1
|
Ren X, Cao N, Tian L, Liu W, Zhu H, Rong Z, Yao M, Li X, Qian P. A self-assembled nanoparticle vaccine based on pseudorabies virus glycoprotein D induces potent protective immunity against pseudorabies virus infection. Vet Microbiol 2023; 284:109799. [PMID: 37327558 DOI: 10.1016/j.vetmic.2023.109799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/18/2023]
Abstract
Pseudorabies virus (PRV) mainly causes pseudorabies (PR) or Aujeszky's disease in pigs and can infect humans, raising public health concerns about zoonotic and interspecies transmission of PR. With the emergence of PRV variants in 2011, the classic attenuated PRV vaccine strains have failed to protect many swine herds against PR. Herein, we developed a self-assembled nanoparticle vaccine that induces potent protective immunity against PRV infection. PRV glycoprotein D (gD) was expressed using the baculovirus expression system and further presented on the lumazine synthase (LS) 60-meric protein scaffolds via the SpyTag003/SpyCatcher003 covalent coupling system. In mouse and piglet models, LSgD nanoparticles emulsified with the ISA 201VG adjuvant elicited robust humoral and cellular immune responses. Furthermore, LSgD nanoparticles provided effective protection against PRV infection and eliminated pathological symptoms in the brain and lungs. Collectively, the gD-based nanoparticle vaccine design appears to be a promising candidate for potent protection against PRV infection.
Collapse
Affiliation(s)
- Xujiao Ren
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Nan Cao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Linxing Tian
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Wenqiang Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hechao Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhenxiang Rong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Manman Yao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China.
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China.
| |
Collapse
|
2
|
Chang C, Wang H, Hua T, Zhang D, Hong W, Deng B, Tang B. A single dose of Astragalus saponins adjuvanted inactivated vaccine for pseudorabies virus protected mice against lethal challenge. Front Vet Sci 2022; 9:1036161. [PMID: 36478947 PMCID: PMC9719957 DOI: 10.3389/fvets.2022.1036161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/31/2022] [Indexed: 08/18/2024] Open
Abstract
Pseudorabies (PR) is an important infectious disease of swine that causes enormous economic losses to the swine industry in China. Immunization with vaccines is a routine practice to control this disease. PRV inactivated vaccines usually require a booster vaccination to provide complete immune protection. Therefore, Astragalus saponins (AST) have been added as an immunopotentiator to improve the immune efficacy and reduce the immunization times for the PRV inactivated vaccine. The results in mice have shown that a single dose of AST-adjuvanted PRV inactivated vaccine promoted higher production of gB-specific IgG, IgG1, and IgG2a and neutralizing antibody, secretion of Th1-type (IFN-γ) and Th2-type (IL-4) cytokines, and lymphocyte proliferation than mice immunized without AST. Compared to mice immunized without AST, a single dose of the AST-adjuvanted PRV inactivated vaccine improved the survival percentage of mice and reduced the PRV viral loads in the lungs and brains after lethal challenge. In summary, AST was an effective immunopotentiator to improve the immune efficacy of a single dose PRV inactivated vaccine.
Collapse
Affiliation(s)
- Chen Chang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Haiyan Wang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Tao Hua
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Daohua Zhang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Weibin Hong
- Dongguan Animal Disease Control and Prevention Center, Dongguan, China
| | - Bihua Deng
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Bo Tang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
| |
Collapse
|
3
|
Cao Z, Zhang K, Zhang H, Zhang H, Yu Y, Yin D, Shan H, Qin Z. Efficacy of a gB + gD-based subunit vaccine and the adjuvant granulocyte-macrophage colony stimulating factor for pseudorabies virus in rabbits. Front Microbiol 2022; 13:965997. [PMID: 35992660 PMCID: PMC9382107 DOI: 10.3389/fmicb.2022.965997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
Pseudorabies (PR), which is caused by the pseudorabies virus (PRV), is a severe infectious disease that causes abortions in adult sows and fatal encephalitis in piglets; the disease can occur in pigs of all ages and other mammals, which can lead to significant economic loss around the worldwide. The new PRV variant invalidated the available commercial attenuated and inactivated vaccines. Consequently, subunit vaccines have been suggested as novel strategies for PR control, while they are usually formulated with adjuvants due to their lower immunogenicity. We aimed to select a safe and efficient adjuvant for subunit vaccines for PR. In our study, glycoprotein B (gB) and glycoprotein D (gD) were expressed based on a baculovirus expression system, and granulocyte-macrophage colony-stimulating factor (GM-CSF) was expressed using an Escherichia coli (E. coli) expression system; subsequently, a gB + gD subunit vaccine adjuvanted by GM-CSF was constructed. A rabbit model infected with a PRV SD-2017 strain was established, the TCID50 and LD50 were measured, and the typical clinical symptoms were observed. After a lethal challenge of 5 LD50 with a PRV SD-2017 strain, the rabbits exhibited typical clinical symptoms, including itching and high temperature, and histopathology revealed severe inflammation in the brain, which is the dominant target organ of PRV. Rabbits immunized with the gB + gD + GM-CSF subunit vaccines produced higher levels of antibodies than those immunized with gB + gD + ISA 201, which was adjuvanted with a frequently used oil adjuvant. The survival rate of rabbits vaccinated with gB + gD + GM-CSF was 100%, which was superior to that of rabbits vaccinated with gB + gD + ISA 201 (80%), inactivated PRV + GM-CSF (60%) and commercial inactivated vaccine (60%) after challenge with PRV SD-2017. These data suggested that the gB + gD + GM-CSF-based subunit vaccine had good protective efficacy against the PRV SD-2017 strain in rabbits and that GM-CSF could be developed as a candidate adjuvant for use in a vaccine regimen to prevent and even eradicate PR.
Collapse
Affiliation(s)
- Zhi Cao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ke Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Heng Zhang
- Shandong SINDER Technology Co., Ltd., Qingdao, China
| | - Hongliang Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ying Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Dehua Yin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Hu Shan,
| | - Zhihua Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Zhihua Qin,
| |
Collapse
|
4
|
Bo Z, Miao Y, Xi R, Gao X, Miao D, Chen H, Jung YS, Qian Y, Dai J. Emergence of a novel pathogenic recombinant virus from Bartha vaccine and variant pseudorabies virus in China. Transbound Emerg Dis 2020; 68:1454-1464. [PMID: 32857916 DOI: 10.1111/tbed.13813] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/03/2020] [Accepted: 08/22/2020] [Indexed: 12/20/2022]
Abstract
Pseudorabies virus (PRV), the causative agent of Aujeszky's disease, has resulted in substantial economic losses in the swine industry worldwide. Previous reports have shown that the PRV variant is responsible for the Pseudorabies outbreaks in Bartha-K61-vaccinated farms in China. However, there is limited information about the evolution of recombination of the PRV variant. Here, we isolated two PRV variants from a Bartha-K61-vaccinated swine farm, named them the JSY7 and JYS13 strains, analysed their complete genomic sequences and evaluated pathogenicity. As results, the JSY7 and JSY13 strains showed different cytopathic effects and plaque sizes. The JSY7 and JSY13 strains had the same Aspartate insertions in the gE protein as other PRV variants. The JSY7 and JSY13 strains were clustered into the same clade based on a genomic phylogenetic analysis. However, the JSY7 strain was relatively close to recent PRV isolates in China, while the JSY13 strain was more closely related to earlier PRV isolates. Interestingly, the gC gene phylogenetic tree showed that the JSY7 strain belonged to genotype II lineage 3, while the JSY13 strain belonged to genotype I and is the same branch with the Bartha strain. Furthermore, the PRV variants were relatively distant from the Bartha strain in the phylogenetic analysis of the gB, gC and gD genes. Importantly, a recombination analysis showed that the JSY13 strain might be a natural recombinant between the minor parental genotype I Bartha strain and the major parental genotype II JSY7 strain. Finally, we also found that the JSY13 strain showed a moderate virulence compared to the JSY7 strain in mice. Taken together, our data provide direct evidence for genomic recombination of PRV in nature, which may play an important role in the evolution and virulence of PRV. This discovery suggests that live PRV vaccine can act as genetic donors for genomic recombination.
Collapse
Affiliation(s)
- Zongyi Bo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yurun Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Rui Xi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyu Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Denian Miao
- Institute of Animal Husbandary & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huan Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yong-Sam Jung
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yingjuan Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Abdelrahma KA, Ghazy AA, Beshir Ata E. Better Understanding of Important Aspects Associated with Vaccines Development for Controlling Viral Diseases in Animals. INTERNATIONAL JOURNAL OF DAIRY SCIENCE 2020; 15:114-122. [DOI: 10.3923/ijds.2020.114.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Li J, Li X, Ma H, Ren X, Hao G, Zhang H, Zhao Z, Fang K, Li X, Rong Z, Sun S, Chen H, Qian P. Efficient mucosal vaccination of a novel classical swine fever virus E2-Fc fusion protein mediated by neonatal Fc receptor. Vaccine 2020; 38:4574-4583. [PMID: 32417139 DOI: 10.1016/j.vaccine.2020.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022]
Abstract
Classical swine fever (CSF) remains one of the most important highly contagious and fatal viral disease of swine with high morbidity and mortality. CSF is caused by classical swine fever virus (CSFV), a small, enveloped RNA virus of the genus Pestivirus. The aim of this study was to construct the a novel CSFV Fc-fusion recombinant protein and evaluate the efficacy as a vaccine against CSFV. Here, we obtained a novel subunit vaccine expressing CSFV E2 recombinant fusion protein in CHO-S cells. Functional analysis revealed that CSFV Fc-fusion recombinant protein (CSFV-E2-Fc) could bind to FcγRI on antigen-presenting cells (APCs) and significantly increase IgA levels in serum and feces, inducing stronger mucosal immune response in swine. Additionally, CSFV-E2-Fc immunization enhanced CSFV-specific T cell immune response with a Th1-like pattern of cytokine secretion, remarkably stimulated the Th1-biased cellular immune response and humoral immune response. Further, the protective effects of CSFV-E2-Fc subunit vaccines were confirmed. The data suggest that CSFV E2-Fc recombinant fusion protein may be a promising candidate subunit vaccine to elicit immune response and protect against CSFV.
Collapse
Affiliation(s)
- Jianglong Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Hui Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xujiao Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Genxi Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huawei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zekai Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Kui Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xinxin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhenxiang Rong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Shaohua Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China.
| |
Collapse
|
7
|
Li J, Li X, Hao G, Zhang H, Yang H, Chen H, Qian P. Fusion of pseudorabies virus glycoproteins to IgG Fc enhances protective immunity against pseudorabies virus. Virology 2019; 536:49-57. [PMID: 31400549 DOI: 10.1016/j.virol.2019.07.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/21/2019] [Accepted: 07/29/2019] [Indexed: 01/29/2023]
Abstract
Molecular adjuvants are vaccine delivery vehicle to increase specific antigens effectiveness. Herein, we concentrated on IgG Fc, an effective molecular adjuvant, to develop novel pseudorabies virus (PRV) subunit vaccines. Two major protective antigen genes of PRV were constructed and linked into the mouse IgG Fc fragment. The gD, gD-IgG2aFc, gB and gB-IgG2aFc proteins were expressed using a baculovirus system. Mice intranasally immunized with gD-IgG2aFc or gB-IgG2aFc subunit vaccine exhibited significantly higher PRV-specific antibodies, neutralizing antibodies and intracellular cytokines than the mice intranasally immunized with gD or gB subunit vaccine. Moreover, no histopathological lesions were observed in mice immunized with gB-IgG2aFc subunit vaccine via histopathology examination. Further, the gB-IgG2aFc subunit vaccine was efficient for PRV infection compared with live attenuated vaccine. Overall, these results suggest that IgG2a Fc fragment, as a potential molecular adjuvant, fused with PRV antigen might be a promising and efficient PRV vaccine candidate.
Collapse
Affiliation(s)
- Jianglong Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Genxi Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Huawei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Huiling Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
8
|
Vaccines against pseudorabies virus (PrV). Vet Microbiol 2016; 206:3-9. [PMID: 27890448 DOI: 10.1016/j.vetmic.2016.11.019] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 12/26/2022]
Abstract
Aujeszkýs disease (AD, pseudorabies) is a notifiable herpesvirus infection of pigs causing substantial economic losses to swine producers. AD in pigs is controlled by the use of vaccination with inactivated and attenuated live vaccines. Starting with classically attenuated live vaccines derived from low virulent field isolates, AD vaccination has pioneered novel strategies in animal disease control by the first use of genetically engineered live virus vaccines lacking virulence-determining genes, and the concept of DIVA, i.e. the serological differentiation of vaccinated from field-virus infected animals by the use of marker vaccines and respective companion diagnostic tests. The basis for this concept has been the molecular characterization of PrV and the identification of so-called nonessential envelope glycoproteins, e.g. glycoprotein E, which could be eliminated from the virus without harming viral replication or immunogenicity. Eradication of AD using the strategy of vaccination-DIVA testing has successfully been performed in several countries including Germany and the United States. Furthermore, by targeted genetic modification PrV has been developed into a powerful vector system for expression of foreign genes to vaccinate against several infectious diseases of swine, while heterologous vector systems have been used for expression of major immunogens of PrV. This small concise review summarizes the state-of-the-art information on PrV vaccines and provides an outlook for the future.
Collapse
|
9
|
Lee NH, Lee JA, Park SY, Song CS, Choi IS, Lee JB. A review of vaccine development and research for industry animals in Korea. Clin Exp Vaccine Res 2012; 1:18-34. [PMID: 23596575 PMCID: PMC3623508 DOI: 10.7774/cevr.2012.1.1.18] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/20/2012] [Accepted: 06/15/2012] [Indexed: 12/17/2022] Open
Abstract
Vaccination has proven to be the most cost-effective strategy for controlling a wide variety of infectious diseases in humans and animals. For the last decade, veterinary vaccines have been substantially developed and demonstrated their effectiveness against many diseases. Nevertheless, new vaccines are greatly demanded to effectively control newly- and re-emerging pathogens in livestock. However, development of veterinary vaccines is a challenging task, in part, due to a variety of pathogens, hosts, and the uniqueness of host-susceptibility to each pathogen. Therefore, novel concepts of vaccines should be explored to overcome the limitation of conventional vaccines. There have been greatly advanced in the completion of genomic sequencing of pathogens, the application of comparative genomic and transcriptome analysis. This would facilitate to open opportunities up to investigate a new generation of vaccines; recombinant subunit vaccine, virus-like particle, DNA vaccine, and vector-vehicle vaccine. Currently, such types of vaccines are being actively explored against various livestock diseases, affording numerous advantages over conventional vaccines, including ease of production, immunogenicity, safety, and multivalency in a single shot. In this articles, the authors present the current status of the development of veterinary vaccines at large as well as research activities conducted in Korea.
Collapse
Affiliation(s)
- Nak-Hyung Lee
- Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
10
|
Kim SB, Han YW, Rahman MM, Kim SJ, Yoo DJ, Kang SH, Kim K, Eo SK. Modulation of protective immunity against herpes simplex virus via mucosal genetic co-transfer of DNA vaccine with beta2-adrenergic agonist. Exp Mol Med 2010; 41:812-23. [PMID: 19641376 DOI: 10.3858/emm.2009.41.11.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cholera toxin, which has been frequently used as mucosal adjuvant, leads to an irreversible activation of adenylyl cyclase, thereby accumulating cAMP in target cells. Here, it was assumed that beta(2)-adrenergic agonist salbutamol may have modulatory functions of immunity induced by DNA vaccine, since beta(2)-adrenergic agonists induce a temporary cAMP accumulation. To test this assumption, the present study evaluated the modulatory functions of salbutamol co-administered with DNA vaccine expressing gB of herpes simplex virus (HSV) via intranasal (i.n.) route. We found that the i.n. co-administration of salbutamol enhanced gB-specific IgG and IgA responses in both systemic and mucosal tissues, but optimal dosages of co-administered salbutamol were required to induce maximal immune responses. Moreover, the mucosal co-delivery of salbutamol with HSV DNA vaccine induced Th2-biased immunity against HSV antigen, as evidenced by IgG isotypes and Th1/Th2-type cytokine production. The enhanced immune responses caused by co-administration of salbutamol provided effective and rapid responses to HSV mucosal challenge, thereby conferring prolonged survival and reduced inflammation against viral infection. Therefore, these results suggest that salbutamol may be an attractive adjuvant for mucosal genetic transfer of DNA vaccine.
Collapse
Affiliation(s)
- Seong Bum Kim
- Laboratory of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju 561-756, Korea
| | | | | | | | | | | | | | | |
Collapse
|