1
|
Hong H, Xiao J, Guo Q, Du J, Jiang Z, Lu S, Zhang H, Zhang X, Wang X. Cycloastragenol and Astragaloside IV activate telomerase and protect nucleus pulposus cells against high glucose-induced senescence and apoptosis. Exp Ther Med 2021; 22:1326. [PMID: 34630680 PMCID: PMC8495541 DOI: 10.3892/etm.2021.10761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
In diabetes-induced intervertebral disc degeneration (Db-IVDD), senescence and apoptosis of nucleus pulposus cells (NPCs) are major contributing factors. Telomere attrition and telomerase downregulation are some of the main reasons for senescence and eventual apoptosis. The derivatives of the Chinese herb Astragalus membranaceus, Cycloastragenol (CAG) and Astragaloside IV (AG-IV), are reportedly effective telomerase activators against telomere shortening; however, their effect in Db-IVDD have not been explored. The present study simultaneously investigated the regulation of these derivatives on senescence, apoptosis, telomeres and telomerase a model of high-glucose (HG)-induced stress using rat primary NPCs. The NPCs were stimulated with HG (50 mM) to evoke HG-induced stress, and the effects of CAG and AG-IV were observed on: i) The expression level of senescence marker p16; ii) β-Gal staining; iii) the expression levels of apoptosis markers cleaved-caspase 3 (c-C3), BAX and Bcl-2; iv) telomerase activation with telomerase reverse transcriptase (TERT) mRNA and protein expression, while telomere length was measured with reverse transcription-quantitative PCR. Cell proliferation was determined using the Cell Counting Kit-8 assay. Results demonstrated an upregulation in the expression levels of p16, c-C3 and BAX, and increased β-Gal staining; while the expression level of Bcl-2 was downregulated in a concentration-dependent manner. Pre-treatment of the NPCs with CAG and AG-IV downregulated the protein expression levels of p16, c-C3 and BAX, and decreased the percentage of β-Gal and FITC staining; while upregulating the Bcl-2 expression. These effects protected the cells from HG stress-induced senescence and apoptosis. HG also downregulated the expression profile of TERT and shortened the telomere length in a glucose concentration-dependent manner. While pretreatment with CAG and AG-IV upregulated TERT expression and ameliorated the telomere attrition. CAG and AG-IV also increased cell proliferation and improved cell morphology in HG conditions. Overall, these findings indicated that CAG and AG-IV suppressed HG stress-induced senescence and apoptosis, in addition to enhancing telomerase activation and lengthening of the Telomere. Therefore, CAG and AG-IV prolonged the replicative capability and longevity of the NPCs and they have the potential to be therapeutic agents in Db-IVDD.
Collapse
Affiliation(s)
- Haofeng Hong
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Hangzhou, Zhejiang 310000, P.R. China.,Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang 325027, P.R. China
| | - Jian Xiao
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Hangzhou, Zhejiang 310000, P.R. China.,Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang 325027, P.R. China
| | - Quanquan Guo
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Jinhui Du
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Zhichen Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Sisi Lu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Hongyuan Zhang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Xiaolei Zhang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Hangzhou, Zhejiang 310000, P.R. China.,Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang 325027, P.R. China.,Chinese Orthopedic Regenerative Medicine Society, Hangzhou, Zhejiang 310000, P.R. China
| | - Xiangyang Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Hangzhou, Zhejiang 310000, P.R. China.,Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
2
|
Muresanu C, Somasundaram SG, Neganova ME, Bovina EV, Vissarionov SV, Ofodile ON, Fisenko VP, Bragin V, Minyaeva NN, Chubarev VN, Klochkov SG, Tarasov VV, Mikhaleva LM, Kirkland CE, Aliev G. Updated Understanding of the Degenerative Disc Diseases - Causes Versus Effects - Treatments, Studies and Hypothesis. Curr Genomics 2020; 21:464-477. [PMID: 33093808 PMCID: PMC7536794 DOI: 10.2174/1389202921999200407082315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Accepted: 03/16/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND In this review we survey medical treatments and research strategies, and we discuss why they have failed to cure degenerative disc diseases or even slow down the degenerative process. OBJECTIVE We seek to stimulate discussion with respect to changing the medical paradigm associated with treatments and research applied to degenerative disc diseases. METHOD PROPOSAL We summarize a Biological Transformation therapy for curing chronic inflammations and degenerative disc diseases, as was previously described in the book Biological Transformations controlled by the Mind Volume 1. PRELIMINARY STUDIES A single-patient case study is presented that documents complete recovery from an advanced lumbar bilateral discopathy and long-term hypertrophic chronic rhinitis by application of the method proposed. CONCLUSION Biological transformations controlled by the mind can be applied by men and women in order to improve their quality of life and cure degenerative disc diseases and chronic inflammations illnesses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gjumrakch Aliev
- Address correspondence to this author at the GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229 USA; Tel: +440-263-7461; E-mails: and
| |
Collapse
|