incertae sedis), one sequence of Blastocladiomycota (Allomyces arbusculus), and one sequence of Chytridiomycota (Batrachochytrium dendrobatidis). Considering the sequences of all selected markers, only the phyla Cryptomycota and Entorrhizomycota were not represented. Based on ITS, using a cutoff of 98%, all sequences comprise 3047 OTUs, with the majority being Ascomycota (2088 OTUs) and Basidiomycota (681 OTUs). Previous numbers based mainly on morphological and bibliographical data revealed 5264 fungal species from Brazil, with a predominance of Basidiomycota (2741 spp.) and Ascomycota (1881 spp.). The unidentified ITS sequences not assigned to a higher taxonomic level represent 1.61% of all ITS sequences sampled and correspond to 38 unknown class-level lineages (75% cutoff). A maximum likelihood phylogeny based on LSU illustrates the fungal classes occurring in Brazil.
Collapse
Affiliation(s)
- Nelson Menolli
- Departamento de Ciências da Natureza e Matemática (DCM), Subárea de Biologia (SAB), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Câmpus São Paulo, Rua Pedro Vicente 625, São Paulo, SP, 01109-010, Brazil.
- Núcleo de Pesquisa em Micologia, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-012, Brazil.
| | - Marisol Sánchez-García
- Biology Department, Clark University, Worcester, MA, 01610, USA
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-75005, Sweden
| |
Collapse
|
9
|
Macias AM, Geiser DM, Stajich JE, Łukasik P, Veloso C, Bublitz DC, Berger MC, Boyce GR, Hodge K, Kasson MT. Evolutionary relationships among Massospora spp. (Entomophthorales), obligate pathogens of cicadas. Mycologia 2020; 112:1060-1074. [PMID: 32412847 DOI: 10.1080/00275514.2020.1742033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The fungal genus Massospora (Zoopagomycota: Entomophthorales) includes more than a dozen obligate, sexually transmissible pathogenic species that infect cicadas (Hemiptera) worldwide. At least two species are known to produce psychoactive compounds during infection, which has garnered considerable interest for this enigmatic genus. As with many Entomophthorales, the evolutionary relationships and host associations of Massospora spp. are not well understood. The acquisition of M. diceroproctae from Arizona, M. tettigatis from Chile, and M. platypediae from California and Colorado provided an opportunity to conduct molecular phylogenetic analyses and morphological studies to investigate whether these fungi represent a monophyletic group and delimit species boundaries. In a three-locus phylogenetic analysis including the D1-D2 domains of the nuclear 28S rRNA gene (28S), elongation factor 1 alpha-like (EFL), and beta-tubulin (BTUB), Massospora was resolved in a strongly supported monophyletic group containing four well-supported genealogically exclusive lineages, based on two of three methods of phylogenetic inference. There was incongruence among the single-gene trees: two methods of phylogenetic inference recovered trees with either the same topology as the three-gene concatenated tree (EFL) or a basal polytomy (28S, BTUB). Massospora levispora and M. platypediae isolates formed a single lineage in all analyses and are synonymized here as M. levispora. Massospora diceroproctae was sister to M. cicadina in all three single-gene trees and on an extremely long branch relative to the other Massospora, and even the outgroup taxa, which may reflect an accelerated rate of molecular evolution and/or incomplete taxon sampling. The results of the morphological study presented here indicate that spore measurements may not be phylogenetically or diagnostically informative. Despite recent advances in understanding the ecology of Massospora, much about its host range and diversity remains unexplored. The emerging phylogenetic framework can provide a foundation for exploring coevolutionary relationships with cicada hosts and the evolution of behavior-altering compounds.
Collapse
Affiliation(s)
- Angie M Macias
- Division of Plant and Soil Sciences, West Virginia University , Morgantown, West Virginia 26506
| | - David M Geiser
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park , Pennsylvania 16802
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology and Institute for Integrative Genome Biology, University of California , Riverside, California 92521
| | - Piotr Łukasik
- Institute of Environmental Sciences, Jagiellonian University , 30-387 Kraków, Poland.,Division of Biological Sciences, University of Montana , Missoula, Montana 59812
| | - Claudio Veloso
- Department of Ecological Sciences, Science Faculty, University of Chile , Santiago, Chile
| | - DeAnna C Bublitz
- Division of Biological Sciences, University of Montana , Missoula, Montana 59812
| | - Matthew C Berger
- Division of Plant and Soil Sciences, West Virginia University , Morgantown, West Virginia 26506
| | - Greg R Boyce
- Division of Plant and Soil Sciences, West Virginia University , Morgantown, West Virginia 26506
| | - Kathie Hodge
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University , Ithaca, New York 14853
| | - Matt T Kasson
- Division of Plant and Soil Sciences, West Virginia University , Morgantown, West Virginia 26506
| |
Collapse
|
10
|
Nie Y, Yu DS, Wang CF, Liu XY, Huang B. A taxonomic revision of the genus Conidiobolus (Ancylistaceae, Entomophthorales): four clades including three new genera. MycoKeys 2020; 66:55-81. [PMID: 32273794 PMCID: PMC7136305 DOI: 10.3897/mycokeys.66.46575] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/13/2020] [Indexed: 11/12/2022] Open
Abstract
The genus Conidiobolus is an important group in entomophthoroid fungi and is considered to be polyphyletic in recent molecular phylogenies. To re-evaluate and delimit this genus, multi-locus phylogenetic analyses were performed using the large and small subunits of nuclear ribosomal DNA (nucLSU and nucSSU), the small subunit of the mitochondrial ribosomal DNA (mtSSU) and the translation elongation factor 1-alpha (EF-1α). The results indicated that the Conidiobolus is not monophyletic, being grouped into a paraphyletic grade with four clades. Consequently, the well-known Conidiobolus is revised and three new genera Capillidium, Microconidiobolus and Neoconidiobolus are proposed along with one new record and 22 new combinations. In addition, the genus Basidiobolus is found to be basal to the other entomophthoroid taxa and the genus Batkoa locates in the Entomophthoraceae clade.
Collapse
Affiliation(s)
- Yong Nie
- Anhui Provincial Key Laboratory for Microbial Pest Control, Anhui Agricultural University, Hefei 230036, ChinaAnhui Agricultural UniversityHefeiChina
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243002, ChinaAnhui University of TechnologyMa’anshanChina
| | - De-Shui Yu
- Anhui Provincial Key Laboratory for Microbial Pest Control, Anhui Agricultural University, Hefei 230036, ChinaAnhui Agricultural UniversityHefeiChina
| | - Cheng-Fang Wang
- Anhui Provincial Key Laboratory for Microbial Pest Control, Anhui Agricultural University, Hefei 230036, ChinaAnhui Agricultural UniversityHefeiChina
| | - Xiao-Yong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, ChinaInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Bo Huang
- Anhui Provincial Key Laboratory for Microbial Pest Control, Anhui Agricultural University, Hefei 230036, ChinaAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
11
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. Biol Rev Camb Philos Soc 2019; 94:2101-2137. [PMID: 31659870 PMCID: PMC6899921 DOI: 10.1111/brv.12550] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
The fungal kingdom comprises a hyperdiverse clade of heterotrophic eukaryotes characterized by the presence of a chitinous cell wall, the loss of phagotrophic capabilities and cell organizations that range from completely unicellular monopolar organisms to highly complex syncitial filaments that may form macroscopic structures. Fungi emerged as a 'Third Kingdom', embracing organisms that were outside the classical dichotomy of animals versus vegetals. The taxonomy of this group has a turbulent history that is only now starting to be settled with the advent of genomics and phylogenomics. We here review the current status of the phylogeny and taxonomy of fungi, providing an overview of the main defined groups. Based on current knowledge, nine phylum-level clades can be defined: Opisthosporidia, Chytridiomycota, Neocallimastigomycota, Blastocladiomycota, Zoopagomycota, Mucoromycota, Glomeromycota, Basidiomycota and Ascomycota. For each group, we discuss their main traits and their diversity, focusing on the evolutionary relationships among the main fungal clades. We also explore the diversity and phylogeny of several groups of uncertain affinities and the main phylogenetic and taxonomical controversies and hypotheses in the field.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Health and Experimental Sciences DepartmentUniversitat Pompeu Fabra (UPF)08003BarcelonaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| |
Collapse
|
12
|
Wang Y, White MM, Moncalvo JM. Diversification of the gut fungi Smittium and allies (Harpellales) co-occurred with the origin of complete metamorphosis of their symbiotic insect hosts (lower Diptera). Mol Phylogenet Evol 2019; 139:106550. [DOI: 10.1016/j.ympev.2019.106550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 05/30/2019] [Accepted: 06/28/2019] [Indexed: 01/26/2023]
|
13
|
Ellingham O, David J, Culham A. Enhancing identification accuracy for powdery mildews using previously underexploited DNA loci. Mycologia 2019; 111:798-812. [DOI: 10.1080/00275514.2019.1643644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Oliver Ellingham
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AS, UK
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - John David
- Royal Horticultural Society Garden Wisley, Woking, Surrey, GU23 6QB, UK
| | - Alastair Culham
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AS, UK
| |
Collapse
|
14
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc 2019; 94:1443-1476. [PMID: 31021528 PMCID: PMC6850671 DOI: 10.1111/brv.12510] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts). Throughout this review we use an evolutionary and comparative-genomics perspective to understand fungal ecological diversity. Finally, we highlight the importance of genome-enabled inferences to envision plausible narratives and scenarios for important transitions.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF)08003BarcelonaSpain
- ICREA, Pg. Lluís Companys 2308010BarcelonaSpain
| |
Collapse
|
15
|
Bewick AJ, Hofmeister BT, Powers RA, Mondo SJ, Grigoriev IV, James TY, Stajich JE, Schmitz RJ. Diversity of cytosine methylation across the fungal tree of life. Nat Ecol Evol 2019; 3:479-490. [PMID: 30778188 PMCID: PMC6533610 DOI: 10.1038/s41559-019-0810-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/13/2019] [Indexed: 12/22/2022]
Abstract
The generation of thousands of fungal genomes is leading to a better understanding of genes and genomic organization within the kingdom. However, the epigenome, which includes DNA and chromatin modifications, remains poorly investigated in fungi. Large comparative studies in animals and plants have deepened our understanding of epigenomic variation, particularly of the modified base 5-methylcytosine (5mC), but taxonomic sampling of disparate groups is needed to develop unifying explanations for 5mC variation. Here we utilize the largest phylogenetic resolution of 5mC methyltransferases (5mC MTases) and genome evolution to better understand levels and patterns of 5mC across fungi. We show that extant 5mC MTase genotypes are descendent from ancestral maintenance and de novo genotypes, whereas the 5mC MTases DIM-2 and RID are more recently derived, and that 5mC levels are correlated with 5mC MTase genotype and transposon content. Our survey also revealed that fungi lack canonical gene body methylation, which distinguishes fungal epigenomes from certain insect and plant species. However, some fungal species possess independently derived clusters of contiguous 5mC encompassing many genes. In some cases, DNA repair pathways and the N6-methyladenine (6mA) DNA modification negatively coevolved with 5mC pathways, which additionally contributed to interspecific epigenomic variation across fungi.
Collapse
Affiliation(s)
- Adam J Bewick
- Department of Genetics, University of Georgia, Athens, GA, USA.
| | | | - Rob A Powers
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Stephen J Mondo
- US Department of Energy Joint Genome Institute, Walnut Creek, Berkeley, CA, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, Berkeley, CA, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | | |
Collapse
|
16
|
Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, Schüßler A, Wrzosek M, Muszewska A, Okrasińska A, Istel Ł, Gęsiorska A, Mungai P, Lateef AA, Rajeshkumar KC, Singh RV, Radek R, Walther G, Wagner L, Walker C, Wijesundara DSA, Papizadeh M, Dolatabadi S, Shenoy BD, Tokarev YS, Lumyong S, Hyde KD. Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0409-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
|
18
|
Abstract
Modern genomics has shed light on many entomopathogenic fungi and expanded our knowledge widely; however, little is known about the genomic features of the insect-commensal fungi. Harpellales are obligate commensals living in the digestive tracts of disease-bearing insects (black flies, midges, and mosquitoes). In this study, we produced and annotated whole-genome sequences of nine Harpellales taxa and conducted the first comparative analyses to infer the genomic diversity within the members of the Harpellales. The genomes of the insect gut fungi feature low (26% to 37%) GC content and large genome size variations (25 to 102 Mb). Further comparisons with insect-pathogenic fungi (from both Ascomycota and Zoopagomycota), as well as with free-living relatives (as negative controls), helped to identify a gene toolbox that is essential to the fungus-insect symbiosis. The results not only narrow the genomic scope of fungus-insect interactions from several thousands to eight core players but also distinguish host invasion strategies employed by insect pathogens and commensals. The genomic content suggests that insect commensal fungi rely mostly on adhesion protein anchors that target digestive system, while entomopathogenic fungi have higher numbers of transmembrane helices, signal peptides, and pathogen-host interaction (PHI) genes across the whole genome and enrich genes as well as functional domains to inactivate the host inflammation system and suppress the host defense. Phylogenomic analyses have revealed that genome sizes of Harpellales fungi vary among lineages with an integer-multiple pattern, which implies that ancient genome duplications may have occurred within the gut of insects. Insect guts harbor various microbes that are important for host digestion, immune response, and disease dispersal in certain cases. Bacteria, which are among the primary endosymbionts, have been studied extensively. However, fungi, which are also frequently encountered, are poorly known with respect to their biology within the insect guts. To understand the genomic features and related biology, we produced the whole-genome sequences of nine gut commensal fungi from disease-bearing insects (black flies, midges, and mosquitoes). The results show that insect gut fungi tend to have low GC content across their genomes. By comparing these commensals with entomopathogenic and free-living fungi that have available genome sequences, we found a universal core gene toolbox that is unique and thus potentially important for the insect-fungus symbiosis. This comparative work also uncovered different host invasion strategies employed by insect pathogens and commensals, as well as a model system to study ancient fungal genome duplication within the gut of insects.
Collapse
|
19
|
Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O'Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 2018; 108:1028-1046. [PMID: 27738200 DOI: 10.3852/16-042] [Citation(s) in RCA: 628] [Impact Index Per Article: 104.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/04/2016] [Indexed: 12/12/2022]
Abstract
Zygomycete fungi were classified as a single phylum, Zygomycota, based on sexual reproduction by zygospores, frequent asexual reproduction by sporangia, absence of multicellular sporocarps, and production of coenocytic hyphae, all with some exceptions. Molecular phylogenies based on one or a few genes did not support the monophyly of the phylum, however, and the phylum was subsequently abandoned. Here we present phylogenetic analyses of a genome-scale data set for 46 taxa, including 25 zygomycetes and 192 proteins, and we demonstrate that zygomycetes comprise two major clades that form a paraphyletic grade. A formal phylogenetic classification is proposed herein and includes two phyla, six subphyla, four classes and 16 orders. On the basis of these results, the phyla Mucoromycota and Zoopagomycota are circumscribed. Zoopagomycota comprises Entomophtoromycotina, Kickxellomycotina and Zoopagomycotina; it constitutes the earliest diverging lineage of zygomycetes and contains species that are primarily parasites and pathogens of small animals (e.g. amoeba, insects, etc.) and other fungi, i.e. mycoparasites. Mucoromycota comprises Glomeromycotina, Mortierellomycotina, and Mucoromycotina and is sister to Dikarya. It is the more derived clade of zygomycetes and mainly consists of mycorrhizal fungi, root endophytes, and decomposers of plant material. Evolution of trophic modes, morphology, and analysis of genome-scale data are discussed.
Collapse
Affiliation(s)
- Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Ying Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Gerald L Benny
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611
| | - Katy Lazarus
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611
| | - Mary L Berbee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada
| | - Gregory Bonito
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5 Canada
| | - Igor Grigoriev
- US Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598
| | | | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48103
| | - Kerry O'Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, NCAUR-ARS-USDA, 1815 N. University Street, Peoria, Illinois 61604
| | - Robert W Roberson
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Thomas N Taylor
- Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, Kansas 66045
| | - Jessie Uehling
- Biology Department, Box 90338, Duke University, Durham, North Carolina 27708
| | - Rytas Vilgalys
- Biology Department, Box 90338, Duke University, Durham, North Carolina 27708
| | - Merlin M White
- Department of Biological Sciences, Boise State University, Boise, Idaho 83725
| | - Jason E Stajich
- Department of Plant Pathology & Microbiology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California 92521
| |
Collapse
|
20
|
Corsaro D, Köhsler M, Wylezich C, Venditti D, Walochnik J, Michel R. New insights from molecular phylogenetics of amoebophagous fungi (Zoopagomycota, Zoopagales). Parasitol Res 2017; 117:157-167. [PMID: 29170872 DOI: 10.1007/s00436-017-5685-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022]
Abstract
Amoebophagous fungi are represented in all fungal groups: Basidiomycota, Ascomycota, Zygomycota, and Chytridiomycota. The amoebophagous fungi, within the zygomycota (Zoopagales, Zoopagomycota), mainly affect naked amoebae as ectoparasites or endoparasites. It is rather difficult to isolate members of the Zoopagales, because of their parasitic lifestyle, and to bring them into culture. Consequently, gene sequences of this group are undersampled, and its species composition and phylogeny are relatively unknown. In the present study, we were able to isolate amoebophagous fungi together with their amoeba hosts from various habitats (moss, pond, bark, and soil). Altogether, four fungal strains belonging to the genera Acaulopage and Stylopage plus one unidentified isolate were detected. Sequences of the 18S rDNA and the complete ITS region and partial 28S (LSU) rDNA were generated. Subsequent phylogenetic analyses showed that all new isolates diverge at one branch together with two environmental clonal sequences within the Zoopagomycota. Here, we provide the first molecular characterization of the genus Stylopage. Stylopage is closely related to the genus Acaulopage. In addition, taxonomy and phylogeny of amoebophagous fungi and their ecological importance are reviewed based on new sequence data, which includes environmental clonal sequences.
Collapse
Affiliation(s)
- Daniele Corsaro
- Chlamydia Research Association (CHLAREAS), 12 rue du Maconnais, F-54500, Vandoeuvre-lès-Nancy, France.
| | - Martina Köhsler
- Molecular Parasitology, Institute for Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Danielle Venditti
- Chlamydia Research Association (CHLAREAS), 12 rue du Maconnais, F-54500, Vandoeuvre-lès-Nancy, France.,TREDI Research Department, Faculty of Medicine, Technopôle de Nancy-Brabois, 9, Avenue de la Forêt de Haye, B.P. 184, 54505, Vandœuvre-lès-Nancy, France
| | - Julia Walochnik
- Molecular Parasitology, Institute for Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Rolf Michel
- Central Institute of the Federal Armed Forces Medical Services, P.O. Box 7340, D 56070, Koblenz, Germany
| |
Collapse
|
21
|
Wang Y, White MM, Kvist S, Moncalvo JM. Genome-Wide Survey of Gut Fungi (Harpellales) Reveals the First Horizontally Transferred Ubiquitin Gene from a Mosquito Host. Mol Biol Evol 2016; 33:2544-54. [PMID: 27343289 PMCID: PMC5026252 DOI: 10.1093/molbev/msw126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Harpellales, an early-diverging fungal lineage, is associated with the digestive tracts of aquatic arthropod hosts. Concurrent with the production and annotation of the first four Harpellales genomes, we discovered that Zancudomyces culisetae, one of the most widely distributed Harpellales species, encodes an insect-like polyubiquitin chain. Ubiquitin and ubiquitin-like proteins are universally involved in protein degradation and regulation of immune response in eukaryotic organisms. Phylogenetic analyses inferred that this polyubiquitin variant has a mosquito origin. In addition, its amino acid composition, animal-like secondary structure, as well as the fungal nature of flanking genes all further support this as a horizontal gene transfer event. The single-copy polyubiquitin gene from Z. culisetae has lower GC ratio compared with homologs of insect taxa, which implies homogenization of the gene since its putatively ancient transfer. The acquired polyubiquitin gene may have served to improve important functions within Z. culisetae, by perhaps exploiting the insect hosts' ubiquitin-proteasome systems in the gut environment. Preliminary comparisons among the four Harpellales genomes highlight the reduced genome size of Z. culisetae, which corroborates its distinguishable symbiotic lifestyle. This is the first record of a horizontally transferred ubiquitin gene from disease-bearing insects to the gut-dwelling fungal endobiont and should invite further exploration in an evolutionary context.
Collapse
Affiliation(s)
- Yan Wang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Merlin M White
- Department of Biological Sciences, Boise State University
| | - Sebastian Kvist
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Jean-Marc Moncalvo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| |
Collapse
|
22
|
Benny GL, Smith ME, Kirk PM, Tretter ED, White MM. Challenges and Future Perspectives in the Systematics of Kickxellomycotina, Mortierellomycotina, Mucoromycotina, and Zoopagomycotina. BIOLOGY OF MICROFUNGI 2016. [DOI: 10.1007/978-3-319-29137-6_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|