1
|
Nicoletti G, Saler M, Tresoldi MM, Villani L, Tottoli EM, Jousson O, Faga A. Effects of Comano Spring Water-derived Bacterial Lysates on Skin Regeneration: An Ex-vivo Study. In Vivo 2023; 37:2498-2509. [PMID: 37905622 PMCID: PMC10621408 DOI: 10.21873/invivo.13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND/AIM A native non-pathogenic bacterial microflora was identified in Comano (TN, Italy) spring water. The aim of this study was to investigate the regenerative effects of some of the bacterial lysates extracted from this water in a human ex-vivo skin experimental wound model. MATERIALS AND METHODS Bacterial lysates were extracted from four new isolates: lysate 1 (L1) - closest relative Rudaea cellulosilytica, phylum Proteobacteria; lysate 2 (L2) - closest relative Mesorhizobium erdmanii, phylum Proteobacteria; lysate 3 (L3) - closest relative Herbiconiux ginseng, phylum Actinobacteria; lysate 4 (L4) - closest relative Fictibacillus phosphorivorans, phylum Firmicutes. Their regenerative effects were investigated in a human ex-vivo skin experimental wound healing model at 3 (T1), 5 (T2), and 10 days (T3). RESULTS The samples cultured with the L2 lysate displayed both an earlier and complete restoration of all the skin layers and their features were the closest to the normal skin. The regenerated epidermis demonstrated a complete maturation as the normal epidermis. The papillary dermis appeared mature, and the reticular dermis displayed both collagen and elastic fibres regularly parallel to the skin surface. An anti-inflammatory effect was displayed by the L1 lysate, but this action did not constitute a regenerative effect, suggesting that pathways for inflammation and regeneration might be different. CONCLUSION The therapeutic power of spring waters is not exclusively related to their mineral composition, but it may also be attributable to their native non-pathogenic bacterial microflora.
Collapse
Affiliation(s)
- Giovanni Nicoletti
- Plastic and Reconstructive Surgery, Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy;
- Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, Pavia, Italy
- Surgery Unit, Azienda Socio-Sanitaria Territoriale di Pavia, Pavia, Italy
| | - Marco Saler
- Plastic and Reconstructive Surgery, Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, Pavia, Italy
| | - Marco Mario Tresoldi
- Plastic and Reconstructive Surgery, Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, Pavia, Italy
| | - Laura Villani
- Pathological Anatomy and Histology Unit, Istituti Clinici Scientifici Maugeri SB SpA IRCCS, Pavia, Italy
| | - Erika Maria Tottoli
- Laboratory of Pharmaceutical Technology and Law, Department of Drugs Science, University of Pavia, Pavia, Italy
| | - Olivier Jousson
- Interdepartmental Center of Medical Sciences (CISMED), University of Trento, Trento, Italy
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Angela Faga
- Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, Pavia, Italy
| |
Collapse
|
2
|
Golchin A, Ranjbarvan P, Parviz S, Shokati A, Naderi R, Rasmi Y, Kiani S, Moradi F, Heidari F, Saltanatpour Z, Alizadeh A. The role of probiotics in tissue engineering and regenerative medicine. Regen Med 2023; 18:635-657. [PMID: 37492007 DOI: 10.2217/rme-2022-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) as an emerging field is a multidisciplinary science and combines basic sciences such as biomaterials science, biology, genetics and medical sciences to achieve functional TERM-based products to regenerate or replace damaged or diseased tissues or organs. Probiotics are useful microorganisms which have multiple effective functions on human health. They have some immunomodulatory and biocompatibility effects and improve wound healing. In this article, we describe the latest findings on probiotics and their pro-healing properties on various body systems that are useable in regenerative medicine. Therefore, this review presents a new perspective on the therapeutic potential of probiotics for TERM.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Parviz Ranjbarvan
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Shima Parviz
- Department of Tissue Engineering & Applied cell sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Amene Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Roya Naderi
- Neurophysiology Research center & Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Yousef Rasmi
- Cellular & Molecular Research Center & Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Samaneh Kiani
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, 48157-33971, Iran
| | - Faezeh Moradi
- Department of Tissue engineering, Medical Sciences Faculty, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - Fahimeh Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Zohreh Saltanatpour
- Pediatric Cell & Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Stem Cell & Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center & Department of Tissue Engineering & Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 35147-99422, Iran
| |
Collapse
|
3
|
Abstract
In recent years, natural thermal mineral waters have been gaining the special attention of the scientific community, namely in the prevention and treatment of some diseases, due to the microbial properties that exist in these habitats. The aim of this work was to characterize the physicochemical composition and the microbial taxonomic communities present in three thermal waters of the Galician region in Spain and two samples of the northern region in Portugal. These collected water samples were analyzed for physicochemical characterization and the respective hydrogenome of the waters using next generation sequencing together with 16S rRNA gene sequencing. The sequencing showed a high diversity of microorganisms in all analyzed waters; however, there is a clear bacterial predominance of Proteobacteria phylum, followed by Firmicutes, Deinococcus-Thermus, Aquificae and Nitrospira. The main physicochemical parameters responsible for the clustering within the Spanish waters were sulfur compounds (SO32− and S2−), CO32− and neutral pH, and in the Portuguese waters were Mg, Ca and Sr, nitrogen compounds (NO3− and NH4+), Na, Rb, conductivity and dry residue. This work will allow for a better understanding of the microbial community’s composition and how these microorganisms interfere in the physicochemical constitution of these waters often associated with medicinal properties. Furthermore, the hydrogenome may be used as an auxiliary tool in the practice of medical hydrology, increasing the likelihood of safe use of these unique water types.
Collapse
|
4
|
Nicoletti G, Saler M, Tresoldi MM, Faga A, Benedet M, Cristofolini M. Regenerative effects of spring water-derived bacterial lysates on human skin fibroblast in in vitro culture: preliminary results. J Int Med Res 2019; 47:5777-5786. [PMID: 31601139 PMCID: PMC6862889 DOI: 10.1177/0300060519880371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective: Previous studies have shown regenerative power of the skin with Comano (Trento, Italy) spring water and resident non-pathogenic microflora. This study investigated the action of bacterial lysates that were isolated from Comano spring water on in vitro culture of human skin fibroblasts. Methods: For this study, we selected the following four bacterial lysates: L1 (closest relative: Rudaea cellulosilytica), L2 (closest relative: Mesorhizobium erdmanii), L3 (closest relative: Herbiconiux ginsengi), and L4 (closest relative: Fictibacillus phosphorivorans). Human fibroblasts were cultured under Dulbecco’s modified Eagle’s medium (DMEM) with bacterial lysates added or DMEM (controls). Cell proliferation was evaluated by spectrophotometric absorbance analysis after the XTT-Microculture Tetrazolium Assay. Results: At 24 hours, cultures with L2, L3, and L4 showed a higher absorbance compared with controls. At 48 hours, cultures with L1, L2, and L3 showed slightly lower absorbance compared with controls, and culture with L4 showed a higher absorbance than in the other experimental conditions. At 72 hours, absorbance was lower in cultures with L1, L2, and L3 than in controls, and absorbance was higher in culture with L4 than in the other experimental conditions. Conclusions: Our study indicates a favorable action of Comano spring water microbiota on proliferation of human skin fibroblasts.
Collapse
Affiliation(s)
- Giovanni Nicoletti
- Plastic and Reconstructive Surgery, Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Plastic and Reconstructive Surgery Unit, Department of Surgery, Istituti Clinici Scientifici Maugeri SB SpA IRCCS, Pavia, Italy.,Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, Pavia, Italy
| | - Marco Saler
- Plastic and Reconstructive Surgery, Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Marco Mario Tresoldi
- Plastic and Reconstructive Surgery, Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Plastic and Reconstructive Surgery Unit, Department of Surgery, Istituti Clinici Scientifici Maugeri SB SpA IRCCS, Pavia, Italy
| | - Angela Faga
- Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, Pavia, Italy
| | - Mattia Benedet
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | |
Collapse
|
5
|
Xie T, Wu G, He X, Lai Z, Zhang H, Zhao J. Prevalence and molecular characterization ofEnterococcus faecalisfrom spring water. J Food Saf 2019. [DOI: 10.1111/jfs.12694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Tengfei Xie
- Research Center of Plant Pest Management and Bioenvironmental Health TechnologyGuangdong Eco‐Engineering Polytechnic Guangzhou China
| | - Gang Wu
- Research Center of Plant Pest Management and Bioenvironmental Health TechnologyGuangdong Eco‐Engineering Polytechnic Guangzhou China
| | - Xujun He
- Research Center of Plant Pest Management and Bioenvironmental Health TechnologyGuangdong Eco‐Engineering Polytechnic Guangzhou China
| | - Zengzhe Lai
- Research Center of Plant Pest Management and Bioenvironmental Health TechnologyGuangdong Eco‐Engineering Polytechnic Guangzhou China
| | - Huatong Zhang
- Research Center of Plant Pest Management and Bioenvironmental Health TechnologyGuangdong Eco‐Engineering Polytechnic Guangzhou China
| | - Jing Zhao
- Research Center of Plant Pest Management and Bioenvironmental Health TechnologyGuangdong Eco‐Engineering Polytechnic Guangzhou China
| |
Collapse
|
6
|
Abstract
Human hosts a large number of microorganisms that constitute its microbiome and the vast majority of them are very useful and even essentials. The human microbiome is a complex ecosystem where live populations of transient or resident microorganisms. The process of co-development or co-adaptation played a major role in the establishment of indigenous communities and help explain the dominance of positive interactions (commensal, symbiotic or mutualistic) in the human-microorganism relationship. The assimilation of nutrients, production of anti-inflammatory compounds, defense against pathogens, vitamin production or stimulating the immune system are some of the key benefits of the indigenous microorganisms. Understanding the skin microbiome opens new exploratory fields and represents a real challenge for both the academic knowledge and the development of new therapeutic approaches.
Collapse
|
7
|
Nicoletti G, Saler M, Villani L, Rumolo A, Tresoldi MM, Faga A. Platelet Rich Plasma Enhancement of Skin Regeneration in an ex-vivo Human Experimental Model. Front Bioeng Biotechnol 2019; 7:2. [PMID: 30701173 PMCID: PMC6343075 DOI: 10.3389/fbioe.2019.00002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/03/2019] [Indexed: 02/04/2023] Open
Abstract
This study reports on the development of an original, ex-vivo wounded skin culture protocol using autologous Platelet Rich Plasma (PRP) and enriched Dulbecco's Modified Eagle's Medium (DMEM). Human skin samples obtained from specimens harvested during reduction mammoplasty procedures, were injured in their central portion—to create a standard wound—and cultured under three different conditions: – enriched DMEM with saline solution in the central wound (control) – enriched DMEM with the same medium in the central wound – enriched DMEM plus 2.5% autologous PRP, with the same PRP added medium in the central wound. Morphological analysis was carried out at 0 h (T0) and on days 1, 3, 5 and 10 (T1-T3-T5-T10) using Hematoxylin and Eosin; Masson's trichrome staining; Weigert staining and Ki-67 staining to identify the skin histological features in the different experimental conditions. The combination of DMEM and PRP allowed a favorable modulation of the epithelial cells and fibroblasts proliferation, and a relevant anti-inflammatory action. PRP also demonstrated an inhibitory effect on both the collagen and elastic fibers' de-structuration and a favorable modulation of the re-organization of these fibers. The step by step histological and immune-histo-chemical regenerative effects of PRP on human skin wound repair and regeneration process was observed over a period of 10 days.
Collapse
Affiliation(s)
- Giovanni Nicoletti
- Plastic and Reconstructive Surgery, Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, Pavia, Italy.,Plastic and Reconstructive Surgery Unit, Department of Surgery, Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Marco Saler
- Plastic and Reconstructive Surgery, Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Laura Villani
- Pathological Anatomy and Histology Unit, Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Agnese Rumolo
- Plastic and Reconstructive Surgery, Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Marco Mario Tresoldi
- Plastic and Reconstructive Surgery, Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Plastic and Reconstructive Surgery Unit, Department of Surgery, Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Angela Faga
- Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, Pavia, Italy.,Plastic and Reconstructive Surgery Unit, Department of Surgery, Istituti Clinici Scientifici Maugeri, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Carbajo JM, Maraver F. Salt water and skin interactions: new lines of evidence. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:1345-1360. [PMID: 29675710 DOI: 10.1007/s00484-018-1545-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
In Health Resort Medicine, both balneotherapy and thalassotherapy, salt waters and their peloids, or mud products are mainly used to treat rheumatic and skin disorders. These therapeutic agents act jointly via numerous mechanical, thermal, and chemical mechanisms. In this review, we examine a new mechanism of action specific to saline waters. When topically administered, this water rich in sodium and chloride penetrates the skin where it is able to modify cellular osmotic pressure and stimulate nerve receptors in the skin via cell membrane ion channels known as "Piezo" proteins. We describe several models of cutaneous adsorption/desorption and penetration of dissolved ions in mineral waters through the skin (osmosis and cell volume mechanisms in keratinocytes) and examine the role of these resources in stimulating cutaneous nerve receptors. The actions of salt mineral waters are mediated by a mechanism conditioned by the concentration and quality of their salts involving cellular osmosis-mediated activation/inhibition of cell apoptotic or necrotic processes. In turn, this osmotic mechanism modulates the recently described mechanosensitive piezoelectric channels.
Collapse
Affiliation(s)
- Jose Manuel Carbajo
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Medicine, Universidad Complutense de Madrid, Plaza Ramon y Cajal, s/n, 28040, Madrid, Spain
| | - Francisco Maraver
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Medicine, Universidad Complutense de Madrid, Plaza Ramon y Cajal, s/n, 28040, Madrid, Spain.
- Professional School of Medical Hydrology, Faculty of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
9
|
Abstract
In this review, we explore the state-of-the-art of sand fly relationships with microbiota, viruses and Leishmania, with particular emphasis on the vector immune responses. Insect-borne diseases are a major public health problem in the world. Phlebotomine sand flies are proven vectors of several aetiological agents including viruses, bacteria and the trypanosomatid Leishmania, which are responsible for diseases such as viral encephalitis, bartonellosis and leishmaniasis, respectively. All metazoans in nature coexist intimately with a community of commensal microorganisms known as microbiota. The microbiota has a fundamental role in the induction, maturation and function of the host immune system, which can modulate host protection from pathogens and infectious diseases. We briefly review viruses of public health importance present in sand flies and revisit studies done on bacterial and fungal gut contents of these vectors. We bring this information into the context of sand fly development and immune responses. We highlight the immunity mechanisms that the insect utilizes to survive the potential threats involved in these interactions and discuss the recently discovered complex interactions among microbiota, sand fly, Leishmania and virus. Additionally, some of the alternative control strategies that could benefit from the current knowledge are considered.
Collapse
|
10
|
Nicoletti G, Saler M, Pellegatta T, Tresoldi MM, Bonfanti V, Malovini A, Faga A, Riva F. Ex vivo regenerative effects of a spring water. Biomed Rep 2017; 7:508-514. [PMID: 29188053 PMCID: PMC5702968 DOI: 10.3892/br.2017.1002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/14/2017] [Indexed: 12/02/2022] Open
Abstract
Previous experiments by our group have indicated the regenerative effects of a spring water (Comano), which was possibly associated with the native non-pathogenic bacterial flora. The present study aimed to confirm these regenerative properties in a human ex vivo experimental model in the context of physiological wound healing. Human 6-mm punch skin biopsies harvested during plastic surgery sessions were injured in their central portion to induce skin loss and were cultured in either conventional medium (controls) or medium powder reconstituted with filtered Comano spring water (treated samples). At 24, 48 and 72 h the specimens were observed following staining with hematoxylin and eosin, Picrosirius Red, orcein and anti-proliferating cell nuclear antigen. Compared with the controls, the treated samples exhibited reduced overall cell infiltration, evidence of fibroblasts, stimulation of cell proliferation and collagen and elastic fiber regeneration. In the spring water, in addition to 12 resident non-pathogenic bacterial strains exhibiting favorable metabolic activities, more unknown non-pathogenic species are being identified by genomic analysis. In the present study, the efficacy of this ‘germ-free’, filtered spring water in wound regeneration was indicated. Thus, the Comano spring water microbiota should be acknowledged for its regenerative properties.
Collapse
Affiliation(s)
- Giovanni Nicoletti
- Plastic and Reconstructive Surgery, Department of Clinical-Surgical Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy.,Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, 27100 Pavia, Italy.,Plastic and Reconstructive Surgery Unit, Salvatore Maugeri Research and Care Institute, 27100 Pavia, Italy
| | - Marco Saler
- Plastic and Reconstructive Surgery, Department of Clinical-Surgical Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Tommaso Pellegatta
- Plastic and Reconstructive Surgery, Department of Clinical-Surgical Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Marco Mario Tresoldi
- Plastic and Reconstructive Surgery, Department of Clinical-Surgical Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy.,Plastic and Reconstructive Surgery Unit, Salvatore Maugeri Research and Care Institute, 27100 Pavia, Italy
| | - Viola Bonfanti
- Plastic and Reconstructive Surgery, Department of Clinical-Surgical Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Alberto Malovini
- Laboratory of Informatics and Systems Engineering for Clinical Research, Istituti Clinici Scientifici Maugeri, 27100 Pavia, Italy
| | - Angela Faga
- Plastic and Reconstructive Surgery, Department of Clinical-Surgical Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy.,Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, 27100 Pavia, Italy.,Plastic and Reconstructive Surgery Unit, Salvatore Maugeri Research and Care Institute, 27100 Pavia, Italy
| | - Federica Riva
- Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, 27100 Pavia, Italy.,Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
11
|
Pellegatta T, Saler M, Bonfanti V, Nicoletti G, Faga A. Novel perspectives on the role of the human microbiota in regenerative medicine and surgery. Biomed Rep 2016; 5:519-524. [PMID: 27882211 PMCID: PMC5103662 DOI: 10.3892/br.2016.778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/21/2016] [Indexed: 12/19/2022] Open
Abstract
Plastic surgery is transitioning from a fine craftsmanship to a regenerative science. In wound healing, the role of microorganisms is no longer considered to be just counteracting, but also promoting. Furthermore, host-microbe interactions are essential for numerous aspects of normal mammalian physiology, from metabolic activity to immune homeostasis. Each area of the human body hosts a unique microbial community, and the composition of microbiota is dependent on the host, age and the anatomical area, and it changes according to the characteristics of the microenvironment. Every squared centimeter of skin contains ~1 billion bacteria. The majority of microorganisms of the skin are commensal or temporary passing members. Skin flora mechanisms interacting or influencing the human physical skin barrier are not well defined. Resident skin bacteria provide the first line of defence against potentially dangerous pathogens and produce small molecules that influence their microbial neighbours. Furthermore, the microbiota activates and assists innate immunity and influences adaptive immunity. Various types of immune and non-immune cells contribute to wound healing. The proliferative phase of wound healing is inversely proportional to the extent of the post-traumatic inflammatory reaction. Topical bacterial lipopolysaccharide application markedly affects wound healing by accelerating the resolution of inflammation, increasing macrophage infiltration, enhancing collagen synthesis and altering the secretion of mediators involved in skin regeneration. Various studies have investigated the biological contents of thermal spring waters, and their anti-inflammatory and immune protective roles. In addition, the regenerative properties of thermal spring waters were analysed in an experimental animal wound model. The areas treated with thermal water healed faster than the areas treated with conventional dressings, and exhibited a collagen and elastic fiber network comparable with the normal skin. Thus, the microbial environment may be considered as a potential tool in regenerative medicine and surgery.
Collapse
Affiliation(s)
- Tommaso Pellegatta
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Plastic Surgery Unit, University of Pavia, Pavia, I-27100 Lombardy, Italy
| | - Marco Saler
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Plastic Surgery Unit, University of Pavia, Pavia, I-27100 Lombardy, Italy
| | - Viola Bonfanti
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Plastic Surgery Unit, University of Pavia, Pavia, I-27100 Lombardy, Italy
| | - Giovanni Nicoletti
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Plastic Surgery Unit, University of Pavia, Pavia, I-27100 Lombardy, Italy
- Plastic and Reconstructive Surgery Unit, Salvatore Maugeri Research and Care Institute, Pavia, I-27100 Lombardy, Italy
| | - Angela Faga
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Plastic Surgery Unit, University of Pavia, Pavia, I-27100 Lombardy, Italy
- Plastic and Reconstructive Surgery Unit, Salvatore Maugeri Research and Care Institute, Pavia, I-27100 Lombardy, Italy
| |
Collapse
|
12
|
Empedobacter brevis Meningitis in a Neonate: A Very Rare Case of Neonatal Meningitis and Literature Review. Case Rep Pediatr 2016; 2016:7609602. [PMID: 27648334 PMCID: PMC5014977 DOI: 10.1155/2016/7609602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/08/2016] [Indexed: 11/17/2022] Open
Abstract
Empedobacter brevis is gram-negative bacilli that belongs to Flavobacteriaceae family. It was previously known with name of Flavobacterium breve. The reservoir of these bacteria is soil, plants, water, food, hospital water sources, including incubators, sinks, faucets, tap water, hemodialysis systems, saline solutions, and other pharmaceutical solutions. We report a case of term female newborn, admitted with complaint of respiratory distress developing soon after birth and developed clinical features of sepsis at age of 92 hours of postnatal life. The sepsis screen was positive and blood culture and cerebrospinal fluid showed growth of Empedobacter brevis that was resistant to multiple antibiotics. The neonate was treated with appropriate antibiotics and was discharged successfully. The novelty of the case report is that this is the first case report of neonatal sepsis caused by Empedobacter brevis.
Collapse
|