1
|
Yazarlou F, Martinez I, Lipovich L. Radiotherapy and breast cancer: finally, an lncRNA perspective on radiosensitivity and radioresistance. Front Oncol 2024; 14:1437542. [PMID: 39346726 PMCID: PMC11427263 DOI: 10.3389/fonc.2024.1437542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/01/2024] [Indexed: 10/01/2024] Open
Abstract
Radiotherapy (RT) serves as one of the key adjuvant treatments in management of breast cancer. Nevertheless, RT has two major problems: side effects and radioresistance. Given that patients respond differently to RT, it is imperative to understand the molecular mechanisms underlying these differences. Two-thirds of human genes do not encode proteins, as we have realized from genome-scale studies conducted after the advent of the genomic era; nevertheless, molecular understanding of breast cancer to date has been attained almost entirely based on protein-coding genes and their pathways. Long non-coding RNAs (lncRNAs) are a poorly understood but abundant class of human genes that yield functional non-protein-coding RNA transcripts. Here, we canvass the field to seek evidence for the hypothesis that lncRNAs contribute to radioresistance in breast cancer. RT-responsive lncRNAs ranging from "classical" lncRNAs discovered at the dawn of the post-genomic era (such as HOTAIR, NEAT1, and CCAT), to long intergenic lncRNAs such as LINC00511 and LINC02582, antisense lncRNAs such as AFAP-AS1 and FGD5-AS1, and pseudogene transcripts such as DUXAP8 were found during our screen of the literature. Radiation-related pathways modulated by these lncRNAs include DNA damage repair, cell cycle, cancer stem cells phenotype and apoptosis. Thus, providing a clear picture of these lncRNAs' underlying RT-relevant molecular mechanisms should help improve overall survival and optimize the best radiation dose for each individual patient. Moreover, in healthy humans, lncRNAs show greater natural expression variation than protein-coding genes, even across individuals, alluding to their exceptional potential for targeting in truly personalized, precision medicine.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Ivan Martinez
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Leonard Lipovich
- Department of Biology, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou, China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, China
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., Shenzhen, China
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
2
|
Akhlada, Siddiqui N, Anurag, Saifi A, Kesharwani A, Parihar VK, Sharma A. Neuroprotective Action of Selected Natural Drugs Against Neurological Diseases and Mental Disorders: Potential Use Against Radiation Damage. Neurochem Res 2024; 49:2336-2351. [PMID: 38864943 DOI: 10.1007/s11064-024-04184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024]
Abstract
Exposure to radiation, ionizing and non-ionizing radiation, is a significant concern in modern society. The brain is the organ that is most sensitive to radiation exposure. This review describes how exposure to radiation can affect neurotransmitters in different brain regions, affecting brain function. This review covers neurodegenerative diseases such as Alzheimer's, Parkinson's, and neuroinflammation due to changes in neurons in the central nervous system, and the effects thereon of medicinal plants such as Allium cepa, Allium sativum, Centella asiatica, Coriandrum sativum, and Crocus sativus plants, used for centuries in traditional medicine. These herbal medicines exert free radical scavenging, and antioxidant as well as anti-inflammatory properties which can be beneficial in managing neurological diseases. The present review compiles the neuroprotective effects of selected natural plants against neurological damage, as well as highlights the different mechanisms of action elicited to induce and produce beneficial effects. The current review describes recent studies on the pharmacological effects of neuroprotective herbs on various neurological and mental illnesses, and shows the way further studies can impact this field, including potential effects on radiation-induced damage.
Collapse
Affiliation(s)
- Akhlada
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Nazia Siddiqui
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Anurag
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Alimuddin Saifi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Anuradha Kesharwani
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - Vipan Kumar Parihar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India.
| |
Collapse
|
3
|
Yang MY, Zhao XH. Panax notoginseng Saponins Ameliorate Gamma Radiation-Mediated Damages in Human Peripheral Blood Monocytes and Swiss Albino Mice. Cell Biochem Funct 2024; 42:e4115. [PMID: 39264203 DOI: 10.1002/cbf.4115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
In this study, the protective effects of Panax notoginseng saponins (PNS) against gamma radiation-induced DNA damage and associated physiological alterations in Swiss albino mice were investigated. Exposure to gamma radiation led to a dose-dependent increase in cytokinesis-blocked micronuclei (CBMN) double-strand DNA breaks (DSBs), dicentric aberrations (DC), formation in peripheral blood mononuclear cells. However, pretreatment with PNS at concentrations of 1, 5, and 10 µg/mL significantly attenuated the frequencies of DC and CBMN in a concentration-dependent manner. PNS administration before radiation exposure also reduced radiation-induced DSBs in BL, indicating protection against reactive oxygen species generation and DNA damage. Notably, pretreatment with PNS at 10 µg/mL prevented the overexpression of γ-H2AX, proteins associated with DNA damage response, in irradiated mice. In addition, in vivo studies showed intraperitoneal administration of PNS (25 mg/kg body weight) for 1 h before radiation exposure mitigated lipid peroxidation levels and restored antioxidant status, countering oxidative damage induced by gamma radiation. Furthermore, PNS pretreatment reversed the decrease in hemoglobin (Hb) content, white blood cell count, and red blood cell count in irradiated mice, indicating preservation of hematological parameters. Overall, PNS demonstrated an anticlastogenic effect by modulating radiation-induced DSBs and preventing oxidative damage, thus highlighting its potential as a protective agent against radiation-induced DNA damage and associated physiological alterations. Clinically, PNS will be beneficial for cancer patients undergoing radiotherapy, but their pharmacological properties and toxicity profiles need to be studied.
Collapse
Affiliation(s)
- Ming-Yu Yang
- Department of Chinese Medicine, Cangzhou Medical College, Cangzhou, China
| | - Xing-Hua Zhao
- Department of Chinese Medicine, Cangzhou Medical College, Cangzhou, China
| |
Collapse
|
4
|
Ghali ENHK, Sandopu SK, Maurya DK, Meriga B. Insights into the radioprotective efficacy of Pterocarpus santalinus L. aqueous extract. Fitoterapia 2024; 176:105986. [PMID: 38703914 DOI: 10.1016/j.fitote.2024.105986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/13/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
In the present study, we have attempted a comprehensive assessment of the possible radioprotective efficacy of Pterocarpus santalinus aqueous extract (PSAE). All the studied models were gamma-irradiated with prior treatment with PSAE. First, the content of total phenols (4.061 μg/mg gallic acid equivalents), flavonoids (6.616 μg/mg quercetin equivalents), and tannins (0.008 mg/L of PSAE) were determined spectrophotometrically. Second, UHPLC-HRMS analysis was performed to identify the possible radioprotectors. Of those, santalins A & B are known for their usage as natural color in foods and alcoholic beverages identified in PSAE. Treatment was well tolerated with no side effects from PSAE. Later, it was shown that radiation-induced lethality significantly amended in PSAE-treated spleen lymphocytes as evidenced by reduced elevated levels of ROS and lipid peroxidation, restored total thiols and GSH: GSSG, inhibited DNA DSBs and cell death. Furthermore, an immunomodulation study was carried out because radiation exposure induces an inflammatory response. Our study shows that PSAE suppressed concanavalin A-induced T-cell proliferation as evidenced by CFSE dye dilution and CD69 antibody staining methods. Taken together, the current study explored the protective efficacy of PSAE from gamma radiation-inflicted injuries and hence we recommend PSAE as a potent radioprotective formulation.
Collapse
Affiliation(s)
- E N Hanuma Kumar Ghali
- Department of Biochemistry, Sri Venkateswara University, Tirupati 517502, India; Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Medicine and Oncology ISU, South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen 78504, TX, USA
| | | | - Dharmendra Kumar Maurya
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Balaji Meriga
- Department of Biochemistry, Sri Venkateswara University, Tirupati 517502, India.
| |
Collapse
|
5
|
Katoch M, Singh G, Bijarnia E, Gupta AP, Azeem M, Rani P, Kumar J. Biodiversity of endosymbiont fungi associated with a marine sponge Lamellodysidea herbacea and their potential as antioxidant producers. 3 Biotech 2024; 14:146. [PMID: 38706926 PMCID: PMC11068721 DOI: 10.1007/s13205-024-03972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/01/2024] [Indexed: 05/07/2024] Open
Abstract
This study aims to isolate endosymbiontic fungi from the marine sponge Lamellodysidea herbacea and to explore their antioxidant potential. Marine-derived fungi, with their vast biodiversity, are considered a promising source of novel antioxidants which can replace synthetic ones. Marine sponges have previously reported bioactive properties that could ameliorate oxidative stress, particularly their associated fungi, producing high-frequency bioactive molecules (adaptogenic molecules) in response to stressors. 19 endosymbiont fungi associated with marine sponges were isolated, and their extracts were evaluated for their antioxidant capacities. Extract of an endosymbiont fungus, isolate SPG6, identified as Alternaria destruens, through surface electron microscopy (SEM) and ITS gene sequencing, showed broad range antioxidant activities (EC50 values) (free radical scavenging 32.54 mg L-1, Hydroxyl radical scavenging activity < 0.078 g L-1, total reducing power 0.114 g L-1, Chelating power 0.262 g L-1, H2O2 scavenging activity < 0.078 g L-1, and Superoxide radical scavenging activity > 5.0 g L-1). The extract of isolate SPG6 was fractioned and analyzed through GC-MS. Marine sponge-associated endosymbiont fungi are a rich source of antioxidant molecules. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03972-1.
Collapse
Affiliation(s)
- Meenu Katoch
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, 110025 India
| | - Gurpreet Singh
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, 110025 India
| | - Ekta Bijarnia
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
| | - A. P. Gupta
- Quality Control Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
| | - Mohd. Azeem
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
| | - Pragya Rani
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
| | - J. Kumar
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, 110025 India
| |
Collapse
|
6
|
Alvandi M, Shaghaghi Z, Farzipour S, Marzhoseyni Z. Radioprotective Potency of Nanoceria. Curr Radiopharm 2024; 17:138-147. [PMID: 37990425 DOI: 10.2174/0118744710267281231104170435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 11/23/2023]
Abstract
Cancer presents a significant medical challenge that requires effective management. Current cancer treatment options, such as chemotherapy, targeted therapy, radiotherapy, and immunotherapy, have limitations in terms of their efficacy and the potential harm they can cause to normal tissues. In response, researchers have been focusing on developing adjuvants that can enhance tumor responses while minimizing damage to healthy tissues. Among the promising options, nanoceria (NC), a type of nanoparticle composed of cerium oxide, has garnered attention for its potential to improve various cancer treatment regimens. Nanoceria has demonstrated its ability to exhibit toxicity towards cancer cells, inhibit invasion, and sensitize cancer cells to both radiation therapy and chemotherapy. The remarkable aspect is that nanoceria show minimal toxicity to normal tissues while protecting against various forms of reactive oxygen species generation. Its capability to enhance the sensitivity of cancer cells to chemotherapy and radiotherapy has also been observed. This paper thoroughly reviews the current literature on nanoceria's applications within different cancer treatment modalities, with a specific focus on radiotherapy. The emphasis is on nanoceria's unique role in enhancing tumor radiosensitization and safeguarding normal tissues from radiation damage.
Collapse
Affiliation(s)
- Maryam Alvandi
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Shaghaghi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Soghra Farzipour
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Paramedicine, Amol School of Paramedical Science, Mazandaran University of Medical Science, Sari, Iran
| | - Zeynab Marzhoseyni
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
7
|
Mohammadgholi M, Hosseinimehr SJ. Crosstalk between Oxidative Stress and Inflammation Induced by Ionizing Radiation in Healthy and Cancerous Cells. Curr Med Chem 2024; 31:2751-2769. [PMID: 37026495 DOI: 10.2174/0929867330666230407104208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 04/08/2023]
Abstract
Radiotherapy (RT) is a unique modality in cancer treatment with no replacement in many cases and uses a tumoricidal dose of various ionizing radiation (IR) types to kill cancer cells. It causes oxidative stress through reactive oxygen species (ROS) production or the destruction of antioxidant systems. On the other hand, RT stimulates the immune system both directly and indirectly by releasing danger signals from stress-exposed and dying cells. Oxidative stress and inflammation are two reciprocal and closely related mechanisms, one induced and involved by the other. ROS regulates the intracellular signal transduction pathways, which participate in the activation and expression of pro-inflammatory genes. Reciprocally, inflammatory cells release ROS and immune system mediators during the inflammation process, which drive the induction of oxidative stress. Oxidative stress or inflammation-induced damages can result in cell death (CD) or survival mechanisms that may be destructive for normal cells or beneficial for cancerous cells. The present study has focused on the radioprotection of those agents with binary effects of antioxidant and anti-inflammatory mechanisms IR-induced CD.
Collapse
Affiliation(s)
- Mohsen Mohammadgholi
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Tang JY, Chuang YT, Shiau JP, Yen CY, Chang FR, Tsai YH, Farooqi AA, Chang HW. Connection between Radiation-Regulating Functions of Natural Products and miRNAs Targeting Radiomodulation and Exosome Biogenesis. Int J Mol Sci 2023; 24:12449. [PMID: 37569824 PMCID: PMC10419287 DOI: 10.3390/ijms241512449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Exosomes are cell-derived membranous structures primarily involved in the delivery of the payload to the recipient cells, and they play central roles in carcinogenesis and metastasis. Radiotherapy is a common cancer treatment that occasionally generates exosomal miRNA-associated modulation to regulate the therapeutic anticancer function and side effects. Combining radiotherapy and natural products may modulate the radioprotective and radiosensitizing responses of non-cancer and cancer cells, but there is a knowledge gap regarding the connection of this combined treatment with exosomal miRNAs and their downstream targets for radiation and exosome biogenesis. This review focuses on radioprotective natural products in terms of their impacts on exosomal miRNAs to target radiation-modulating and exosome biogenesis (secretion and assembly) genes. Several natural products have individually demonstrated radioprotective and miRNA-modulating effects. However, the impact of natural-product-modulated miRNAs on radiation response and exosome biogenesis remains unclear. In this review, by searching through PubMed/Google Scholar, available reports on potential functions that show radioprotection for non-cancer tissues and radiosensitization for cancer among these natural-product-modulated miRNAs were assessed. Next, by accessing the miRNA database (miRDB), the predicted targets of the radiation- and exosome biogenesis-modulating genes from the Gene Ontology database (MGI) were retrieved bioinformatically based on these miRNAs. Moreover, the target-centric analysis showed that several natural products share the same miRNAs and targets to regulate radiation response and exosome biogenesis. As a result, the miRNA-radiomodulation (radioprotection and radiosensitization)-exosome biogenesis axis in regard to natural-product-mediated radiotherapeutic effects is well organized. This review focuses on natural products and their regulating effects on miRNAs to assess the potential impacts of radiomodulation and exosome biogenesis for both the radiosensitization of cancer cells and the radioprotection of non-cancer cells.
Collapse
Affiliation(s)
- Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-H.T.)
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-H.T.)
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
9
|
Rostami M, Yelghi O, Moghaddam ZK, Zeraatchi A, Rezaeejam H, Sadeghi A. Effectiveness of oral famotidine in reducing the hematologic complications of radiotherapy in patients with esophageal and cardia cancers: a randomized controlled trial. Radiat Oncol 2023; 18:83. [PMID: 37210511 DOI: 10.1186/s13014-023-02281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Chemoradiotherapy complications has always been of great concern to both clinicians and patients during the course of treatment. The purpose of the present study was to examine the effectiveness of oral famotidine on the reduction of hematologic complications of patients with esophageal and gastric cardia cancers undergoing radiotherapy. METHODS A single-blind controlled trial was conducted on 60 patients with esophageal and cardia cancers, who were undergoing chemoradiotherapy. Patients were randomly assigned to 2 groups with 30 patients to receive either 40 mg of oral famotidine (daily and 4 h before each session) or placebo. Complete blood count with differential, platelet counts, and hemoglobin levels were obtained weekly during treatment. The main outcome variables were lymphocytopenia, granulocytopenia, thrombocytopenia, and anemia. RESULTS The findings indicated a significant effect of famotidine on reduction of thrombocytopenia among intervention group compared to control group (P < 0.0001). Even so, the effect of intervention was not significant for other outcome variables (All, P ≥ 0.05). The lymphocyte (P = 0.007) and platelet (P = 0.004) counts were also significantly greater in famotidine group in comparison with placebo group at the end of the study. CONCLUSION As evidenced by the findings of the current study, famotidine might be recommended as an effective radioprotective agent among patients with esophageal and gastric cardia cancers to prevent Leukocyte and platelet reduction to some extent. Trial registration This study was prospectively registered at irct.ir (Iranian Registry of Clinical Trials) with the code IRCT20170728035349N1, 2020-08-19.
Collapse
Affiliation(s)
- Mina Rostami
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Omid Yelghi
- Department of Radiation Oncology, School of Medicine, Vali-e-Asr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zhaleh Karimi Moghaddam
- Department of Radiation Oncology, School of Medicine, Vali-e-Asr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Alireza Zeraatchi
- Department of Emergency Medicine, School of Medicine, Valiasr-e-Asr Hospital, Ayatollah Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Rezaeejam
- Department of Radiology Technology, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Alireza Sadeghi
- Department of Internal Medicine, School of Medicine, Vali-e-Asr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
10
|
Prades-Sagarra È, Yaromina A, Dubois LJ. Polyphenols as Potential Protectors against Radiation-Induced Adverse Effects in Patients with Thoracic Cancer. Cancers (Basel) 2023; 15:cancers15092412. [PMID: 37173877 PMCID: PMC10177176 DOI: 10.3390/cancers15092412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Radiotherapy is one of the standard treatment approaches used against thoracic cancers, occasionally combined with chemotherapy, immunotherapy and molecular targeted therapy. However, these cancers are often not highly sensitive to standard of care treatments, making the use of high dose radiotherapy necessary, which is linked with high rates of radiation-induced adverse effects in healthy tissues of the thorax. These tissues remain therefore dose-limiting factors in radiation oncology despite recent technological advances in treatment planning and delivery of irradiation. Polyphenols are metabolites found in plants that have been suggested to improve the therapeutic window by sensitizing the tumor to radiotherapy, while simultaneously protecting normal cells from therapy-induced damage by preventing DNA damage, as well as having anti-oxidant, anti-inflammatory or immunomodulatory properties. This review focuses on the radioprotective effect of polyphenols and the molecular mechanisms underlying these effects in the normal tissue, especially in the lung, heart and esophagus.
Collapse
Affiliation(s)
- Èlia Prades-Sagarra
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
11
|
Kostova N, Staynova A, Popova-Hadjiiska L, Georgieva D, Ivanova I, Aneva N, Atanasova M, Hristova R. Effect of curcumin on γ-ray-induced cell response. JOURNAL OF RADIATION RESEARCH 2023; 64:471-479. [PMID: 36634350 PMCID: PMC10036097 DOI: 10.1093/jrr/rrac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/08/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The purpose of the present study is to evaluate the effect of curcumin as a natural compound against radiation induced γ-foci and stable chromosome aberrations. Whole blood samples form three human volunteers were pretreated with curcumin at different concentrations (0.5, 10, 20 and 100 μg/ml). After 1-hour incubation, the lymphocytes were exposed to γ-rays (0.05, 0.5, 1 and 2 Gy). Radiation induced changes in cells were quantified using γ-H2AX/53BP1 assay and FISH analysis. Our results have shown that curcumin significantly reduced the frequency of both γ-foci and translocations. We found concentration-dependent increase of curcumin protective effect on γ-H2AX/53BP1 foci formation at all radiation doses. Concerning the translocations, after 0.05 and 0.5 Gy γ-rays the values of genomic frequencies are comparable within each dose and we did not observe any impact of curcumin. The most protective effect after 1 Gy exposure was found at 100 μg/ml curcumin. At 2 Gy irradiation, the maximum protection was achieved at 0.5 and 10 μg/ml of curcumin. Concentrations of 20 and 100 μg/ml also prevent lymphocytes but to less extent. Our in vitro study indicates radioprotective efficacy of curcumin against γ-ray induced damages in human lymphocytes. This observation suggests that curcumin may play a role to protect patients undergoing radiological procedures.
Collapse
Affiliation(s)
| | | | - Ljubomira Popova-Hadjiiska
- Department of Radiobiology, National Centre of Radiobiology and Radiation Protection, “Sv. Georgi Sofiiski” Str., No 3; Sofia, 1606, Bulgaria
| | - Dimka Georgieva
- Department of Radiobiology, National Centre of Radiobiology and Radiation Protection, “Sv. Georgi Sofiiski” Str., No 3; Sofia, 1606, Bulgaria
| | - Ilonka Ivanova
- Department of Radiobiology, National Centre of Radiobiology and Radiation Protection, “Sv. Georgi Sofiiski” Str., No 3; Sofia, 1606, Bulgaria
| | - Nevena Aneva
- Department of Radiobiology, National Centre of Radiobiology and Radiation Protection, “Sv. Georgi Sofiiski” Str., No 3; Sofia, 1606, Bulgaria
| | - Margarita Atanasova
- Department of Radiobiology, National Centre of Radiobiology and Radiation Protection, “Sv. Georgi Sofiiski” Str., No 3; Sofia, 1606, Bulgaria
| | - Rositsa Hristova
- Corresponding author. Department of Radiobiology, National Centre of Radiobiology and Radiation Protection, 3 “Sv. Georgi Sofiiski” Str., Sofia-1606, Bulgaria. Fax; Tel: +359 887 613818;
| |
Collapse
|
12
|
Raghu SV, Rao S, Kini V, Kudva AK, George T, Baliga MS. Fruits and their phytochemicals in mitigating the ill effects of ionizing radiation: review on the existing scientific evidence and way forward. Food Funct 2023; 14:1290-1319. [PMID: 36688345 DOI: 10.1039/d2fo01911f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although helpful in treating cancer, exposure to ionizing radiation can sometimes cause severe side effects, negating its benefit. In addition to its use in clinics, a nontoxic radioprotective agent can also be beneficial in occupational settings where humans are occupationally exposed for prolonged periods to low doses of radiation. Scientific studies using laboratory animals have shown that the fruits Aegle marmelos, Capsicum annuum, Citrus aurantium, Citrullus lanatus, Crataegus microphylla, Eugenia jambolana, Emblica officinalis, Garcinia kola, Grewia asiatica, Hippophae rhamnoides, Malus baccata, Malpighia glabra or Malpighia emarginata, Mangifera indica, Prunus domestica, Prunus avium, Prunus armeniaca, Psoralea corylifolia, Punica granatum, Solanum lycopersicum, Terminalia chebula, Vaccinium macrocarpon, Vitis vinifera and Xylopia aethiopica, and the phytochemicals gallic acid, ellagic acid, quercetin, geraniin, corilagin, ascorbic acid, hesperetin, ursolic acid, lycopene, naringin, hesperidin, rutin, resveratrol, β-sitosterol, apigenin, luteolin, chlorogenic acid, caffeic acid, mangiferin, diosmin, ferulic acid, and kaempferol are effective in preventing radiation-induced ill effects. Clinical studies with Emblica officinalis and Punica granatum have also shown that fruits help mitigate radiation-induced mucositis, dermatitis, and cystitis. For the first time, the current review summarizes the beneficial effects of fruits and phytochemicals in mitigating radiation-induced damage, the underlying mechanisms and the existing lacunae for future studies to be undertaken for the benefit of humans and the nutraceutical and agri-based industries.
Collapse
Affiliation(s)
- Shamprasad Varija Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, 574199, Karnataka, India
| | - Suresh Rao
- Mangalore Institute of Oncology, Pumpwell, Mangalore-575002, Karnataka, India.
| | - Venkataramana Kini
- Mangalore Institute of Oncology, Pumpwell, Mangalore-575002, Karnataka, India.
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, 574199, Karnataka, India
| | - Thomas George
- Internal Medicine, Coney Island Hospital, 2601 Ocean Pkwy, Brooklyn, New York, 11235, USA
| | | |
Collapse
|
13
|
Zivkovic Radojevic M, Milosavljevic N, Miladinovic TB, Janković S, Folic M. Review of compounds that exhibit radioprotective and/or mitigatory effects after application of diagnostic or therapeutic ionizing radiation. Int J Radiat Biol 2023; 99:594-603. [PMID: 35930681 DOI: 10.1080/09553002.2022.2110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE Exposure to ionizing radiation can be accidental or for medical purposes. Analyzes of the frequency of radiation damage in the general population, it has been determined that by far the most common are those that occur as a result of diagnostic or therapeutic procedures. Damage caused by radiation, either accidentally or for therapeutic purposes, can be reduced by the use of radioprotectors, mitigators or other therapeutic agents. A detailed research of the available literature shows that there is little systematized data of potentially radioprotective and/or mitigating effects of drugs from the personal therapy of patients during the application of therapeutic ionizing radiation. The aim of this paper is to present review of compounds, especially personal therapy drugs, that exhibit radioprotective and/or mitigating effects after the application of diagnostic or therapeutic ionizing radiation. CONCLUSIONS Given the widespread use of ionizing radiation for diagnostic and therapeutic purposes, there is a clear need to create a strategy and recommendations of relevant institutions for the use of radioprotectors and mitigators in everyday clinical practice, with individual evaluation of the patient's condition and selection of the compounds that will show the greatest benefit in terms of radioprotection.
Collapse
Affiliation(s)
| | - Neda Milosavljevic
- Centre for Radiation Oncology, University Clinical Centre Kragujevac, Kragujevac, Serbia
| | - Tatjana B Miladinovic
- Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Slobodan Janković
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Clinical Pharmacology Department, University Clinical Centre Kragujevac, Kragujevac, Serbia
| | - Marko Folic
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Clinical Pharmacology Department, University Clinical Centre Kragujevac, Kragujevac, Serbia
| |
Collapse
|
14
|
Verma S, Dutta A, Dahiya A, Kalra N. Quercetin-3-Rutinoside alleviates radiation-induced lung inflammation and fibrosis via regulation of NF-κB/TGF-β1 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154004. [PMID: 35219007 DOI: 10.1016/j.phymed.2022.154004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Radiation exposure to lungs during nuclear catastrophes or radiotherapy poses long-term side effects and can induce pulmonary injury sufficient for causing death. The strategies for preventing or reversing radiation-induced lung injuries have not been yet developed. Quercetin-3-Rutinoside (Q-3-R), a polyphenolic bioflavonoid, has shown multifaceted pharmacological applications due to its high antioxidant and anti-inflammatory properties. PURPOSE In the current study, the potential of Q-3-R against radiation-induced lung pneumonitis/fibrosis and the possible underlying mechanism was investigated. STUDY DESIGN To evaluate the effect of Q-3-R against lung damage, C57Bl/6 mice were administered with Q-3-R (10 mg/kg b.wt.) and irradiated with a single dose of gamma radiation (12 Gy) at thoracic region. METHODS 16 weeks after irradiation lung damage was seen by histopathological studies and staining for collagen deposition. Expression of Nuclear factor kappa-B (NF-κB), transforming growth factor-β1 (TGF-β1), Smad3, intercellular adhesion molecule 1 (ICAM-1), α-smooth muscle actin protein (α-SMA), Aquaporin 5 (AQP 5), Interleukins (IL-6, IL-18, IL-1β), tumor necrosis factor-α (TNF-α) and caspase-3 was evaluated by immunohistochemistry/western blot/Elisa. Reactive oxygen species (ROS)/ Nitric oxide (NO) scavenging potential of Q-3-R and inhibition of cell death in irradiated lungs were also assessed. RESULTS Mice showed signs of pneumonitis and fibrotic changes in lungs following radiation treatment. A dramatic increase in inflammatory cells and cytokines contributing to lung disease pathogenesis was observed. Furthermore, expression of NF-κB, TGF-β1, Smad3, ICAM-1, AQP5and α-SMA was found markedly up-regulated. However, pretreatment of Q-3-R significantly attenuated radiation-induced pneumonitis and fibrosis. Histological examination revealed less structural and fibrotic changes with down-regulation of AQP 5, ICAM-1, α-SMA and caspase-3 in Q-3-R pretreated irradiated groups. The formulation significantly relieved lung injury by suppressing inflammatory and pro-fibrotic cytokines such as IL-6, IL-18, IL-1β, TNF-α and TGF-β1 via inhibition of NF-κB. Q-3-R also curtailed radiation-induced ROS/NO generation and minimized DNA damage in the irradiated lungs. CONCLUSION The findings from the current study clearly demonstrate that Q-3-R provides radioprotection to the lungs by regulating NF-κB/TGF-β1 signaling, scavenging free radicals, preventing perivascular infiltration and prolonged inflammatory cascade which could otherwise lead to chronic radiation fibrosis. Q-3-R can be proved as a potential therapeutic agent for alleviating radiation-induced lung injury in case of planned or unplanned radiation exposure scenario.
Collapse
Affiliation(s)
- Savita Verma
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Brig. S.K. Mazumdar Marg, Delhi 110054, India.
| | - Ajaswrata Dutta
- Division of cBRN, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Brig. S.K. Mazumdar Marg, Delhi 110054, India
| | - Akshu Dahiya
- Division of cBRN, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Brig. S.K. Mazumdar Marg, Delhi 110054, India
| | - Namita Kalra
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Brig. S.K. Mazumdar Marg, Delhi 110054, India
| |
Collapse
|
15
|
Tewari S, Patel M, Debnath AVF, Mehta P, Patel S, Bakshi S. Bamboo leaf extract ameliorates radiation induced genotoxicity: An in vitro study of chromosome aberration assay. J Herb Med 2022. [DOI: 10.1016/j.hermed.2021.100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Korany DA, Said RS, Ayoub IM, Labib RM, El-Ahmady SH, Singab ANB. Protective effects of Brownea grandiceps (Jacq.) against ϒ-radiation-induced enteritis in rats in relation to its secondary metabolome fingerprint. Biomed Pharmacother 2022; 146:112603. [PMID: 35062069 DOI: 10.1016/j.biopha.2021.112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 11/30/2022] Open
Abstract
Radiation enteritis is the most common complication of radiotherapy in patients with pelvic malignancies. Thus, the radioprotective activity of the total hydro-alcoholic extract (BGE) and the ethyl acetate soluble fraction (EAF) of Brownea grandiceps leaves was evaluated against ϒ-radiation-induced enteritis in rats. (BGE) and (EAF) were characterized using HPLC-PDA-ESI-MS/MS analysis. The total phenolic and flavonoid contents were also quantified. In vivo administration of (BGE) (400 mg/kg) and (EAF) (200 & 400 mg/kg) prevented intestinal injury and maintained the mucosal integrity of irradiated rats through increasing villi length and promoting crypt regeneration. Also, (EAF) showed more potent antioxidant activity than (BGE) through reduction of MDA level and enhancement of GSH content and catalase enzyme activity. (BGE) and (EAF) down-regulated intestinal NF-κB expression leading to diminished expression of downstream inflammatory cytokine TNF-α. Moreover, (EAF) markedly reduced the expression of profibrotic marker TGF-β1. Seventy-nine compounds were tentatively identified, including flavonoids, proanthocyanidins, polar lipids and phenolic acids. (EAF) showed significantly higher total phenolic and flavonoid contents, as compared to (BGE). Results revealed remarkable radioprotective activity of (BGE) and (EAF), with significantly higher activity for (EAF). The chemical constituents of (BGE) and (EAF) strongly supported their radioprotective activity. To the best of our knowledge, the present study describes for the first time the radioprotective activity of B. grandiceps leaves in relation to its secondary metabolome fingerprint; emphasizing the great promise of B. grandiceps leaves, especially (EAF), to be used as natural radio-protective agent.
Collapse
Affiliation(s)
- Doaa A Korany
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, 11566, Cairo, Egypt.
| | - Riham S Said
- Department of Drug Radiation Research, National Center for Radiation Research & Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Iriny M Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, 11566, Cairo, Egypt
| | - Rola M Labib
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, 11566, Cairo, Egypt
| | - Sherweit H El-Ahmady
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, 11566, Cairo, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, 11566, Cairo, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
17
|
Lopes NB, Almeida IV, Lucchetta L, Düsman E, Vicentini VEP. Cytotoxicity of iodine-131 radiopharmaceutical in tumor and non-tumor human cells and radioprotection by integral juices of Vitis labrusca L. BRAZ J BIOL 2022; 82:e253206. [DOI: 10.1590/1519-6984.253206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 03/24/2022] [Indexed: 12/23/2022] Open
Abstract
Abstract Iodine-131 (I-131) radioisotope it causes the formation of free radicals, which lead to the formation of cell lesions and the reduction of cell viability. Thus, the use of radioprotectors, especially those from natural sources, which reduce the effects of radiation to healthy tissues, while maintaining the sensitivity of tumor cells, stands out. The objective of the present study was to evaluate the cytoprotective/radioprotective effects of whole grape juices manufactured from the conventional or organic production systems, whether or not exposed to ultraviolet (UV-C) light irradiation. The results showed that I-131 presented a cytotoxic effect on human hepatocellular cells (HepG2/C3A) at concentrations above 1.85 MBq/mL, after 24 and 48 hours of treatment, though all concentrations (0.0037 to 7.40 MBq/mL) were cytotoxic to non-tumor human lung fibroblast (MCR-5) cells, after 48 hours. However, grape juices (10 and 20 µL/mL) did not interfere with the cytotoxic effect of the therapeutic dose of I-131 on tumor cells within 48 hours of treatment, while protecting the non-tumor cells, probably due to its high antioxidant activity. In accordance with their nutraceutical potential, antioxidant and radioprotective activity, these data stimulate in vivo studies on the use of natural products as radioprotectants, such as grape juice, in order to confirm the positive beneficial potential in living organisms.
Collapse
Affiliation(s)
| | | | - L. Lucchetta
- Universidade Tecnológica Federal do Paraná, Brasil
| | - E. Düsman
- Universidade Tecnológica Federal do Paraná, Brasil
| | | |
Collapse
|
18
|
Shivappa P, Bernhardt G. Natural radioprotectors on current and future perspectives: A mini-review. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2022; 14:57-71. [PMID: 36034486 PMCID: PMC9416108 DOI: 10.4103/jpbs.jpbs_502_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Radiation therapy is used as the primary treatment for cancer. Eighty percent of cancer patients require radiation therapy during treatment or for medical purposes. During treatment, radiation causes various biological defects in the cells. The prevalence of cytotoxicity limits the dose used for effective treatment. This method is designed to strike a balance between removing cancer cells and protecting normal tissues. Unfortunately, effective radiation is unavailable once acute toxicity occurs during clinical radiation therapy. Therefore, a lot of research interest is needed in the discovery of radioprotective drugs to accelerate treatment to reduce this toxicity (i.e., normal tissue toxicity to cancer cell death). Radiation protectors may be chemicals or drugs that minimize the damage caused due to radiation therapy in living organisms. The determination of effective and nontoxic radiation protection is an essential goal for radiation oncologists and basic radiobiologists. However, despite the advantages, many radioprotectors were found to have disadvantages which include cost, less duration, toxicity, and effect on the central nervous system. Therefore in recent years, the focus has been diverted to finding out optimal natural products to act as radioprotectors. Natural radiation protectors are plant compounds that protect normal (noncancerous) cells from damage from radiation therapy. Natural herbal products are nontoxic with proven therapeutic benefits and have long been used to treat various diseases. In conclusion, we find that there are various radiation protectors with different purposes and mechanisms of action.
Collapse
|
19
|
Roles of Therapeutic Bioactive Compounds in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9068850. [PMID: 34754365 PMCID: PMC8572616 DOI: 10.1155/2021/9068850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is due to poor prognosis and lack of availability of effective treatment. Novel therapeutic strategies will be the fine tuning of intracellular ROS signaling to effectively deprive cells of ROS-induced tumor-promoting events. This review discusses the generation of ROS, the major signaling their modulation in therapeutics. We explore some of the major pathways involved in HCC, which include the VEGF, MAPK/ERK, mTOR, FGF, and Ser/Thr kinase pathways. In this review, we study cornerstone on natural bioactive compounds with their effect on hepatocarcinomas. Furthermore, we focus on oxidative stress and FDA-approved signaling pathway inhibitors, along with chemotherapy and radiotherapy enhancers which with early evidence of success. While more in vivo testing is required to confirm the findings presented here, our findings will aid future nonclinical, preclinical, and clinical studies with these compounds, as well as inspire medicinal chemistry scientists to conduct appropriate research on this promising natural compound and their derivatives.
Collapse
|
20
|
El-Benhawy SA, Morsi MI, El-Tahan RA, Matar NA, Ehmaida HMG. Radioprotective Effect of Thymoquinone in X-irradiated Rats. Asian Pac J Cancer Prev 2021; 22:3005-3015. [PMID: 34582673 PMCID: PMC8850879 DOI: 10.31557/apjcp.2021.22.9.3005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Thymoquinone, has anti-inflammatory, anti-oxidant, and cardio protection properties. This study aimed to evaluate the radioprotective effect of thymoquinone in whole body X-irradiated rats. METHODS This study conducted on 40 male adult Wistar albino rats randomized into the following groups: Group I: Control rats did not receive thymoquinone or ionizing radiation. Group II: Whole-body irradiated rats with 6 Gy of X-ray. Group III: Rats orally intubated with thymoquinone (10 mg/kg/day) for 7 days then subjected to whole-body irradiation with 6 Gy then supplemented with thymoquinone for another 7 days. Group IV: Rats orally intubated with thymoquinone (20 mg/kg/day) for 7 days then subjected to whole-body irradiation with 6 Gy then supplemented with thymoquinone (20 mg/kg/day) for another 7 days. LDH, CK-MB, ALT, AST, MDA, TAC, Catalase activity, GPX, GSR and GSH were measured. RESULTS Lipid peroxidation biomarker in the blood of X-irradiated rats significantly increased and accompanied by decrease in the levels of GSH, GSR, GPX, catalase as well as TAC. Moreover, exposure to IR significantly increases cardiac and liver enzymes. However, administration of TQ to X-irradiated rats with either 10 mg/kg or 20 mg/kg have the same reform effects and significantly protects rats against adverse effects of IR. CONCLUSION Exposure to X-ray leads to significant changes in cellular biochemical and morphological conditions. Administration of TQ before radiation treatment significantly decreases the adverse effects of IR. TQ can improve cardiac function, decrease myocardial enzyme levels and inhibit oxidative stress.
Collapse
Affiliation(s)
- Sanaa A. El-Benhawy
- Department of Radiation Sciences, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Mohamed I. Morsi
- Department of Radiation Sciences, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Rasha A. El-Tahan
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Noura A. Matar
- Department of Histochemistry and Cell Biology, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | | |
Collapse
|
21
|
Usoltseva RV, Malyarenko OS, Anastyuk SD, Shevchenko NM, Silchenko AS, Zvyagintseva TN, Isakov VV, Thinh PD, Khanh HHN, Hang CTT, Trung DT, Ermakova SP. The structure of fucoidan from Sargassum oligocystum and radiosensitizing activity of galactofucans from some algae of genus Sargassum. Int J Biol Macromol 2021; 183:1427-1435. [PMID: 34023368 DOI: 10.1016/j.ijbiomac.2021.05.128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/05/2021] [Accepted: 05/18/2021] [Indexed: 01/30/2023]
Abstract
The aim of this study was to establish the fine structure of fucoidan from Sargassum oligocystum and to study the radiosensitizing effect of fucoidans from three algae of genus Sargassum (S. oligocystum, S. duplicatum, and S. feldmannii) with different structures. The fucoidan SoF2 from S. oligocystum was sulfated (32%) galactofucan (Fuc:Gal = 2:1), with a Mw of 183 kDa (Mw/Mn = 2.0). Its supposed structure was found to be predominantly 1,3-linked fucose as the main chain, with branching points at C2 and C4. The branches could be single galactose and/or fucose short chains with terminal galactose residues. Sulfate groups were found at positions C3, C2, and/or C4 of fucose residues and at C2 and/or C4 of galactose residues. The radiosensitizing effect of galactofucans from S. oligocystum, S. duplicatum, and S. feldmannii against human melanoma SK-MEL-28, colon HT-29, and breast MDA-MB-231 cancer cells was investigated. The influence of all investigated polysaccharides treatments with/without X-ray radiation on colony formation of human melanoma cells SK-MEL-28 was weak. Fucoidan from S. feldmannii has been shown to be the most promising radiosensitizing compound against human colon HT-29 and breast MDA-MB-231 cancer cells.
Collapse
Affiliation(s)
- Roza V Usoltseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation.
| | - Olesya S Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Stanislav D Anastyuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Natalia M Shevchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Artem S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Tatiana N Zvyagintseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Vladimir V Isakov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Pham Duc Thinh
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang, Viet Nam
| | - Huynh Hoang Nhu Khanh
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang, Viet Nam
| | - Cao Thi Thuy Hang
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang, Viet Nam
| | - Dinh Thanh Trung
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang, Viet Nam
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| |
Collapse
|
22
|
Dowlath MJH, Karuppannan SK, Sinha P, Dowlath NS, Arunachalam KD, Ravindran B, Chang SW, Nguyen-Tri P, Nguyen DD. Effects of radiation and role of plants in radioprotection: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146431. [PMID: 34030282 DOI: 10.1016/j.scitotenv.2021.146431] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 05/16/2023]
Abstract
Radiation can be lethal at high doses, whereas controlled doses are useful in medical applications. Other applications include power generation, agriculture sterilization, nuclear weapons, and archeology. Radiation damages genetic material, which is reflected in genotoxicity and can cause hereditary damage. In the medical field, it is essential to avoid the harmful effects of radiation. Radiation countermeasures and the need for radioprotective agents have been explored in recent years. Considering plants that evolve in radiative conditions, their ability to protect organisms against radiation has been studied and demonstrated. Crude extracts, fractioned extracts, isolated phytocompounds, and plant polysaccharides from various plants have been used in radioprotection studies, and their efficiency has been proven in various in vitro and in vivo experimental models. It is important to identify the mechanism of action to develop a potent plant-based radioprotective agent. To identify this protective mechanism, it is necessary to understand the damage caused by radiation in biological systems. This review intends to discuss the effects of ionizing radiation on biological systems and evaluate plant-based radioprotectants that have tested thus far as well as their mechanism of action in protecting against the toxic effects of radiation. From the review, the mechanism of radioprotection exhibited by the plant-based products could be understood. Meanwhile, we strongly suggest that the potential products identified so far should undergo clinical trials for critically evaluating their effects and for developing an ideal and compatible radioprotectant with no side-effects.
Collapse
Affiliation(s)
- Mohammed Junaid Hussain Dowlath
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Sathish Kumar Karuppannan
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Pamela Sinha
- Project Management, Bioneeds India Pvt. Ltd, Peenya Industrial Area, Bengaluru 560058, India
| | - Nihala Sultana Dowlath
- Department of Biochemistry, Ethiraj College for Women, Chennai, Tamil Nadu 600008, India
| | - Kantha Deivi Arunachalam
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India.
| | - B Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea.
| | - S Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Phuong Nguyen-Tri
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada
| | - D Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam; Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea.
| |
Collapse
|
23
|
Pujari I, Thomas A, Thomas J, Jhawar N, Guruprasad KP, Rai PS, Satyamoorthy K, Babu VS. Cytotoxicity and radiosensitizing potency of Moscatilin in cancer cells at low radiation doses of X-ray and UV-C. 3 Biotech 2021; 11:281. [PMID: 34094800 PMCID: PMC8137750 DOI: 10.1007/s13205-021-02827-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/04/2021] [Indexed: 02/08/2023] Open
Abstract
Moscatilin (stilbenoid) is a plant-derived anticancer compound, and it has mostly been isolated from threatened wild Dendrobium species. The present study attempts to evaluate the cytotoxicity of Moscatilin on several cancer cell lines through MTT assay. Additionally, it also aims towards estimating and comparing the radiosensitivity, cell-cycle progression, and apoptotic/necrotic effect induced by Moscatilin on different cell lines. The effects of Moscatilin was compared with another significant stilbenoid anticancer agent, Resveratrol (a structural analog of Moscatilin), whose presence has also been reported in Dendrobiums. Considering the threatened nature of this genus, crude extracts of a tropical and epiphytic Dendrobium species, viz., Dendrobium ovatum, prepared from in vitro seedlings were also tested towards cytotoxicity and radiosensitization efficacy. Moscatilin functioned as an effective radiosensitizer at 5 µg/ml along with 1 Gy X-ray and 200 J/m2 UV-C radiations. It was also able to perturb cell cycle both at replicative and post-replicative phases with the aforementioned combination. Moscatilin, in unison with radiation, triggered immunogenic death specifically on cancer cells starting from Pyroptosis, terminating in Necroptosis. Moscatilin, when used singly, could evoke immunogenic cell death. Analyses of Damage-Associated Molecular Patterns released during radiation and Moscatilin treatment would aid in ascertaining the mode of cell death. Moscatilin is a potential radiosensitizer and must be tested for preclinical and clinical trials to combat cancer.
Collapse
|
24
|
Luteolin and cancer metastasis suppression: focus on the role of epithelial to mesenchymal transition. Med Oncol 2021; 38:66. [PMID: 33950369 DOI: 10.1007/s12032-021-01508-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a physiological process that assumes a primary role in the induction of cancer metastasis. This results in increased cell renewal, and resistance to cell death and therapies. EMT, therefore, represents an effective strategy for regulating cancerous cell activity. A need for efficacy and low cytotoxicity epithelial to mesenchymal transition modifying drugs has led to the investigational testing of the efficacy of plethora of different groups of phytonutrients. Luteolin is a natural flavonoid inhibits the growth of cancer cells by various mechanisms, such as the stimulation of cancer cell apoptosis, cell cycle arrest, inhibition of cell replication, tumor growth, improvement of drug resistance, prevention of cancer cell intrusiveness and metastasis. This review article focuses on the anti-cancer and anti-metastatic potential of luteolin targeting various transcription factors, markers and signaling pathways associated with the repression of epithelial to mesenchymal transition.
Collapse
|
25
|
Adnan M, Rasul A, Shah MA, Hussain G, Asrar M, Riaza A, Sarfraza I, Hussaina A, Khorsandid K, Laie NS, Hussaina SM. Radioprotective Role of Natural Polyphenols: From Sources to Mechanisms. Anticancer Agents Med Chem 2021; 22:30-39. [PMID: 33874875 DOI: 10.2174/1871520621666210419095829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
The identification and development of radioprotective agents has emerged as a subject matter of research during recent years due to the growing usage of ionizing radiation in different areas of human life. Previous work on synthetic radioprotectors has achieved limited progress because of the numerous issues associated with toxicity. Compounds extracted from plants have potential to serve as lead candidates for developing ideal radioprotectors due to their low cost, safety and selectivity. Polyphenols are the most abundant and commonly dispersed group of biologically active molecules possessing broad range of pharmacological activities. Polyphenols have displayed efficacy for radioprotection during various investigations and can be administered at high doses with lesser toxicity. Detoxification of free radicals, modulating inflammatory responses, DNA repair, stimulation of hematopoietic recovery, and immune functions are the main mechanisms for radiation protection with polyphenols. Epicatechin, epigallocatechin-3-gallate, apigenin, caffeic acid phenylethylester, and silibinin provide cytoprotection together with the suppression of many pro-inflammatory cytokines owing to their free radical scavenging, anti-oxidant, and anti-inflammatory properties. Curcumin, resveratrol, quercetin, gallic acid, and rutin's radioprotective properties are regulated primarily by direct or indirect decline in cellular stress. Thus, polyphenols may serve as potential candidates for radioprotection in the near future, however, extensive investigations are still required to better understand their protection mechanisms.
Collapse
Affiliation(s)
- Muhammad Adnan
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| | - Muhammad A Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University Faisalabad 38000. Pakistan
| | - Ghulam Hussain
- Neurochemical biology and Genetics Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| | - Muhammad Asrar
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| | - Ammara Riaza
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| | - Iqra Sarfraza
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| | - Arif Hussaina
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| | - Khatereh Khorsandid
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran. Iran
| | - Ngit S Laie
- Institute for Research in Molecular Medicine Universiti Sains Malaysia, Pulau Pinang. Malaysia
| | - Syed M Hussaina
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| |
Collapse
|
26
|
Akomolafe IR, Chetty N. Radioprotective potential of <italic>Costus afer</italic> against the radiation-induced hematological and histopathological damage in mice. Radiat Oncol J 2021; 39:61-71. [PMID: 33794575 PMCID: PMC8024188 DOI: 10.3857/roj.2021.00017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose This study investigated the possible radioprotective effect of Costus afer extract (CAE) on hematological and histopathological parameters of mice. Materials and Methods Fifty-four male mice with mass between 37–43 g, 11–13 weeks old were used for this study. We divided the mice into six different groups containing nine animals, which were then further sub-divided into irradiated groups and un-irradiated groups. Animals received 250 mg/kg body weight extract of CAE by oral gavage for 6 days in addition to feeding and water ad libitum. Animals in the irradiated group were exposed to radiation at the Department of Radiotherapy and Oncology, Grey’s Hospital using a linear accelerator. Blood samples were collected at 48-hour post-irradiation for the hematology test followed by histopathology examination of kidney and liver. Results Our findings revealed that 3 Gy and 6 Gy dose of X-ray radiation caused a significant reduction in the white blood cell, packed cell volume, hemoglobin, neutrophils, lymphocytes, eosinophils, and platelet counts compared with the control group. However, the administration of CAE before irradiation significantly increased the mentioned parameters. There was no increase in red blood cell and monocyte among treated groups compared with the control. Histopathological changes in the kidney and liver sections revealed that no visible lesion in the pretreated mice. Hepatocytes seem to be within normal histological limits. Conclusions This study concludes that CAE offered some protection against radiation-induced hematological alterations, but there was no significant improvement in the histopathological parameters. Thus, further studies are needed to validate its radioprotective effect on histopathological variables.
Collapse
Affiliation(s)
- Idowu Richard Akomolafe
- Discipline of Physics, School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Naven Chetty
- Discipline of Physics, School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
27
|
Radioprotective effects of Cryptosporidium parvum lysates on normal cells. Int J Biol Macromol 2021; 178:121-135. [PMID: 33636272 DOI: 10.1016/j.ijbiomac.2021.02.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/14/2021] [Accepted: 02/20/2021] [Indexed: 11/24/2022]
Abstract
Two fractions, small and big (CpL-S, CpL-B), from Cryptosporidium parvum lysate (CpL) were prepared and its radioprotective activity was evaluated on normal cells. Both fractions improved cell viability of normal cells in a dose-dependent manner. 20 μg CpL-S and CpL-B improved cell viability of 10 Gy irradiated COS-7 cells by 38% and 34% respectively, while in HaCat cells 16% and 18% improved cell viability was observed, respectively. CpL-S scavenged IR-induced ROS more effectively compared to the CpL-B, 50% more in COS-7 cells and 15% more in HaCat cells. There was a significant reduction of γH2AX, Rad51, and pDNA-PKcs foci in CpL-S treated cells compared to control or CpL-B group at an early time point as well as late time point. In 3D skin tissue, CpL-S reduced the number of γH2AX positive cells by 31%, compared to control, while CpL-B reduced by 9% (p < 0.005) at 1 h post 10 Gy irradiation and 22% vs 6% at 24 h post-IR (p < 0.005). Taken together, CpL-S significantly improved cell viability and prevented radiation-induced DNA damage in normal cells as well as 3D skin tissues by effectively scavenging ROS generated by ionizing radiation. CpL-S can be a candidate for radioprotector development.
Collapse
|
28
|
Mukherjee S, Dutta A, Chakraborty A. External modulators and redox homeostasis: Scenario in radiation-induced bystander cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108368. [PMID: 34083032 DOI: 10.1016/j.mrrev.2021.108368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/10/2020] [Accepted: 01/16/2021] [Indexed: 01/07/2023]
Abstract
Redox homeostasis is imperative to maintain normal physiologic and metabolic functions. Radiotherapy disturbs this balance and induces genomic instability in diseased cells. However, radiation-induced effects propagate beyond the targeted cells, affecting the adjacent non-targeted cells (bystander effects). The cellular impact of radiation, thus, encompasses both targeted and non-targeted effects. Use of external modulators along with radiation can increase radio-therapeutic efficiency. The modulators' classification as protectors or sensitizers depends on interactions with damaged DNA molecules. Thus, it is necessary to realize the functions of various radio-sensitizers or radio-protectors in both irradiated and bystander cells. This review focuses on some modulators of radiation-induced bystander effects (RIBE) and their action mechanisms. Knowledge about the underlying signaling cross-talk may promote selective sensitization of radiation-targeted cells and protection of bystander cells.
Collapse
Affiliation(s)
- Sharmi Mukherjee
- Stress Biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, India
| | - Anindita Dutta
- Stress Biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, India
| | - Anindita Chakraborty
- Stress Biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, India.
| |
Collapse
|
29
|
Karpiński TM, Adamczak A, Ożarowski M. Radioprotective Effects of Plants from the Lamiaceae Family. Anticancer Agents Med Chem 2020; 22:4-19. [PMID: 33121420 DOI: 10.2174/1871520620666201029120147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Edible and medicinal plants are still an interesting source of promising biologically active substances to drug discovery and development. At a time of increasing cancer incidence in the world, alleviating the bothersome side effects of radiotherapy in debilitated cancer patients is becoming an important challenge. OBJECTIVE The aim of the study was to overview the literature data concerning the radioprotective activity of extracts, essential oils, and some chemical compounds obtained from 12 species belonging to the Lamiaceae family, gathering of numerous spice and medicinal plants rich in valuable phytochemicals. RESULTS AND CONCLUSION The analysis of available publications showed radioprotective effectiveness of essential oils and complex extracts containing phenolic acids and flavonoids in various in vitro and in vivo models. Relatively welldocumented preventive properties exhibited the following species: Mentha × piperita, Ocimum tenuiflorum, Origanum vulgare, and Rosmarinus officinalis. However, few plants such as Lavandula angustifolia, Mentha arvensis, M. spicata, Plectranthus amboinicus, Salvia miltiorrhiza, S. officinalis, Scutellaria baicalensis, and Zataria multiflora should be more investigated in the future. Among the mechanisms of radioprotective effects of well-studied extracts and phytochemicals, it can be mentioned mainly the protection against chromosomal damage, scavenging free radicals, decreasing of lipid peroxidation and elevating of glutathione, superoxide dismutase, catalase, and alkaline phosphatase enzyme levels as well as the reduction the cell death. The plant substances protected the gastrointestinal tract, bone marrow and lung fibroblasts. In conclusion, studied species of Lamiaceae family and their active chemical compounds are potent in alleviating the side effects of radiotherapy and should be considered as a complementary therapy.
Collapse
Affiliation(s)
- Tomasz M Karpiński
- Department of Medical Microbiology, Faculty of Medical Sciences, Poznań University of Medical Sciences, Poznań. Poland
| | - Artur Adamczak
- Department of Botany, Breeding and Agricultural Technology of Medicinal Plants, Institute of Natural Fibres and Medicinal Plants, Poznań. Poland
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Poznań. Poland
| |
Collapse
|
30
|
Poojary R, Kumar NA, Kumarchandra R, Sanjeev G, Shivananda Pai D, Vinodini NA, Bhagyalakshmi K. Assessment of monoamine neurotransmitters in the cortex and cerebellum of gamma-irradiated mice: A neuromodulatory role of Cynodon dactylon. J Carcinog 2020; 19:6. [PMID: 33033462 PMCID: PMC7511894 DOI: 10.4103/jcar.jcar_13_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/28/2020] [Accepted: 03/28/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION: Radiation is an important tool in the diagnostic and curative treatment of many cancers. Ionizing radiation induces many biochemical changes in the cells. The present study was designed to estimate the level of neurotransmitters in the distinct brain tissue of Swiss albino mice before exposing gamma radiation. MATERIALS AND METHODS: The mice were treated with 0.25 and 1 g/kg body weight of Cynodon dactylon extract (CDE) via oral gavage for 7 days and subjected to 5 Gy of gamma radiation. The estimation of monoamines was performed in the cortex and cerebellum separately. RESULTS: Mice exposed to a sublethal dose 5 Gy of gamma radiation causes a significant decrease in dopamine, norepinephrine, epinephrine, and serotonin levels compared to normal. The mice treated with 0.25 and 1 g/kg body weight of CDE via oral gavage for 7 days showed significant improvement in the level of monoamine neurotransmitters in both the cortex and cerebellum homogenate. CONCLUSION: Oral administration of antioxidant-rich C. dactylon has shown a neuromodulatory effect against radiation-induced depletion of neurotransmitters in the brain tissues.
Collapse
Affiliation(s)
- Roopesh Poojary
- Department of Physiology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nayanatara Arun Kumar
- Department of Physiology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Reshma Kumarchandra
- Department of Biochemistry, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ganesh Sanjeev
- Microtron Centre, Department of Studies in Physics, Mangalore University, Mangalagangotri, Karnataka, India
| | - D Shivananda Pai
- Department of Neurology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - N A Vinodini
- Department of Physiology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - K Bhagyalakshmi
- Department of Physiology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
31
|
Do M, Stinson K, George R. Reflectance structured illumination imaging of internalized cerium oxide nanoparticles modulating dose-dependent reactive oxygen species in breast cancer cells. Biochem Biophys Rep 2020; 22:100745. [PMID: 32099911 PMCID: PMC7031132 DOI: 10.1016/j.bbrep.2020.100745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Cerium oxide nanoparticles have been shown to sensitize cancer cells to radiation damage. Their unique redox properties confer excellent therapeutic potential by augmenting radiation dose with reactive oxygen species mediating bystander effects. Owing to its metallic properties, cerium oxide nanoparticles can be visualized inside cells using reflected light and optical sectioning. This can be advantageous in settings requiring none or minimal sample preparation and modification. We investigated the use of reflectance imaging for the detection of unmodified nanoceria in MDA MB231 breast cancer cells along with differential interference contrast imaging and fluorescent nuclear labeling. We also performed studies to evaluate the uptake capability, cellular toxicity and redox properties of nanocaria in these cells. Our results demonstrate that reflectance structured illumination imaging can effectively localize cerium oxide nanoparticles in breast cancer cells, and when combining with differential interference contrast and fluorescent cell label imaging, effective compartmental localization of the nanoparticles can be achieved. The total number of cells taking up the nanoparticles and the amount of nanoparticle uptake increased significantly in proportion to the dose, with no adverse effects on cell survival. Moreover, significant reduction in reactive oxygen species was also observed in proportion to increasing nanoceria concentrations attesting to its ability to modulate oxidative stress. In conclusion, this work serves as a pre-clinical scientific evaluation of the effective use of reflectance structured illumination imaging of cerium oxide nanoparticles in breast cancer cells and the safe use of these nanoparticles in MDA MB231 cells for further therapeutic applications. Internalized cerium oxide nanoparticles are imaged with reflected light in breast cancer cells for the first time. Cerium oxide nanoparticles demonstrated no toxicity in MDA MB231 breast cancer cells Cerium oxide nanoparticles modulated free radicals in MBA MB231 cells in a dose dependent manner
Collapse
Affiliation(s)
- Melissa Do
- Department of Clinical & Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kayla Stinson
- Department of Clinical & Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Remo George
- Department of Clinical & Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
32
|
Ma S, Zhang T, Jiang L, Qin W, Lu K, Zhang Y, Wang R. Impact of bladder volume on treatment planning and clinical outcomes of radiotherapy for patients with cervical cancer. Cancer Manag Res 2019; 11:7171-7181. [PMID: 31440099 PMCID: PMC6677130 DOI: 10.2147/cmar.s214371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/11/2019] [Indexed: 12/31/2022] Open
Abstract
Objective This study aimed to investigate the impact of bladder volume on treatment planning and clinical outcomes of radiotherapy for patients with cervical cancer. Materials and methods One hundred and sixty-six patients with locally advanced cervical cancer were selected in this retrospective study. The patients were divided into four groups according to their average bladder volume during radiotherapy (external beam radiation therapy and intracavitary brachytherapy): group A: V<100 mL, group B: 100 mL≤V≤150 mL, group C: 150 mL<V≤200 mL, group D: V>200 mL. The bladder volume and the cumulative dose to planning target (D90), bladder (D2cc), rectum (D2cc), and sigmoid (D2cc) were calculated using the treatment planning system. Treatment outcomes including late adverse events (the maximum grade of radiation-induced proctitis and cystitis), the objective response rate of tumor and lymph node, overall survival (OS), and progression-free survival (PFS) were collected. Additionally, the correlation between bladder volume and the irradiated dose of organs at risk and treatment outcomes was analyzed. Results The median follow-up time was 28 months. The D90 and D2cc of the rectum in group A were the highest (P<0.05). The D2cc of the bladder in group D was the highest (P<0.05). There was no significant difference in the tumor and lymph node regression rate, OS, and PFS among the groups. The difference in the late radiation-induced proctitis and cystitis maximum grade among the four groups was statistically significant (P<0.001, P=0.022, respectively), with group A the most serious and group B the mildest. Conclusion For patients with cervical cancer, the bladder volume significantly affected the delivered dose to target, rectum, and bladder. When the bladder volume range was 100–150 mL, the rate of late radiation-induced proctitis and cystitis was low and the degree of reaction was mild. This is thought to be the optimum bladder volume for patients with cervical cancer during radiotherapy.
Collapse
Affiliation(s)
- Shanshan Ma
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tingting Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Li Jiang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wen Qin
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Keyu Lu
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yong Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rensheng Wang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
33
|
Li Y, Ma S, Zhang Y, Yao M, Zhu X, Guan F. (−)-Epicatechin mitigates radiation-induced intestinal injury and promotes intestinal regeneration via suppressing oxidative stress. Free Radic Res 2019; 53:851-864. [PMID: 31234659 DOI: 10.1080/10715762.2019.1635692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ya Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial People’s Hospital, Zhengzhou, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Minghao Yao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiangzhan Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
34
|
EGCG, a green tea polyphenol, as one more weapon in the arsenal to fight radiation esophagitis? Radiother Oncol 2019; 137:192-193. [PMID: 31133342 DOI: 10.1016/j.radonc.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/25/2022]
|