1
|
Feng W, Xiao Y, Zhao C, Zhang Z, Liu W, Ma J, Ganz T, Zhang J, Liu S. New Deferric Amine Compounds Efficiently Chelate Excess Iron to Treat Iron Overload Disorders and to Prevent Ferroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202679. [PMID: 36031399 PMCID: PMC9561787 DOI: 10.1002/advs.202202679] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/04/2022] [Indexed: 05/09/2023]
Abstract
Excess iron accumulation occurs in organs of patients with certain genetic disorders or after repeated transfusions. No physiological mechanism is available to excrete excess iron and iron overload to promote lipid peroxidation to induce ferroptosis, thus iron chelation becomes critical for preventing ion toxicity in these patients. To date, several iron chelators have been approved for iron chelation therapy, such as deferiprone and deferoxamine, but the current iron chelators suffer from significant limitations. In this context, new agents are continuously sought. Here, a library of new deferric amine compounds (DFAs) with adjustable skeleton and flexibility is synthesized by adopting the beneficial properties of conventional chelators. After careful evaluations, compound DFA1 is found to have greater efficacy in binding iron through two molecular oxygens in the phenolic hydroxyl group and the nitrogen atom in the amine with a 2:1 stoichiometry. This compound remarkably ameliorates iron overload in diverse murine models through both oral and intravenous administration, including hemochromatosis, high iron diet-induced, and iron dextran-stimulated iron accumulation. Strikingly, this compound is found to suppress iron-induced ferroptosis by modulating the intracellular signaling that drives lipid peroxidation. This study opens a new approach for the development of iron chelators to treat iron overload.
Collapse
Affiliation(s)
- Wenya Feng
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yuanjing Xiao
- School of Chemistry and Molecular EngineeringEast China Normal University500 Dongchuan RoadShanghai200241P. R. China
| | - Chuanfang Zhao
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Zhanming Zhang
- Department of ChemistryFudan University2005 Songhu RoadShanghai200438P. R. China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Tomas Ganz
- Department of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCA90095USA
| | - Junliang Zhang
- Department of ChemistryFudan University2005 Songhu RoadShanghai200438P. R. China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
2
|
Identification of Common Pathogenic Pathways Involved in Hemochromatosis Arthritis and Calcium Pyrophosphate Deposition Disease: a Review. Curr Rheumatol Rep 2022; 24:40-45. [PMID: 35143028 DOI: 10.1007/s11926-022-01054-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Arthritis is a common clinical manifestation of hereditary hemochromatosis (HH), and HH is one of a handful of conditions linked to calcium pyrophosphate deposition (CPPD) in joints. The connection between these two types of arthritis has not yet been fully elucidated. In light of new pathogenic pathways recently implicated in CPPD involving bone, we reviewed the literature on the etiology of hemochromatosis arthropathy (HHA) seeking shared pathogenic mechanisms. RESULTS Clinical observations reinforce striking similarities between HHA and CPPD even in the absence of CPP crystals. They share a similar joint distribution, low grade synovial inflammation, and generalized bone loss. Excess iron damages chondrocytes and bone cells in vitro. While direct effects of iron on cartilage are not consistently seen in animal models of HH, there is decreased osteoblast alkaline phosphatase activity, and increased osteoclastogenesis. These abnormalities are also seen in CPPD. Joint repair processes may also be impaired in both CPPD and HHA. CONCLUSIONS Possible shared pathogenic pathways relate more to bone and abnormal damage/repair mechanisms than direct damage to articular cartilage. While additional work is necessary to fully understand the pathogenesis of arthritis in HH and to firmly establish causal links with CPPD, this review provides some plausible hypotheses explaining the overlap of these two forms of arthritis.
Collapse
|
3
|
Abstract
INTRODUCTION Iron overload, a state with excessive iron storage in the body, is a common complication in thalassemia patients which leads to multiple organ dysfunctions including the bone. Iron overload-induced bone disease is one of the most common and severe complications of thalassemia including osteoporosis. Currently, osteoporosis is still frequently found in thalassemia even with widely available iron chelation therapy. STUDY SELECTION Relevant publications published before December 2019 in PubMed database were reviewed. Both pre-clinical studies and clinical trials were obtained using iron overload, thalassemia, osteoporosis, osteoblast, and osteoclast as keywords. RESULTS Increased ROS production is a hallmark of iron overload-induced impaired bone remodeling. At the cellular level, oxidative stress affects bone remodeling by both osteoblast inhibition and osteoclast activation via many signaling pathways. In thalassemia patients, it has been shown that bone resorption was increased while bone formation was concurrently reduced. CONCLUSION In this review, reports on the cellular mechanisms of iron overload-associated bone remodeling are comprehensively summarized and presented to provide current understanding this pathological condition. Moreover, current treatments and potential interventions for attenuating bone remodeling in iron overload are also summarized to pave ways for the future discoveries of novel agents that alleviate this condition.
Collapse
|
4
|
Neutrophils from hereditary hemochromatosis patients are protected from iron excess and are primed. Blood Adv 2020; 4:3853-3863. [PMID: 32810223 DOI: 10.1182/bloodadvances.2020002198] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Iron is required for the oxidative response of neutrophils to allow the production of reactive oxygen species (ROS). However, neutrophil function may be severely altered in conditions of iron overload, as observed in chronically transfused patients. Therefore, a tight regulation of neutrophil iron homeostasis seems to be critical for avoiding iron toxicity. Hepcidin is the key iron regulator in organisms; however, no studies have investigated its role in maintaining neutrophil iron homeostasis or characterized neutrophil function in patients with hereditary hemochromatosis (HH), a common iron overload genetic disorder that results from a defect in hepcidin production. To explore these issues, we studied 2 mouse models of iron overload: an experimentally induced iron overload model (EIO), in which hepcidin is increased, and a genetic HH model of iron overload with a deletion of hepatic hepcidin. We found that iron-dependent increase of hepatic hepcidin results in neutrophil intracellular iron trapping and consecutive defects in oxidative burst activity. In contrast, in both HH mouse models and HH patients, the lack of hepcidin expression protects neutrophils from toxic iron accumulation. Moreover, systemic iron overload correlated with a surprising neutrophil priming and resulted in a more powerful oxidative burst. Indeed, important factors in neutrophil priming and activation, such as tumor necrosis factor α (TNF-α), VCAM-1, and ICAM-1 are increased in the plasma of HH patients and are associated with an increase in HH neutrophil phagocytosis capacity and a decrease in L-selectin surface expression. This is the first study to characterize neutrophil iron homeostasis and associated functions in patients with HH.
Collapse
|
5
|
Dong D, Yang J, Zhang G, Huyan T, Shang P. 16 T high static magnetic field inhibits receptor activator of nuclear factor kappa‐Β ligand‐induced osteoclast differentiation by regulating iron metabolism in Raw264.7 cells. J Tissue Eng Regen Med 2019; 13:2181-2190. [DOI: 10.1002/term.2973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/10/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Dandan Dong
- School of Life ScienceNorthwestern Polytechnical University Xi'an China
- Key Laboratory for Space Bioscience and BiotechnologyInstitute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an China
| | - Jiancheng Yang
- School of Life ScienceNorthwestern Polytechnical University Xi'an China
- Key Laboratory for Space Bioscience and BiotechnologyInstitute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an China
- Department of Spinal SurgeryPeople's Hospital of Longhua Shenzhen Shenzhen China
| | - Gejing Zhang
- School of Life ScienceNorthwestern Polytechnical University Xi'an China
- Key Laboratory for Space Bioscience and BiotechnologyInstitute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an China
| | - Ting Huyan
- School of Life ScienceNorthwestern Polytechnical University Xi'an China
- Key Laboratory for Space Bioscience and BiotechnologyInstitute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an China
| | - Peng Shang
- Research & Development Institute in ShenzhenNorthwestern Polytechnical University Shenzhen China
- Key Laboratory for Space Bioscience and BiotechnologyInstitute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an China
| |
Collapse
|
6
|
Zhou Y, Yang Y, Liu Y, Chang H, Liu K, Zhang X, Chang Y. Irp2 Knockout Causes Osteoporosis by Inhibition of Bone Remodeling. Calcif Tissue Int 2019; 104:70-78. [PMID: 30191282 DOI: 10.1007/s00223-018-0469-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023]
Abstract
It has been found that iron disorder may lead to osteoporosis. However, the mechanism has been little explored. In the present study, we try to investigate the effects of iron disorder on bone metabolism using Irp2 knockout (Irp2-/-) mice. Female Irp2-/- mice were used in this study. Bone mineral density (BMD) was measured by Micro-CT. Serum markers for bone turnover were measured by enzyme-linked immunosorbent assay. Content of iron was measured in bone and liver tissue, and Vitamin D 25-hydroxylase (CYP2R1) content was measured in liver tissue. Relative gene expression involved in iron export and uptake, and some genes involved in activities of osteoblast and osteoclast were all measured by real-time PCR and western blot. Compared to wild-type mice, Irp2-/- mice exhibited reduced BMD, bone iron deficiency, and hepatic iron overload. Serum levels of 25(OH)D3 and markers for bone formation such as bone alkaline phosphatase (Balp), bone-gla-protein (BGP), and type I collagen alpha1 chain (Col I α1) were decreased, while markers for bone resorption including cathepsin K (Ctsk) and tartrate-resistant acid phosphatase (Trap) were all significantly increased. Hepatic CYP2R1 level was decreased in Irp2-/- mice compared with wild-type control mice. Compared to wild-type C57BL6 control mice, the expression of genes involved in osteoblast activity such as Balp, BGP, and Col I α1 were all significantly decreased in bone tissue, while genes for osteoclast activity such as Ctsk and Trap were all markedly increased in Irp2-/- mice at mRNA level. Genes involved in iron storage, uptake, and exporting were also measured in bone tissue. Posttranscriptionally decreased ferritin (FTL), ferroportin 1 (FPN1), and increased transferrin receptor 1 (TfR1) gene expressions have been unexpectedly found in bone tissue of Irp2-/- mice. Irp2-/- mice exhibit reduced bone iron content and osteoporosis. Decreased circulating 25(OH)D3 levels promoted activity of osteoclast, while impaired activity of osteoblast may contribute to pathogenesis of osteoporosis. And, reduced bone iron content may not be totally caused by TfR1-dependent pathways.
Collapse
Affiliation(s)
- Yaru Zhou
- Department of Endocrinology, Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Yu Yang
- Department of Endocrinology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Liu
- Department of Endocrinology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hengrui Chang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kuanzhi Liu
- Department of Endocrinology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaojuan Zhang
- Department of Endocrinology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanzhong Chang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050051, China.
| |
Collapse
|
7
|
Fukao W, Hasuike Y, Yamakawa T, Toyoda K, Aichi M, Masachika S, Kantou M, Takahishi S(I, Iwasaki T, Yahiro M, Nanami M, Nagasawa Y, Kuragano T, Nakanishi T. Oral Versus Intravenous Iron Supplementation for the Treatment of Iron Deficiency Anemia in Patients on Maintenance Hemodialysis—Effect on Fibroblast Growth Factor-23 Metabolism. J Ren Nutr 2018; 28:270-277. [DOI: 10.1053/j.jrn.2017.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/25/2017] [Accepted: 12/25/2017] [Indexed: 12/30/2022] Open
|
8
|
Xu Z, Sun W, Li Y, Ling S, Zhao C, Zhong G, Zhao D, Song J, Song H, Li J, You L, Nie G, Chang Y, Li Y. The regulation of iron metabolism by hepcidin contributes to unloading-induced bone loss. Bone 2017; 94:152-161. [PMID: 27686598 DOI: 10.1016/j.bone.2016.09.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/02/2016] [Accepted: 09/25/2016] [Indexed: 12/20/2022]
Abstract
Iron overload inhibits osteoblast function and promotes osteoclastogenesis. Hepcidin plays an important role in this process. The changes in iron content and the regulation of hepcidin under unloading-induced bone loss remain unknown. A hindlimb suspension model was adopted to simulate unloading-induced bone loss in mice. The results showed that iron deposition in both liver and bone was markedly increased in hindlimb unloaded mice, and was accompanied by the upregulation of osteoclast activity and downregulation of osteoblast activity. The iron chelator deferoxamine mesylate (DFO) reduced the iron content in bone and alleviated unloading-induced bone loss. The increased iron content in bone was mainly a result of the upregulation of transferrin receptor 1 (TfR1) and divalent metal transporter 1 with iron response element (DMT1+IRE), rather than changes in the iron transporter ferroportin 1 (FPN1). The hepcidin level in the liver was significantly higher, while the FPN1 level in the duodenum was substantially reduced. However, there were no changes in the FPN1 level in bone tissue. During hindlimb unloading, downregulation of hepcidin by siRNA increased iron uptake in bone and liver, which aggravated unloading-induced bone loss. In summary, these data show that unloading-induced bone loss was orchestrated by iron overload and coupled with the regulation of hepcidin by the liver.
Collapse
Affiliation(s)
- Zi Xu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Weijia Sun
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Chenyang Zhao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Guohui Zhong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Jinping Song
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Hailin Song
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jinqiao Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Linhao You
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Guangjun Nie
- Key Laboratory of Chinese Academy of Sciences for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yanzhong Chang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China.
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China.
| |
Collapse
|
9
|
Xie W, Lorenz S, Dolder S, Hofstetter W. Extracellular Iron is a Modulator of the Differentiation of Osteoclast Lineage Cells. Calcif Tissue Int 2016; 98:275-83. [PMID: 26615413 DOI: 10.1007/s00223-015-0087-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/13/2015] [Indexed: 01/28/2023]
Abstract
Osteoclasts originate from the hematopoietic stem cell and share a differentiation pathway with the cells of the monocyte/macrophage lineages. Development and activation of osteoclasts, and as a consequence regulation of bone resorption, depend on two growth factors: macrophage colony-stimulating factor and receptor activator of NF-κB ligand. Furthermore, cell development and activity are modulated by a microenvironment composed of cytokines and growth factors and of the extracellular matrix. Membrane transporters are a means for cells to interact with their environment. Within this study, the expression of proteins regulating cellular iron homeostasis in osteoclast-like cells grown from bone marrow-derived progenitors was compared to the expression of this set of proteins by monocyte/macrophage lineage cells. In differentiating osteoclasts, levels of transcripts encoding transferrin receptor 1 and divalent metal transporter 1 (Slc11A2) were increased, while levels of transcripts encoding ferroportin (Slc40A1) and natural resistance-associated macrophage protein 1 (Slc11A1) were decreased. Supplementation of the culture media with exogenous iron led to an increase in the proliferation of osteoclast progenitor cells and to the expression of a macrophage-like phenotype, while the development of osteoclasts was reduced. Upon transfer of mature OC onto a CaP substrate, iron depletion of the medium with the Fe(3+)-chelator Deferoxamine Mesylate decreased CaP dissolution by ~30 %, which could be restored by addition of exogenous iron. During the 24 h of the assay, no effects were observed on total TRAP activity. The data demonstrate transcriptional regulation of the components of cellular iron transporters during OC development and suggests that iron homeostasis may contribute to fine-tuning of the RANKL-induced OC development.
Collapse
Affiliation(s)
- Wenjie Xie
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sebastian Lorenz
- City Hospital Triemli Zurich, Institute for Laboratory Medicine, Zurich, Switzerland
| | - Silvia Dolder
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland
| | - Willy Hofstetter
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland.
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.
| |
Collapse
|
10
|
Xiong ZK, Lang J, Xu G, Li HY, Zhang Y, Wang L, Su Y, Sun AJ. Excessive levels of nitric oxide in rat model of Parkinson's disease induced by rotenone. Exp Ther Med 2014; 9:553-558. [PMID: 25574233 PMCID: PMC4280943 DOI: 10.3892/etm.2014.2099] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 10/28/2014] [Indexed: 12/31/2022] Open
Abstract
Systemic rotenone models of Parkinson’s disease (PD) are highly reproducible and may provide evidence on the pathogenesis of PD. In the present study, male Sprague-Dawley rats (1-year-old) were subcutaneously administered with rotenone (1.5 mg/kg/day) for six days and observed for the following three weeks. Compared with the control rats, a significant decrease was observed in the body weight and a marked increase was observed in the areas under the behavioral scoring curves in the rotenone-treated rats. Immunohistochemical staining revealed that the abundance of nigral tyrosine hydroxylase (TH)-positive neurons was markedly reduced following rotenone treatment. ELISA and neurochemical assays demonstrated a significant increase in the levels of nitric oxide (NO) and NO synthase, whereas a marked decrease was observed in the thiol levels in the brains of the rotenone-treated rats. Thus, subacute rotenone treatment was found to induce behavioral deficits and the loss of nigral TH-positive neurons which may be associated with the excessive levels of NO in the rat brains.
Collapse
Affiliation(s)
- Zhong-Kui Xiong
- Department of Radiotherapy, Shaoxing Second Hospital, Shaoxing, Zhejiang 312000, P.R. China ; Department of Radiotherapy, Shaoxing Campus, The First Affiliated Hospital, School of Medicine, Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China ; Department of Clinical Medicine, Shaoxing University School of Medicine, Shaoxing, Zhejiang 312099, P.R. China
| | - Juan Lang
- Medical Research Center, Shaoxing People's Hospital, Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Gang Xu
- Department of Radiotherapy, Jiangsu University Affiliated People's Hospital, Zhenjiang, Jiangsu 212002, P.R. China
| | - Hai-Yu Li
- Department of Laboratory Medicine, Shaoxing University School of Medicine, Shaoxing, Zhejiang 312099, P.R. China
| | - Yun Zhang
- Department of Basic Medicine, Shaoxing University School of Medicine, Shaoxing, Zhejiang 312099, P.R. China
| | - Lei Wang
- Department of Clinical Medicine, Shaoxing University School of Medicine, Shaoxing, Zhejiang 312099, P.R. China
| | - Yao Su
- Department of Clinical Medicine, Shaoxing University School of Medicine, Shaoxing, Zhejiang 312099, P.R. China
| | - Ai-Jing Sun
- Department of Pathology, Shaoxing People's Hospital, Zhejiang University, Shaoxing, Zhejiang, Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|