1
|
Ning J, Sala M, Reina J, Kalagiri R, Hunter T, McCullough BS. Histidine Phosphorylation: Protein Kinases and Phosphatases. Int J Mol Sci 2024; 25:7975. [PMID: 39063217 PMCID: PMC11277029 DOI: 10.3390/ijms25147975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Phosphohistidine (pHis) is a reversible protein post-translational modification (PTM) that is currently poorly understood. The P-N bond in pHis is heat and acid-sensitive, making it more challenging to study than the canonical phosphoamino acids pSer, pThr, and pTyr. As advancements in the development of tools to study pHis have been made, the roles of pHis in cells are slowly being revealed. To date, a handful of enzymes responsible for controlling this modification have been identified, including the histidine kinases NME1 and NME2, as well as the phosphohistidine phosphatases PHPT1, LHPP, and PGAM5. These tools have also identified the substrates of these enzymes, granting new insights into previously unknown regulatory mechanisms. Here, we discuss the cellular function of pHis and how it is regulated on known pHis-containing proteins, as well as cellular mechanisms that regulate the activity of the pHis kinases and phosphatases themselves. We further discuss the role of the pHis kinases and phosphatases as potential tumor promoters or suppressors. Finally, we give an overview of various tools and methods currently used to study pHis biology. Given their breadth of functions, unraveling the role of pHis in mammalian systems promises radical new insights into existing and unexplored areas of cell biology.
Collapse
Affiliation(s)
- Jia Ning
- Correspondence: (J.N.); (B.S.M.)
| | | | | | | | | | - Brandon S. McCullough
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (M.S.); (J.R.); (R.K.); (T.H.)
| |
Collapse
|
2
|
Firouzabadi ED, Allami M, Mohammed EJ, Barzegar H, Dastpak M, Alemohammad R, Moghimi V, Mahmoudian RA, Nasrabadi F, Arghiani N, Kitamura Y, Hosseini SA, Ghasemi A, Farshchian M. Detection of novel PPP1R1B::STARD3 fusion transcript in acute myeloid leukemia: a case report. J Med Case Rep 2024; 18:269. [PMID: 38835078 PMCID: PMC11151611 DOI: 10.1186/s13256-024-04536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/22/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is the second most common type of leukemia in children. Although prognostic and diagnostic tests of AML patients have improved, there is still a great demand for new reliable clinical biomarkers for AML. Read-through fusion transcripts (RTFTs) are complex transcripts of adjacent genes whose molecular mechanisms are poorly understood. This is the first report of the presence of the PPP1R1B::STARD3 fusion transcript in an AML patient. Here, we investigated the presence of PPP1R1B::STARD3 RTFT in a case of AML using paired-end RNA sequencing (RNA-seq). CASE PRESENTATION A Persian 12-year-old male was admitted to Dr. Sheikh Hospital of Mashhad, Iran, in September 2019 with the following symptoms, including fever, convulsions, hemorrhage, and bone pain. The patient was diagnosed with AML (non-M3-FAB subtype) based on cell morphologies and immunophenotypical features. Chromosomal analysis using the G-banding technique revealed t (9;22) (q34;q13). CONCLUSIONS Single-cell RNA sequencing (scRNA-seq) analysis suggested that the PPP1R1B promoter may be responsible for the PPP1R1B::STARD3 expression. Alterations in the level of lipid metabolites implicate cancer development, and this fusion can play a crucial role in the cholesterol movement in cancer cells. PPP1R1B::STARD3 may be considered a candidate for targeted therapies of the cholesterol metabolic and the PI3K/AKT signaling pathways involved in cancer development and progression.
Collapse
Affiliation(s)
- Elahe Dehghani Firouzabadi
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR), Mashhad, Razavi Khorasan, Iran
- Department of Biology, Faculty of Science, Hakim Sabzevar University, Sabzevar, Iran
| | - Mohammed Allami
- Department of Dentistry, Al-Manara College for Medical Sciences, Maysan, Iraq
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Eman Jassim Mohammed
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Hossein Barzegar
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR), Mashhad, Razavi Khorasan, Iran
| | - Mahtab Dastpak
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA, 02115, USA
| | - Reza Alemohammad
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR), Mashhad, Razavi Khorasan, Iran
| | - Vahid Moghimi
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR), Mashhad, Razavi Khorasan, Iran
- Department of Biology, Faculty of Science, Hakim Sabzevar University, Sabzevar, Iran
| | - Reihaneh Alsadat Mahmoudian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Nasrabadi
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR), Mashhad, Razavi Khorasan, Iran
| | - Nahid Arghiani
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, UK
| | - Yohei Kitamura
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | | | - Ali Ghasemi
- Department of Pediatrics Hematology and Oncology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR), Mashhad, Razavi Khorasan, Iran.
| |
Collapse
|
3
|
Jiang HY, Zheng HM, Xia C, Li X, Wang G, Zhao T, Cui XN, Wang RY, Liu Y. The Research Progress of Bufalin in the Treatment of Hepatocellular Carcinoma. Onco Targets Ther 2022; 15:291-298. [PMID: 35345394 PMCID: PMC8957335 DOI: 10.2147/ott.s333233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers in the world with a five-year survival rate of less than 20%. Nonetheless, selecting an appropriate therapeutic agent to inhibit the development of hepatoma cells is still a challenge. Bufalin, a component of the traditional Chinese medicine Chansu, has been shown to inhibit the proliferation, invasion and metastasis of HCC through various signaling pathways. In addition, bufalin and sorafenib demonstrate a synergistic effect in cancer therapeutics. This review highlighted on several focal signaling pathways involved in the inhibitory effects of bufalin on HCC and its synergistic mechanisms with sorafenib. The immunotherapy effect of bufalin has also been discussed as a novel property.
Collapse
Affiliation(s)
- Han-Yu Jiang
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Hui-Min Zheng
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Cheng Xia
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Xiang Li
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Gang Wang
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Tong Zhao
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Xiao-Nan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People's Republic of China
| | - Ruo-Yu Wang
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, People's Republic of China
| | - Ying Liu
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, People's Republic of China
| |
Collapse
|
4
|
Dong Y, Han H, Li Y, Guo L. [Roles of Histidine Kinases and Histidine Phosphatases in Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:646-652. [PMID: 34455734 PMCID: PMC8503980 DOI: 10.3779/j.issn.1009-3419.2021.102.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
蛋白磷酸化修饰是最常见、最重要的蛋白质翻译后修饰方式。磷酸化修饰在细胞的增殖、分化、发育和代谢等生物学过程中发挥了重要的调控功能,与肿瘤的发生和发展也密切相关。蛋白激酶和磷酸酶对蛋白磷酸化修饰具有普遍的开/关调控作用。真核生物的蛋白磷酸化主要发生在丝氨酸、苏氨酸和酪氨酸残基,他们在肿瘤发生和发展中的作用已经得到了广泛的研究。但关于组氨酸磷酸化的研究受限于质谱分析和富集技术的发展研究较少。近年来,随着相关技术的快速发展和新的组氨酸磷酸酶的发现,使得研究人员越来越多关注到组氨酸磷酸化在肿瘤中的作用。因此,本文旨在对组氨酸磷酸化调控相关的组氨酸激酶和组氨酸磷酸酶在肿瘤中的作用作一综述。
Collapse
Affiliation(s)
- Yafang Dong
- Key Laboratory of Kidney Disease, precision Medicine Center, The Shanxi Provincial People' s Hospital, Shanxi Medical University, Taiyuan 030000, China
| | - Huimin Han
- Key Laboratory of Kidney Disease, precision Medicine Center, The Shanxi Provincial People' s Hospital, Shanxi Medical University, Taiyuan 030000, China
| | - Yafeng Li
- Key Laboratory of Kidney Disease, precision Medicine Center, The Shanxi Provincial People' s Hospital, Shanxi Medical University, Taiyuan 030000, China
| | - Lili Guo
- Key Laboratory of Kidney Disease, precision Medicine Center, The Shanxi Provincial People' s Hospital, Shanxi Medical University, Taiyuan 030000, China
| |
Collapse
|
5
|
Zhou Y, Liu L, Liu Y, Zhou P, Yan Q, Yu H, Chen X, Zhu F. Implication of human endogenous retrovirus W family envelope in hepatocellular carcinoma promotes MEK/ERK-mediated metastatic invasiveness and doxorubicin resistance. Cell Death Discov 2021; 7:177. [PMID: 34238921 PMCID: PMC8266889 DOI: 10.1038/s41420-021-00562-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/06/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023] Open
Abstract
Human endogenous retrovirus (HERVs), originating from exogenous retroviral infections of germ cells millions of years ago, have the potential for human diseases. Syncytin-1, an envelope protein encoded by the HERV W family, participates in the contexts of schizophrenia, multiple sclerosis, diabetes, and several types of cancers. Nevertheless, there is no report on the expression pattern and potential mechanism of Syncytin-1 in HCC. Here we found Syncytin-1 expression was up-regulated in HCC compared to adjacent non-tumorous tissues, especially in advanced HCC. Syncytin-1 was an independent risk factor to predict vascular invasion, metastasis, larger tumor size, and poor prognosis in HCC patients. Further analysis discovered that Syncytin-1 overexpression positively associated with HCC patients with serum HBsAg positive. Functional experiments in vitro and in vivo demonstrated that Syncytin-1 enhanced cell proliferation, metastasis, and tumorigenicity in HCC. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that the mitogen-activated protein kinase (MEK)/extracellular signal-regulated protein kinase (ERK) pathway was involved in HCC. Our clinical data indicated that the levels of phosphorylation MEK1/2 and ERK1/2 were increased in HCC comparing with adjacent non-tumorous tissues. It showed the linear correlation between Syncytin-1 expression and upregulated MEK1/2 and ERK1/2 phosphorylation levels in HCC. Furthermore, Syncytin-1 activated MEK/ERK pathway in HCC cells. In-depth research showed that the inflammation-activated MEK/ERK pathway was essential in Syncytin-1 promoted hepatocarcinogenesis. Syncytin-1 suppressed doxorubicin-induced apoptosis via MEK/ERK cascade. In conclusion, Syncytin-1 promoted HCC progression and doxorubicin resistance via the inflammation-activated MEK/ERK pathway. Our findings revealed that Syncytin-1 was a potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, 430071, Wuhan, P. R. China
| | - Lijuan Liu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, 430071, Wuhan, P. R. China
| | - Youyi Liu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, 430071, Wuhan, P. R. China
- Wuxi School of Medicine, Jiangnan University, 214000, Wuxi, P. R. China
| | - Ping Zhou
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, 430071, Wuhan, P. R. China
| | - Qiujin Yan
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, 430071, Wuhan, P. R. China
| | - Honglian Yu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, 430071, Wuhan, P. R. China
- Department of Biochemistry and Collaborative Innovation Center, Jining Medical University, 272067, Jining, P. R. China
| | - Xiaobei Chen
- Department of Infectious Diseases, Renmin Hospital, Wuhan University, 430071, Wuhan, P. R. China
| | - Fan Zhu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, 430071, Wuhan, P. R. China.
| |
Collapse
|
6
|
Emerging Molecular Connections between NM23 Proteins, Telomeres and Telomere-Associated Factors: Implications in Cancer Metastasis and Ageing. Int J Mol Sci 2021; 22:ijms22073457. [PMID: 33801585 PMCID: PMC8036570 DOI: 10.3390/ijms22073457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/20/2022] Open
Abstract
The metastasis suppressor function of NM23 proteins is widely understood. Multiple enzymatic activities of NM23 proteins have also been identified. However, relatively less known interesting aspects are being revealed from recent developments that corroborate the telomeric interactions of NM23 proteins. Telomeres are known to regulate essential physiological events such as metastasis, ageing, and cellular differentiation via inter-connected signalling pathways. Here, we review the literature on the association of NM23 proteins with telomeres or telomere-related factors, and discuss the potential implications of emerging telomeric functions of NM23 proteins. Further understanding of these aspects might be instrumental in better understanding the metastasis suppressor functions of NM23 proteins.
Collapse
|
7
|
Wong KM, Song J, Wong YH. CTCF and EGR1 suppress breast cancer cell migration through transcriptional control of Nm23-H1. Sci Rep 2021; 11:491. [PMID: 33436746 PMCID: PMC7804126 DOI: 10.1038/s41598-020-79869-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/09/2020] [Indexed: 11/09/2022] Open
Abstract
Tumor metastasis remains an obstacle in cancer treatment and is responsible for most cancer-related deaths. Nm23-H1 is one of the first metastasis suppressor proteins discovered with the ability to inhibit metastasis of many cancers including breast, colon, and liver cancer. Although loss of Nm23-H1 is observed in aggressive cancers and correlated with metastatic potential, little is known regarding the mechanisms that regulate its cellular level. Here, we examined the mechanisms that control Nm23-H1 expression in breast cancer cells. Initial studies in aggressive MDA-MB-231 cells (expressing low Nm23-H1) and less invasive MCF-7 cells (expressing high Nm23-H1) revealed that mRNA levels correlated with protein expression, suggesting that transcriptional mechanisms may control Nm23-H1 expression. Truncational analysis of the Nm23-H1 promoter revealed a proximal and minimal promoter that harbor putative binding sites for transcription factors including CTCF and EGR1. CTCF and EGR1 induced Nm23-H1 expression and reduced cell migration of MDA-MB-231 cells. Moreover, CTCF and EGR1 were recruited to the Nm23-H1 promoter in MCF-7 cells and their expression correlated with Nm23-H1 levels. This study indicates that loss of Nm23-H1 in aggressive breast cancer is apparently caused by downregulation of CTCF and EGR1, which potentially drive Nm23-H1 expression to promote a less invasive phenotype.
Collapse
Affiliation(s)
- Ka Ming Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jiaxing Song
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yung H Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. .,State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
8
|
Sengupta P, Chatterjee S. Inosine 5'-diphosphate, a molecular decoy rescues Nucleoside diphosphate kinase from c-MYC G-Quadruplex unfolding. Biochim Biophys Acta Gen Subj 2020; 1864:129649. [PMID: 32492501 DOI: 10.1016/j.bbagen.2020.129649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/02/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND The transcription-inhibitory G-Quadruplex(Pu27-GQ) at c-MYC promoter is challenging to target due to structural heterogeneity. Nucleoside diphosphate kinase (NM23-H2) specifically binds and unfolds Pu27-GQ to increase c-MYC transcription. Here, we used Inosine 5'-diphosphate (IDP) to disrupt NM23-H2-Pu27-GQ interactions and arrest c-MYC transcription without compromising NM23-H2-mediated kinase properties. METHODS Site-directed mutagenesis,31P-NMR and STD-NMR studies delineate the epitope of NM23-H2-IDP complex and characterize specific amino acids in NM23-H2 involved in Pu27-GQ and IDP interactions. Immunoprecipitations and phosphohistidine-immunoblots reveal how IDP blocks NM23-H2-Pu27 association to downregulate c-MYC transcription in MDAMB-231 cells exempting NM23-H2-mediated kinase properties. RESULTS NMR studies show that IDP binds to the Guanosine diphosphate-binding pocket of NM23-H2 (KD = 5.0 ± 0.276 μM). Arg88-driven hydrogen bonds to the terminal phosphate of IDP restricts P-O-P bond-rotation increasing its pKa (∆pKa = 0.85 ± 0.0025).9-inosinyl moiety of IDP is stacked over Phe60 phenyl ring driving trans-conformation of inosine and axial geometry of pyrophosphates. Chromatin immunoprecipitations revealed that these interactions rescue NM23-H2-driven Pu27-GQ unfolding, which triggers Nucleolin recruitment and lowers Sp1 occupancy at c-MYC promoter stabilizing Pu27-GQ. This silences c-MYC transcription that reduces c-MYC-Sp1 association amplifying Sp1 recruitment across P21 promoter stimulating P21 transcription and G2/M arrest. CONCLUSIONS IDP synergizes the effects of Pu27-GQ-interacting compounds to abrogate c-MYC transcription and induce apoptosis in MDAMB-231 cells by disrupting NM23-H2-Pu27-GQ interactions without affecting NM23-H2-mediated kinase properties. GENERAL SIGNIFICANCE Our study provides a pragmatic approach for developing NM23-H2-targeting regulators to rescue NM23-H2 binding at structurally ambiguous Pu27-GQ that synergizes the anti-tumorigenic effects of GQ-based therapeutics with minimized off-target effects.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata 700054, India.
| |
Collapse
|
9
|
Characterization of Nme5-Like Gene/Protein from the Red Alga Chondrus Crispus. Mar Drugs 2019; 18:md18010013. [PMID: 31877804 PMCID: PMC7024210 DOI: 10.3390/md18010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
The Nme gene/protein family of nucleoside diphosphate kinases (NDPK) was originally named after its member Nm23-H1/Nme1, the first identified metastasis suppressor. Human Nme proteins are divided in two groups. They all possess nucleoside diphosphate kinase domain (NDK). Group I (Nme1-Nme4) display a single type NDK domain, whereas Group II (Nme5-Nme9) display a single or several different NDK domains, associated or not associated with extra-domains. Data strongly suggest that, unlike Group I, none of the members of Group II display measurable NDPK activity, although some of them autophosphorylate. The multimeric form is required for the NDPK activity. Group I proteins are known to multimerize, while there are no data on the multimerization of Group II proteins. The Group II ancestral type protein was shown to be conserved in several species from three eukaryotic supergroups. Here, we analysed the Nme protein from an early branching eukaryotic lineage, the red alga Chondrus crispus. We show that the ancestral type protein, unlike its human homologue, was fully functional multimeric NDPK with high affinity to various types of DNA and dispersed localization throughout the eukaryotic cell. Its overexpression inhibits both cell proliferation and the anchorage-independent growth of cells in soft agar but fails to deregulate cell apoptosis. We conclude that the ancestral gene has changed during eukaryotic evolution, possibly in correlation with the protein function.
Collapse
|
10
|
Li S, Hu T, Yuan T, Cheng D, Yang Q. Nucleoside diphosphate kinase B promotes osteosarcoma proliferation through c-Myc. Cancer Biol Ther 2018; 19:565-572. [PMID: 29630434 DOI: 10.1080/15384047.2017.1416273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Osteosarcoma (OS) is one of the most common primary bone tumors and has a high disablity rate and case-fatality rate. The protracted stagnancy of the chemotherapy program and surgical technology for OS treatment prompted us to focus on the mechanisms of cancer carcinogenesis progression in OS. Nucleoside diphosphate kinase B (NME2) is a type of nucleoside diphosphate kinase that plays an important role in cellular processes. In this study, we report overexpression of NME2 in OS cell lines and correlate this overexpression with the clinicopathologic features of osteosarcoma. We used si-NME2 to downregulate expression of NME2 in OS cell lines. The results of the CCK8 and clone forming assays show that NME2 promotes OS cell line proliferation. Western blot assays show that deregulation of NME2 results in enhanced the expression of c-Myc, which promotes OS proliferation.
Collapse
Affiliation(s)
- Shijie Li
- a Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , No.600, Yishan Road, Shanghai , China
| | - Tu Hu
- a Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , No.600, Yishan Road, Shanghai , China
| | - Ting Yuan
- a Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , No.600, Yishan Road, Shanghai , China
| | - Dongdong Cheng
- a Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , No.600, Yishan Road, Shanghai , China
| | - Qingcheng Yang
- a Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , No.600, Yishan Road, Shanghai , China
| |
Collapse
|
11
|
Wang YQ, Huang ZL, Chen SB, Wang CX, Shan C, Yin QK, Ou TM, Li D, Gu LQ, Tan JH, Huang ZS. Design, Synthesis, and Evaluation of New Selective NM23-H2 Binders as c-MYC Transcription Inhibitors via Disruption of the NM23-H2/G-Quadruplex Interaction. J Med Chem 2017; 60:6924-6941. [PMID: 28714689 DOI: 10.1021/acs.jmedchem.7b00421] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
c-MYC is one of the important human proto-oncogenes, and transcriptional factor NM23-H2 can activate c-MYC transcription by recognizing the G-quadruplex in the promoter of the gene. Small molecules that inhibit c-MYC transcription by disrupting the NM23-H2/G-quadruplex interaction might be a promising strategy for developing selective anticancer agents. In recent studies, we developed a series of isaindigotone derivatives, which can bind to G-quadruplex and NM23-H2, thus down-regulating c-MYC ( J. Med. Chem. 2017 , 60 , 1292 - 1308 ). Herein, a series of novel isaindigotone derivatives were designed, synthesized, and screened for NM23-H2 selective binding ligands. Among them, compound 37 showed a high specific binding affinity to NM23-H2, effectively disrupting the interaction of NM23-H2 with G-quadruplex, and it strongly down-regulated c-MYC transcription. Furthermore, 37 induced cell cycle arrest and apoptosis, and it exhibited good tumor growth inhibition in a mouse xenograft model. This work provides a new strategy to modulate c-MYC transcription for the development of selective anticancer drugs.
Collapse
Affiliation(s)
- Yu-Qing Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Zhou-Li Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Chen-Xi Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Chan Shan
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Qi-Kun Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Lian-Quan Gu
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| |
Collapse
|
12
|
Ranjan A, Bera K, Iwakuma T. Murine double minute 2, a potential p53-independent regulator of liver cancer metastasis. HEPATOMA RESEARCH 2016; 2:114-121. [PMID: 28944296 PMCID: PMC5609474 DOI: 10.20517/2394-5079.2015.67] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) has emerged as one of the most commonly diagnosed forms of human cancer; yet, the mechanisms underlying HCC progression remain unclear. Unlike other cancers, systematic chemotherapy is not effective for HCC patients, while surgical resection and liver transplantation are the most viable treatment options. Thus, identifying factors or pathways that suppress HCC progression would be crucial for advancing treatment strategies for HCC. The murine double minute 2 (MDM2)-p53 pathway is impaired in most of the cancer types, including HCC, and MDM2 is overexpressed in approximately 30% of HCC. Overexpression of MDM2 is reported to be well correlated with metastasis, drug resistance, and poor prognosis of multiple cancer types, including HCC. Importantly, these correlations are observed even when p53 is mutated. Indeed, p53-independent functions of overexpressed MDM2 in cancer progression have been suitably demonstrated. In this review article, we summarize potential effectors of MDM2 that promote or suppress cancer metastasis and discuss the p53-independent roles of MDM2 in liver cancer metastasis from clinical as well as biological perspectives.
Collapse
Affiliation(s)
- Atul Ranjan
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kaustav Bera
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
13
|
Yang T, Chen BZ, Li DF, Wang HM, Lin XS, Wei HF, Zeng YM. Reduced NM23 Protein Level Correlates With Worse Clinicopathologic Features in Colorectal Cancers: A Meta-Analysis of Pooled Data. Medicine (Baltimore) 2016; 95:e2589. [PMID: 26825905 PMCID: PMC5291575 DOI: 10.1097/md.0000000000002589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/04/2015] [Accepted: 12/29/2015] [Indexed: 02/05/2023] Open
Abstract
The clinical value of a prominent metastasis suppressor, nonmetastatic protein 23 (NM23), remains controversial. In this study, we examined the correlation between NM23 protein levels and the clinicopathologic features of colorectal cancers (CRC), and assessed the overall prognostic value of NM23 for CRC. Embase, PubMed, Web of Science, and other scientific literature databases were exhaustively searched to identify relevant studies published prior to June 31, 2015. The methodological qualities of selected studies were scored based on the critical appraisal skills program (CASP) criteria, as independently assessed by 2 reviewers. NM23 protein levels in tumor tissues of CRC patients were examined in relation to Dukes stage, differentiation grade, T-stage, lymph node metastasis status, and overall survival (OS). STATA software version 12.0 (Stata Corp, College Station, TX) was used for statistical analysis of data pooled from selected studies. Nineteen cohort studies met the inclusion criteria for present study and contained a combined total of 2148 study subjects. Pooled odd ratios (ORs) for NM23 expression revealed that reduced NM23 protein levels in CRC tumor tissues correlated with Dukes stage C and D (OR = 1.89, 95% CI: 1.06-3.39, P = 0.032), poor differentiation grades (OR = 1.41, 95% CI: 1.03-1.94, P = 0.032), and positive lymph node metastasis status (OR = 3.21, 95% CI: 1.95-5.29, P < 0.001). On the other hand, no such correlations were evident with T-stage T3-4 (OR = 1.56, 95% CI: 0.60-4.06, P = 0.367) or OS (OR = 0.79, 95% CI: 0.58-1.08, P = 0.138). Our analysis of pooled data found that NM23 expression is reduced in CRC tissues and low NM23 levels tightly correlate with higher Dukes stages, poorer differentiation grade, and positive lymph node metastases. However, NM23 levels did not influence the OS in CRC patients.
Collapse
Affiliation(s)
- Tian Yang
- From the Department of Gastrointestinal Surgery, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Gai JQ, Sheng X, Qin JM, Sun K, Zhao W, Ni L. The effect and mechanism of bufalin on regulating hepatocellular carcinoma cell invasion and metastasis via Wnt/β-catenin signaling pathway. Int J Oncol 2015; 48:338-48. [PMID: 26648168 DOI: 10.3892/ijo.2015.3250] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/11/2015] [Indexed: 01/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor with an extremely poor prognosis. Our preliminary study indicated that bufalin could restrain the proliferation of human hepatoma BEL-7402 cells in a time- and dose-dependent manner. In the present study, the colony formation assay, the Transwell invasion assay, the western blot analysis and the immunofluorescence method were respectively used to investigate the effect and mechanism of bufalin against HCC cell invasion and metastasis. We found that: i) bufalin had significant inhibitory effect on the cell proliferation of BEL-7402 cells; ii) bufalin markedly inhibited the migration and invasion of BEL-7402 cells; iii) bufalin could suppress the phosphorylation of GSK-3β Ser9 site in BEL-7402 cells, decrease the expression of β-catenin, cyclin D1, metalloproteinases-7 (MMP-7) and cyclooxygenase-2 (COX-2) in the cytoplasm, and increase the expression of E-cadherin and β-catenin on the cell membrane; and iv) the expression of α-fetoprotein significantly decreased and the expression of albumin increased in BEL-7402 cells after bufalin was used. Our results indicate that: i) bufalin can regulate the expression of associated factors in Wnt/β-catenin signaling pathway of BEL-7402 cells through suppressing the phosphorylation of GSK-3β Ser9 site; ii) bufalin can strengthen intercellular E-cadherin/β-catenin complex to control epithelial-mesenchymal transition; and iii) bufalin can reverse the malignant phenotype and promote the differentiation and maturation by regulating the AFP and ALB expression in BEL-7402 cells. These are very important mechanisms of bufalin on the inhibition of the invasion and metastasis of HCC cells.
Collapse
Affiliation(s)
- Ji Qin Gai
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Xia Sheng
- Department of Pathology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Jian Min Qin
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Kang Sun
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Wei Zhao
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Lei Ni
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
15
|
Liu Y, Ren F, Luo Y, Rong M, Chen G, Dang Y. Down-Regulation of MiR-193a-3p Dictates Deterioration of HCC: A Clinical Real-Time qRT-PCR Study. Med Sci Monit 2015; 21:2352-60. [PMID: 26263159 PMCID: PMC4538786 DOI: 10.12659/msm.894077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Although some recent reports have shown that the expression level of miR-193a varied in different cancers, its role in hepatocellular carcinoma (HCC) remains unidentified. The aim of the current study was to validate the relationship between miR-193a-3p and clinicopathological characteristics in HCC patients. Material/Methods Expression of miR-193a-3p in 95 HCC cases and their corresponding peritumoral tissues (PT) was examined by using quantitative reverse transcription polymerase chain reaction (qRT-PCR). miR-193a-3p expression and its correlation with a variety of clinicopathological features and patient recurrence were analyzed. Results The relative level of miR-193a-3p was 3.2028±1.1951 in PT, significantly higher than its expression in HCC tissues (1.5941±0.7079, P<0.001). The area under the curve of underexpression of miR-193a-3p was 0.906 to distinguish HCC from normal liver (95% CI: 0.864–0.948, P<0.001). Expression of miR-193a-3p was negatively correlated to metastasis (r=−0.371, P=0.000), TNM (r=−0.321, P=0.002), respectively. Additionally, the recurrence time was 50.271±2.631 months for the low miR-193a-3p level group and 60.132±3.626 months for the high miR-193a-3p level group. However, no significant difference between them was found (chi-square=0.354, P=0.552). Conclusions MiR-193a-3p may be a tumor-suppressive miRNA which is down-regulated in HCC tissues. It could be regarded as a predictor for the deterioration of HCC patients.
Collapse
Affiliation(s)
- Yongru Liu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China (mainland)
| | - Fanghui Ren
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China (mainland)
| | - Yihuan Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China (mainland)
| | - Minhua Rong
- Department of Research, Affiliated Cancer Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang, China (mainland)
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China (mainland)
| | - Yiwu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China (mainland)
| |
Collapse
|
16
|
Shan C, Lin J, Hou JQ, Liu HY, Chen SB, Chen AC, Ou TM, Tan JH, Li D, Gu LQ, Huang ZS. Chemical intervention of the NM23-H2 transcriptional programme on c-MYC via a novel small molecule. Nucleic Acids Res 2015; 43:6677-91. [PMID: 26117539 PMCID: PMC4538829 DOI: 10.1093/nar/gkv641] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/10/2015] [Indexed: 11/15/2022] Open
Abstract
c-MYC is an important oncogene that is considered as an effective target for anticancer therapy. Regulation of this gene's transcription is one avenue for c-MYC-targeting drug design. Direct binding to a transcription factor and generating the intervention of a transcriptional programme appears to be an effective way to modulate gene transcription. NM23-H2 is a transcription factor for c-MYC and is proven to be related to the secondary structures in the promoter. Here, we first screened our small-molecule library for NM23-H2 binders and then sifted through the inhibitors that could target and interfere with the interaction process between NM23-H2 and the guanine-rich promoter sequence of c-MYC. As a result, a quinazolone derivative, SYSU-ID-01, showed a significant interference effect towards NM23-H2 binding to the guanine-rich promoter DNA sequence. Further analyses of the compound–protein interaction and the protein–DNA interaction provided insight into the mode of action for SYSU-ID-01. Cellular evaluation results showed that SYSU-ID-01 could abrogate NM23-H2 binding to the c-MYC promoter, resulting in downregulation of c-MYC transcription and dramatically suppressed HeLa cell growth. These findings provide a new way of c-MYC transcriptional control through interfering with NM23-H2 binding to guanine-rich promoter sequences by small molecules.
Collapse
Affiliation(s)
- Chan Shan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jin-Qiang Hou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hui-Yun Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ai-Chun Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lian-Quan Gu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
17
|
Liu M, Dou Y, Sun R, Zhang Y, Liu Y. Molecular mechanisms for alcoholic hepatitis based on analysis of gene expression profile. HEPATITIS MONTHLY 2015; 15:e27336. [PMID: 26045708 PMCID: PMC4451276 DOI: 10.5812/hepatmon.15(5)2015.27336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/04/2015] [Accepted: 03/29/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alcoholic hepatitis (AH) is an acute manifestation of alcoholic liver disease with high mortality rates. OBJECTIVES Our aim was to study the molecular mechanisms of AH. MATERIALS AND METHODS The differentially expressed genes (DEGs) in liver between AH and control cases were identified by analyzing the GSE28619 microarray data using t-test. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) enrichment analyses were performed using DAVID online tool. The protein-protein interaction (PPI) network was constructed using Search Tool for the Retrieval of Interacting Genes (STRING) and the subnetwork was identified by BioNet. Both PPI network and subnetwork were visualized using the Cytoscape software. RESULTS Total 908 DEGs (551 up- and 357 down-regulated DEGs) were obtained. The up-regulated DEGs were significantly enriched in 15 pathways and 112 GO biological processes. The down-regulated DEGs were significantly enriched in 22 pathways and 84 GO biological processes. The PPI network with 608 nodes and 2878 interactions was constructed and the subnetwork with 53 nodes and 131 interactions was also identified. The hub DEGs (TSPO, PPIB, NME1 and NME2) were extracted in this subnetwork. CONCLUSIONS TSPO might contribute to the liver damage and AH progression induced by mitochondrial dysfunction through oxidative stress of liver. TSPO interacted with PPIB might play important roles in liver damage in AH. The interaction between NME1 and NME2 might contribute to the transformation from AH to hepatocellular carcinoma.
Collapse
Affiliation(s)
- Minghui Liu
- Department of TCM, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuchang Dou
- Department of TCM, China-Japan Union Hospital of Jilin University, Changchun, China
- Corresponding Author: Yuchang Dou, Department of TCM, China-Japan Union Hospital of Jilin University, Changchun, China. Tel: +86-43184995840, Fax: +86-43184995840, E-mail:
| | - Ran Sun
- Science Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yonggui Zhang
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yansong Liu
- Department of TCM, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Guo S, Chen W, Luo Y, Ren F, Zhong T, Rong M, Dang Y, Feng Z, Chen G. Clinical implication of long non-coding RNA NEAT1 expression in hepatocellular carcinoma patients. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:5395-402. [PMID: 26191242 PMCID: PMC4503113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/12/2015] [Indexed: 06/04/2023]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC), a primary malignancy of the liver, is associated with high mortality rate and poor prognosis. Emerging evidence showed that novel biomarkers are required toward a better understanding of the biological mechanisms of HCC. NEAT1 (nuclear paraspeckle assembly transcript 1, also known as MENε/β), a novel long non-coding RNA (lncRNA), serves as a crucial regulator in several cancers. However, the correlation between NEAT1 expression with tumorigenesis and metastasis in HCC tissues remains out of the question so far. In the current study, the aim was to evaluate the potential role of NEAT1 expression in HCC tissues and its relationship with clinicopathological parameters. METHOD The expression of NEAT1 was detected by qRT-PCR, in 95 cases of adjacent non-cancerous liver and their paired HCC tissues, respectively. The associations of NEAT1 with clinicopathological features and other biological factors were further analyzed. RESULT Our results revealed that NEAT1 appeared to have higher expression in the HCC tissues, compared with the adjacent non-cancerous liver tissues. High levels of NEAT1 promoted the clinical features of HCC, including the number of tumor nodes, metastasis, clinical TNM stage, the status of portal vein tumor embolus, vaso-invasion and the infiltration of tumor cells. Additionally, high NEAT1 expression levels were significantly associated with the expression level of MDTH, NM23 and MALAT1. CONCLUSION Our study demonstrates that NEAT1 acts as a pivotal player in tumorigenesis and metastasis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sien Guo
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Wenjie Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Yihuan Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Fanghui Ren
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Tengfei Zhong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Minhua Rong
- Department of Research, Affiliated Cancer Hospital, Guangxi Medical University71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Yiwu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Zhenbo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| |
Collapse
|
19
|
Tong Y, Yung LY, Wong YH. Metastasis suppressors Nm23H1 and Nm23H2 differentially regulate neoplastic transformation and tumorigenesis. Cancer Lett 2015; 361:207-17. [PMID: 25748386 DOI: 10.1016/j.canlet.2015.02.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 11/30/2022]
Abstract
Nm23H1 and H2 are prototypical metastasis suppressors with diverse functions, but recent studies suggest that they may also regulate tumorigenesis. Here, we employed both cellular and in vivo assays to examine the effect of Nm23H1 and H2 on tumorigenesis induced by oncogenic Ras and/or p53 deficiency. Co-expression of Nm23H1 but not H2 in NIH3T3 cells effectively suppressed neoplastic transformation and tumorigenesis induced by the oncogenic H-Ras G12V mutant. Overexpression of Nm23H1 but not H2 also inhibited tumorigenesis by human cervical cancer HeLa cells with p53 deficiency. However, in human non-small-cell lung carcinoma H1299 cells harboring N-Ras Q61K oncogenic mutation and p53 deletion, overexpression of Nm23H1 did not affect tumorigenesis in nude mice assays, while overexpression of Nm23H2 enhanced tumor growth with elevated expression of the c-Myc proto-oncogene. Collectively, these results suggest that Nm23H1 and H2 have differential abilities to modulate tumorigenesis.
Collapse
Affiliation(s)
- Yao Tong
- Division of Life Sciences, Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Lisa Y Yung
- Division of Life Sciences, Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yung H Wong
- Division of Life Sciences, Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
20
|
Liu YF, Yang A, Liu W, Wang C, Wang M, Zhang L, Wang D, Dong JF, Li M. NME2 reduces proliferation, migration and invasion of gastric cancer cells to limit metastasis. PLoS One 2015; 10:e0115968. [PMID: 25700270 PMCID: PMC4336288 DOI: 10.1371/journal.pone.0115968] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 12/03/2014] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is one of the most common malignancies and has a high rate of metastasis. We hypothesize that NME2 (Nucleoside Diphosphate Kinase 2), which has previously been considered as an anti-metastatic gene, plays a role in the invasiveness of gastric cancer cells. Using a tissue chip technology and immunohistochemistry, we demonstrated that NME2 expression was associated with levels of differentiation of gastric cancer cells and their metastasis into the lymph nodes. When the NME2 gene product was over-expressed by ;in vitro stable transfection, cells from BGC823 and MKN45 gastric cancer cell lines had reduced rates of proliferation, migration, and invasion through the collagen matrix, suggesting an inhibitory activity of NME2 in the propagation and invasion of gastric cancer. NME2 could, therefore, severe as a risk marker for gastric cancer invasiveness and a potential new target for gene therapy to enhance or induce NME2 expression.
Collapse
Affiliation(s)
- Yan-fei Liu
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Department of Pathology, Xi’an Children’s Hospital, Xi’an, China
| | - Aijun Yang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wei Liu
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chenyu Wang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Min Wang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Lihan Zhang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Dongcang Wang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing-fei Dong
- Puget Sound Blood Center, Seattle, Washington, United States of America
- Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, Washington, United States of America
| | - Min Li
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, China
- * E-mail:
| |
Collapse
|
21
|
He F, York JP, Burroughs SG, Qin L, Xia J, Chen D, Quigley EM, Webb P, LeSage GD, Xia X. Recruited metastasis suppressor NM23-H2 attenuates expression and activity of peroxisome proliferator-activated receptor δ (PPARδ) in human cholangiocarcinoma. Dig Liver Dis 2015; 47:62-7. [PMID: 25277864 PMCID: PMC4537414 DOI: 10.1016/j.dld.2014.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/29/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Peroxisome proliferator-activated receptor δ (PPARδ) is a versatile regulator of distinct biological processes and overexpression of PPARδ in cancer may be partially related to its suppression of its own co-regulators. AIMS To determine whether recruited suppressor proteins bind to and regulate PPARδ expression, activity and PPARδ-dependent cholangiocarcinoma proliferation. METHODS Yeast two-hybrid assays were done using murine PPARδ as bait. PPARδ mRNA expression was determined by qPCR. Protein expression was measured by western blot. Immunohistochemistry and fluorescence microscopy were used to determine PPARδ expression and co-localization with NDP Kinase alpha (NM23-H2). Cell proliferation assays were performed to determine cell numbers. RESULTS Yeast two-hybrid screening identified NM23-H2 as a PPARδ binding protein and their interaction was confirmed. Overexpressed PPARδ or treatment with the agonist GW501516 resulted in increased cell proliferation. NM23-H2 siRNA activated PPARδ luciferase promoter activity, upregulated PPARδ RNA and protein expression and increased GW501516-stimulated CCA growth. Overexpression of NM23-H2 inhibited PPARδ luciferase promoter activity, downregulated PPARδ expression and AKT phosphorylation and reduced GW501516-stimulated CCA growth. CONCLUSIONS We report the novel association of NM23-H2 with PPARδ and the negative regulation of PPARδ expression by NM23-H2 binding to the C-terminal region of PPARδ. These findings provide evidence that the metastasis suppressor NM23-H2 is involved in the regulation of PPARδ-mediated proliferation.
Collapse
Affiliation(s)
- Fang He
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - J Philippe York
- Houston Methodist Research Institute, Weill Cornell School of Medicine, Houston, TX, USA
| | | | - Lidong Qin
- Houston Methodist Research Institute, Weill Cornell School of Medicine, Houston, TX, USA
| | - Jintang Xia
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - De Chen
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Eamonn M Quigley
- Houston Methodist Research Institute, Weill Cornell School of Medicine, Houston, TX, USA
| | - Paul Webb
- Houston Methodist Research Institute, Weill Cornell School of Medicine, Houston, TX, USA
| | - Gene D LeSage
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Xuefeng Xia
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Houston Methodist Research Institute, Weill Cornell School of Medicine, Houston, TX, USA.
| |
Collapse
|
22
|
Yokdang N, Nordmeier S, Speirs K, Burkin HR, Buxton ILO. Blockade of extracellular NM23 or its endothelial target slows breast cancer growth and metastasis. ACTA ACUST UNITED AC 2015; 2:192-200. [PMID: 26413311 DOI: 10.15761/icst.1000139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Nucleoside Diphosphate Kinase (NDPK), described as NM23 a metastasis suppressor, is found in the culture medium of cancer cells lines suggesting that the kinase may have an extracellular role. We propose that extracellular NM23 released from breast cancers in vivo stimulates tumor cell migration, proliferation and endothelial cell angiogenesis in support of metastasis development. METHODS NM23 in the bloodstream of immunocompromised mice carrying human triple-negative breast cancers or in breast cancer patients was measured by ELISA. Primary and metastatic tumor development, the impact of blockade of NM23 and/or its stimulation of nucleotide receptors were measured using in vivo imaging. NM23 expression data in the Curtis breast dataset was examined to test our hypothesis that NM23 may play a mechanistic role in breast cancer development. RESULTS SCID mice carrying metastatic MDA-MB-231Luc+ triple-negative human breast tumor cells elaborate NM23 into the circulation correlated with primary tumor growth. Treatment of mice with the NM23 inhibitor ellagic acid (EA) or the purinergic receptor antagonist MRS2179 slowed primary tumor growth. At 16 weeks following implantation, lung metastases were reduced in mice treated with EA, MRS2179 or the combination. Expression of NM23 in the Curtis breast dataset confirmed a likely role for NM23 in tumor metastasis. CONCLUSIONS Extracellular NM23 may constitute both a biomarker and a therapeutic target in the management of breast cancer.
Collapse
Affiliation(s)
- Nucharee Yokdang
- Department of Pharmacology, University of Nevada School of Medicine, Center for Molecular Medicine, USA
| | - Senny Nordmeier
- Department of Pharmacology, University of Nevada School of Medicine, Center for Molecular Medicine, USA
| | - Katie Speirs
- Department of Pharmacology, University of Nevada School of Medicine, Center for Molecular Medicine, USA
| | - Heather R Burkin
- Department of Pharmacology, University of Nevada School of Medicine, Center for Molecular Medicine, USA
| | - Iain L O Buxton
- Department of Pharmacology, University of Nevada School of Medicine, Center for Molecular Medicine, USA
| |
Collapse
|
23
|
Li Y, Tong Y, Wong YH. Regulatory functions of Nm23-H2 in tumorigenesis: insights from biochemical to clinical perspectives. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:243-56. [PMID: 25413836 DOI: 10.1007/s00210-014-1066-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 11/07/2014] [Indexed: 12/12/2022]
Abstract
Substantial effort has been directed at elucidating the functions of the products of the Nm23 tumor metastasis suppressor genes over the past two decades, with the ultimate goal of exploring their translational potentials in changing cancer patients' outcomes. Much attention has been focused on the better-known Nm23-H1, but despite having high sequence similarity, Nm23-H2 functions differently in many aspects. Besides acting as a metastasis suppressor, compelling data suggest that Nm23-H2 may modulate various tumor-associated biological events to enhance tumorigenesis in human solid tumors and hematological malignancies. Linkage to tumorigenesis may occur through the ability of Nm23-H2 to regulate transcription, cell proliferation, apoptosis, differentiation, and telomerase activity. In this review, we examine the linkages of Nm23-H2 to tumorigenesis in terms of its biochemical and structural properties and discuss its potential role in various tumor-associated events.
Collapse
Affiliation(s)
- Yuanjun Li
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | |
Collapse
|
24
|
Lu Y, Zhao X, Li K, Luo G, Nie Y, Shi Y, Zhou Y, Ren G, Feng B, Liu Z, Pan Y, Li T, Guo X, Wu K, Miranda-Vizuete A, Wang X, Fan D. Thioredoxin-like protein 2 is overexpressed in colon cancer and promotes cancer cell metastasis by interaction with ran. Antioxid Redox Signal 2013; 19:899-911. [PMID: 23311631 PMCID: PMC3763228 DOI: 10.1089/ars.2012.4736] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Our previous work identified thioredoxin-like protein 2 (Txl-2) as the target of the monoclonal antibody MC3 associated with colon cancer, but its underlying mechanisms remain poorly understood. Txl-2, a novel thioredoxin (Trx) and nucleoside diphosphate kinase family member, is alternatively spliced and gives rise to three different Txl-2 isoforms. In this study, Txl-2 expression in colon cancer, differential functions for Txl-2 isoforms in cell invasion and metastasis, and the downstream signaling were investigated. RESULTS Txl-2 expression was elevated in colon cancer tissues compared to normal colonic tissues, with a high correlation between the histological grade and prognosis. Knockdown of Txl-2 expression significantly inhibited cancer cell motility, and the invasive and metastatic abilities of colon cancer cells. Interestingly, Txl-2 isoforms showed differential effects on cancer cell invasion and metastasis. Cell invasion and metastasis were significantly promoted by Txl-2b but inhibited by Txl-2c, while no obvious effect was observed for Txl-2a. Furthermore, a direct interaction was identified between Txl-2b and Ran, a Ras-related protein, by yeast two-hybrid assay and coimmunoprecipitation. PI3K pathway was found to be a major pathway mediating Txl-2b induced tumor invasion and metastasis. INNOVATION The current study provides a novel biomarker and target molecule for the diagnosis and treatment of colon cancer and provides a novel paradigm to understand how alternative splicing functions in human cancer. CONCLUSION Our findings demonstrate an elevated Txl-2 expression in colon cancer and that Txl-2b promotes cell invasion and metastasis through interaction with Ran and PI3K signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Lu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Marino N, Nakayama J, Collins JW, Steeg PS. Insights into the biology and prevention of tumor metastasis provided by the Nm23 metastasis suppressor gene. Cancer Metastasis Rev 2013; 31:593-603. [PMID: 22706779 DOI: 10.1007/s10555-012-9374-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metastatic disease is the major cause of death among cancer patients. A class of genes, named metastasis suppressors, has been described to specifically regulate the metastatic process. The metastasis suppressor genes are downregulated in the metastatic lesion compared to the primary tumor. In this review, we describe the body of research surrounding the first metastasis suppressor identified, Nm23. Nm23 overexpression in aggressive cancer cell lines reduced their metastatic potential in vivo with no significant reduction in primary tumor size. A complex mechanism of anti-metastatic action is unfolding involving several known Nm23 enzymatic activities (nucleotide diphosphate kinase, histidine kinase, and 3'-5' exonuclease), protein-protein interactions, and downstream gene regulation properties. Translational approaches involving Nm23 have progressed to the clinic. The upregulation of Nm23 expression by medroxyprogesterone acetate has been tested in a phase II trial. Other approaches with significant preclinical success include gene therapy using traditional or nanoparticle delivery, and cell permeable Nm23 protein. Recently, based on the inverse correlation of Nm23 and LPA1 expression, a LPA1 inhibitor has been shown to both inhibit metastasis and induce metastatic dormancy.
Collapse
Affiliation(s)
- Natascia Marino
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 1122, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|