1
|
De Meyer A, Meuleman P. Preclinical animal models to evaluate therapeutic antiviral antibodies. Antiviral Res 2024; 225:105843. [PMID: 38548022 DOI: 10.1016/j.antiviral.2024.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024]
Abstract
Despite the availability of effective preventative vaccines and potent small-molecule antiviral drugs, effective non-toxic prophylactic and therapeutic measures are still lacking for many viruses. The use of monoclonal and polyclonal antibodies in an antiviral context could fill this gap and provide effective virus-specific medical interventions. In order to develop these therapeutic antibodies, preclinical animal models are of utmost importance. Due to the variability in viral pathogenesis, immunity and overall characteristics, the most representative animal model for human viral infection differs between virus species. Therefore, throughout the years researchers sought to find the ideal preclinical animal model for each virus. The most used animal models in preclinical research include rodents (mice, ferrets, …) and non-human primates (macaques, chimpanzee, ….). Currently, antibodies are tested for antiviral efficacy against a variety of viruses including different hepatitis viruses, human immunodeficiency virus (HIV), influenza viruses, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and rabies virus. This review provides an overview of the current knowledge about the preclinical animal models that are used for the evaluation of therapeutic antibodies for the abovementioned viruses.
Collapse
Affiliation(s)
- Amse De Meyer
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Beretta M, Mouquet H. Advances in human monoclonal antibody therapy for HBV infection. Curr Opin Virol 2022; 53:101205. [PMID: 35123237 DOI: 10.1016/j.coviro.2022.101205] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/10/2021] [Accepted: 01/15/2022] [Indexed: 12/17/2022]
Abstract
HBV neutralizing antibodies target the viral envelope antigens (HBsAg) and confer long-term immune protection in vaccinees and infected humans who seroconvert. They recognize various HBsAg epitopes, and can be armed with Fc-dependent effector functions essential for eliminating infected cells and stimulating adaptive immunity. Hundreds of HBsAg-specific monoclonal antibodies (mAbs) were produced from the early 80's, but it is only recently that bona fide human anti-HBV mAbs were generated from vaccinees and seroconverters. Neutralizing HBV mAbs have in vivo prophylactic and therapeutic efficacy in animal models, and the capacity to decrease antigenemia and viremia in infected humans. Thus, polyfunctional, potent and broad human HBV neutralizing mAbs offer novel opportunities to develop effective interventions to prevent and treat HBV infection. Here, we summarize recent findings on the humoral immune response to HBV, and explore the potential of human HBV neutralizing mAbs as immunotherapeutics to help achieving a functional cure for HBV.
Collapse
Affiliation(s)
- Maxime Beretta
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, 75015, France; INSERM U1222, Paris, 75015, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, 75015, France; INSERM U1222, Paris, 75015, France.
| |
Collapse
|
3
|
Hong B, Wen Y, Ying T. Recent Progress on Neutralizing Antibodies against Hepatitis B Virus and its Implications. Infect Disord Drug Targets 2020; 19:213-223. [PMID: 29952267 DOI: 10.2174/1871526518666180628122400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/13/2018] [Accepted: 06/22/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Hepatitis B virus (HBV) infection remains a global health problem. As "cure" for chronic hepatitis B is of current priority, hepatitis B immunoglobulin (HBIG) has been utilized for several decades to provide post-exposure prophylaxis. In recent years, a number of monoclonal antibodies (mAbs) targeting HBV have been developed and demonstrated with high affinity, specificity, and neutralizing potency. OBJECTIVE HBV neutralizing antibodies may play a potentially significant role in the search for an HBV cure. In this review, we will summarize the recent progress in developing HBV-neutralizing antibodies, describing their characteristics and potential clinical applications. RESULTS AND CONCLUSION HBV neutralizing antibodies could be a promising alternative in the prevention and treatment of HBV infection. More importantly, global collaboration and coordinated approaches are thus needed to facilitate the development of novel therapies for HBV infection.
Collapse
Affiliation(s)
- Binbin Hong
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Central Laboratory, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Nakabori T, Hikita H, Murai K, Nozaki Y, Kai Y, Makino Y, Saito Y, Tanaka S, Wada H, Eguchi H, Takahashi T, Suemizu H, Sakamori R, Hiramatsu N, Tatsumi T, Takehara T. Sodium taurocholate cotransporting polypeptide inhibition efficiently blocks hepatitis B virus spread in mice with a humanized liver. Sci Rep 2016; 6:27782. [PMID: 27278060 PMCID: PMC4899802 DOI: 10.1038/srep27782] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/19/2016] [Indexed: 12/18/2022] Open
Abstract
Sodium taurocholate cotransporting polypeptide (NTCP) is a recently discovered hepatitis B virus (HBV) receptor. In the present study, we used TK-NOG mice with a humanized liver to examine the impact of endogenous NTCP expression on HBV infection. Upon inoculation with HBV, these mice exhibited clear viremia in 2 weeks, and serum HBV DNA levels gradually increased. The frequency of HBsAg-positive hepatocytes in the liver was 5.1 ± 0.6% at 2 weeks and increased with increasing HBV DNA levels, reaching 92.9 ± 2.8% at 10 to 12 weeks. In vivo siRNA-mediated NTCP knockdown before and after HBV inoculation significantly suppressed the levels of HBV replication and the frequency of HBsAg-positive hepatocytes at 2 weeks, whereas NTCP knockdown 13 weeks after infection did not affect these parameters. Similar to the humanized mouse livers in the early phase of HBV infection, human liver samples from chronic hepatitis B patients, especially those treated with nucleos(t)ide analogues, contained a considerable number of hepatocytes that were negative for the anti-HBs antibody. In conclusion, NTCP inhibition prevents the spread of HBV-infected hepatocytes in mice with a humanized liver. NTCP-targeted therapy has potential for regulating HBV infection in patients with chronic hepatitis B.
Collapse
Affiliation(s)
- Tasuku Nakabori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuhiro Murai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasutoshi Nozaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yugo Kai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuki Makino
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshinobu Saito
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoshi Tanaka
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Wada
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takeshi Takahashi
- Department of Laboratory Animal Research, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Hiroshi Suemizu
- Department of Laboratory Animal Research, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naoki Hiramatsu
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
5
|
Wieland SF. The chimpanzee model for hepatitis B virus infection. Cold Spring Harb Perspect Med 2015; 5:5/6/a021469. [PMID: 26033082 DOI: 10.1101/cshperspect.a021469] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Even before the discovery of hepatitis B virus (HBV), it was known that chimpanzees (Pan troglodytes) are susceptible to human hepatitis viruses. The chimpanzee is the only primate animal model for HBV infections. Much like HBV-infected human patients, chimpanzees can develop acute and chronic HBV infections and consequent hepatitis. Chimpanzees also develop a cellular immune response similar to that observed in humans. For these reasons, the chimpanzee has proven to be an invaluable model for investigations on HBV-driven disease pathogenesis and also the testing of novel antiviral therapies and prophylactic approaches.
Collapse
Affiliation(s)
- Stefan F Wieland
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
6
|
Lee G, Liu S. Monoclonal antibodies against hepatitis B viral surface antigens and epitope grouping. Monoclon Antib Immunodiagn Immunother 2015; 34:90-5. [PMID: 25897606 DOI: 10.1089/mab.2014.0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Monoclonal antibodies (MAbs) were generated against subtypes (ad/ad/rw) of the human hepatitis B viral surface antigen (HBsAg). Among dozens of antibodies that were generated, the majority was shown to commonly react with various ad/ay subtypes of the S protein. Epitope(s) of these antibodies were grouped by various immunoassay methods, and at least four distinct epitope regions were identified. Some of these antibodies were selected to formulate sandwich enzyme immunoassays for quantitative determinations of HBsAg in reconstituted specimens. Epitope-defined monoclonal antibodies with high affinity and specificity might be suitable for formulations as vaccines (containing a mixture of humanized monoclonal antibodies) for passive immunization in humans for immunoprophylaxis of HBV infection.
Collapse
Affiliation(s)
- Gregory Lee
- UBC Center for Reproductive Health , Vancouver, British Columbia, Canada
| | | |
Collapse
|
7
|
Sa-Nguanmoo P, Tanaka Y, Ratanakorn P, Sugiyama M, Murakami S, Payungporn S, Sommanustweechai A, Mizokami M, Poovorawan Y. Cross-species transmission of gibbon and orangutan hepatitis B virus to uPA/SCID mice with human hepatocytes. Virus Res 2011; 158:209-15. [PMID: 21510984 DOI: 10.1016/j.virusres.2011.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 01/21/2023]
Abstract
To investigate the potential of cross-species transmission of non-human primate HBV to humans, severe combined immunodeficiency mice transgenic for urokinase-type plasminogen activator, in which the mouse liver has been engrafted with human hepatocytes, were inoculated with non-human primate HBV. HBV-DNA positive serum samples from a gibbon or orangutan were inoculated into 6 chimeric mice. HBV-DNA, hepatitis B surface antigen (HBsAg), and HB core-related antigen in sera and HBV cccDNA in liver were detectable in 2 of 3 mice each from the gibbon and orangutan. Likewise, applying immunofluorescence HBV core protein was only found in human hepatocytes expressing human albumin. The HBV sequences from mouse sera were identical to those from orangutan and gibbon sera determined prior to inoculation. In conclusion, human hepatocytes have been infected with gibbon/orangutan HBV.
Collapse
Affiliation(s)
- Pattaratida Sa-Nguanmoo
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kim KS, Kim HJ, Han BW, Myung PK, Hong HJ. Construction of a humanized antibody to hepatitis B surface antigen by specificity-determining residues (SDR)-grafting and de-immunization. Biochem Biophys Res Commun 2010; 396:231-7. [DOI: 10.1016/j.bbrc.2010.04.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
|
9
|
Abstract
The interaction between immune responses and hepatitis B virus (HBV) is coordinated between innate and adaptive immunity. Anti-HBs antibodies protect the host by blocking the binding ability of HBV. Anti-HBc antibodies are detected with persistent HBV infection. The presence of anti-HBe antibodies is often associated with recovery from active diseases and is clinically used as a benchmark to assess response to treatment. Our studies have revealed that the anti-HBV immunoglobulins secreted are different in subclass patterns in different HBV infection status populations. These revelations may help to understand HBV escape and persistent infection and to develop strategies for prevention and therapeutic management of HBV infection.
Collapse
Affiliation(s)
- Hsiu-Ting Tsai
- School of Nursing, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | | | | | | |
Collapse
|
10
|
Kim SH, Shin YW, Hong KW, Chang KH, Ryoo KH, Paik SH, Kim JM, Brotman B, Pfahler W, Prince AM. Neutralization of hepatitis B virus (HBV) by human monoclonal antibody against HBV surface antigen (HBsAg) in chimpanzees. Antiviral Res 2008; 79:188-91. [PMID: 18479762 DOI: 10.1016/j.antiviral.2008.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/20/2008] [Accepted: 03/28/2008] [Indexed: 12/13/2022]
Abstract
The virus neutralizing efficacy of HB-C7A, a human monoclonal antibody raised against the surface antigen of hepatitis B virus (HBsAg), was proved using hepatitis B virus (HBV)-naïve chimpanzees. One control chimpanzee which received 100CID(50) of HBV, subtype adw, without HB-C7A antibody became infected by HBV as evidenced by the appearance of HBV DNA on week 10 and subsequent appearance of HBsAg, anti-HBc and anti-HBs in the serum. Two experimental chimpanzees were inoculated intravenously with same dose of HBV as the control chimpanzee, which was previously incubated with 0.1mg and 10mg of HB-C7A antibody prior to inoculation. HBV infection was not observed in the antibody-treated chimpanzees during 12 months of follow-up, exhibiting neither detectable HBsAg nor anti-HBc antibody. This work demonstrates the neutralization of HBV by HB-C7A monoclonal antibody and shows the possibility of prevention of HBV infection using this antibody in liver transplantation and exposure to HBV.
Collapse
Affiliation(s)
- Se-Ho Kim
- Antibody Engineering Laboratory, Research Center, Green Cross Corp., 341, Bojeong-Dong, Giheung-Gu, Yongin City, Gyunggi-Do, 446-799, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|