1
|
Farahani N, Alimohammadi M, Raei M, Nabavi N, Aref AR, Hushmandi K, Daneshi S, Razzaghi A, Taheriazam A, Hashemi M. Exploring the dual role of endoplasmic reticulum stress in urological cancers: Implications for tumor progression and cell death interactions. J Cell Commun Signal 2024; 18:e12054. [PMID: 39691874 PMCID: PMC11647052 DOI: 10.1002/ccs3.12054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 12/19/2024] Open
Abstract
The endoplasmic reticulum (ER) is crucial for maintaining calcium balance, lipid biosynthesis, and protein folding. Disruptions in ER homeostasis, often due to the accumulation of misfolded or unfolded proteins, lead to ER stress, which plays a significant role in various diseases, especially cancer. Urological cancers, which account for high male mortality worldwide, pose a persistent challenge due to their incurability and tendency to develop drug resistance. Among the numerous dysregulated biological mechanisms, ER stress is a key factor in the progression and treatment response of these cancers. This review highlights the dual role of aberrant ER stress activation in urologic cancers, affecting both tumor growth and therapeutic outcomes. While ER stress can support tumor growth through pro-survival autophagy, it primarily inhibits cancer progression via apoptosis and pro-death autophagy. Interestingly, ER stress can paradoxically aid cancer progression through mechanisms such as exosome-mediated immune evasion. Additionally, the review examines how pharmacological interventions, particularly with phytochemicals, can stimulate ER stress-mediated tumor suppression. Key regulators, including PERK, IRE1α, and ATF6, are discussed for their roles in upregulating CHOP levels and triggering apoptosis. In conclusion, a deeper understanding of ER stress in urological cancers not only clarifies the complex interactions between cellular stress and cancer progression but also provides new opportunities for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mina Alimohammadi
- Department of ImmunologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Mehdi Raei
- Health Research CenterLife Style InstituteBaqiyatallah University of Medical SciencesTehranIran
| | | | - Amir Reza Aref
- Department of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kiavash Hushmandi
- Nephrology and Urology Research CenterClinical Sciences InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Salman Daneshi
- Department of Public HealthSchool of HealthJiroft University of Medical SciencesJiroftIran
| | - Alireza Razzaghi
- Social Determinants of Health Research CenterResearch Institute for Prevention of Non‐Communicable DiseasesQazvin University of Medical SciencesQazvinIran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of OrthopedicsFaculty of MedicineTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
2
|
Kowalewski A, Borowczak J, Maniewski M, Gostomczyk K, Grzanka D, Szylberg Ł. Targeting apoptosis in clear cell renal cell carcinoma. Biomed Pharmacother 2024; 175:116805. [PMID: 38781868 DOI: 10.1016/j.biopha.2024.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent subtype of renal cancer, accounting for approximately 80% of all renal cell cancers. Due to its exceptional inter- and intratumor heterogeneity, it is highly resistant to conventional systemic therapies. Targeting the evasion of cell death, one of cancer's hallmarks, is currently emerging as an alternative strategy for ccRCC. In this article, we review the current state of apoptosis-inducing therapies against ccRCC, including antisense oligonucleotides, BH3 mimetics, histone deacetylase inhibitors, cyclin-kinase inhibitors, inhibitors of apoptosis protein antagonists, and monoclonal antibodies. Although preclinical studies have shown encouraging results, these compounds fail to improve patients' outcomes significantly. Current evidence suggests that inducing apoptosis in ccRCC may promote tumor progression through apoptosis-induced proliferation, anastasis, and apoptosis-induced nuclear expulsion. Therefore, re-evaluating this approach is expected to enable successful preclinical-to-clinical translation.
Collapse
Affiliation(s)
- Adam Kowalewski
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland; Center of Medical Sciences, University of Science and Technology, Bydgoszcz 85-796, Poland.
| | - Jędrzej Borowczak
- Clinical Department of Oncology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland
| | - Mateusz Maniewski
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland; Doctoral School of Medical and Health Sciences, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| | - Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland; Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| |
Collapse
|
3
|
Dominant-negative p53-overexpression in skeletal muscle induces cell death and fiber atrophy in rats. Cell Death Dis 2022; 13:716. [PMID: 35977948 PMCID: PMC9385859 DOI: 10.1038/s41419-022-05160-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 01/21/2023]
Abstract
The tumor suppressor p53 is thought to play a key role in the maintenance of cell size and homeostasis, but relatively little is known about its role in skeletal muscle. Based on its ability to suppress cell growth, we hypothesized that inhibiting the function of wild-type p53 through the overexpression of a dominant-negative p53 mutant (DDp53) could result in muscle fiber hypertrophy. To test this hypothesis, we electroporated adult rat tibialis anterior muscles with DDp53 and collected the tissue three weeks later. We confirmed successful overexpression of DDp53 on a histological and biochemical level and found pronounced changes to muscle architecture, metabolism, and molecular signaling. Muscle mass, fiber cross-sectional area, and fiber diameter significantly decreased with DDp53 overexpression. We found histopathological changes in DDp53 transfected muscle which were accompanied by increased levels of proteins that are associated with membrane damage and repair. In addition, DDp53 decreased oxidative phosphorylation complex I and V protein levels, and despite its negative effects on muscle mass and fiber size, caused an increase in muscle protein synthesis as assessed via the SUnSET technique. Interestingly, the increase in muscle protein synthesis was concomitant with a decrease in phospho-S6K1 (Thr389). Furthermore, the muscle wasting in the DDp53 electroporated leg was accompanied by a decrease in global protein ubiquitination and an increase in proteasome activity. In conclusion, overexpression of a dominant-negative p53 mutant in skeletal muscle results in decreased muscle mass, myofiber size, histological muscle damage, a metabolic phenotype, and perturbed homeostasis between muscle protein synthesis and degradation.
Collapse
|
4
|
Mehrpouri M, Pourbagheri-Sigaroodi A, Bashash D. The contributory roles of histone deacetylases (HDACs) in hematopoiesis regulation and possibilities for pharmacologic interventions in hematologic malignancies. Int Immunopharmacol 2021; 100:108114. [PMID: 34492531 DOI: 10.1016/j.intimp.2021.108114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/17/2022]
Abstract
Although the definitive role of epigenetic modulations in a wide range of hematologic malignancies, spanning from leukemia to lymphoma and multiple myeloma, has been evidenced, few articles reviewed the task. Given the high accessibility of histone deacetylase (HDACs) to necessary transcription factors involved in hematopoiesis, this review aims to outline physiologic impacts of these enzymes in normal hematopoiesis, and also to outline the original data obtained from international research laboratories on their regulatory role in the differentiation and maturation of different hematopoietic lineages. Questions on how aberrant expression of HDACs contributes to the formation of hematologic malignancies are also responded, because these classes of enzymes have a respectable share in the development, progression, and recurrence of leukemia, lymphoma, and multiple myeloma. The last section provides a special focus on the therapeutic perspectiveof HDACs inhibitors, either as single agents or in a combined-modal strategy, in these neoplasms. In conclusion, optimizing the dose and the design of more patient-tailored inhibitors, while maintaining low toxicity against normal cells, will help improve clinical outcomes of HDAC inhibitors in hematologic malignancies.
Collapse
Affiliation(s)
- Mahdieh Mehrpouri
- Department of Laboratory Sciences, School of Allied Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Mehta L, Naved T, Grover P, Bhardwaj M, Mukherjee D, Vennapu DR. Identification and characterization of new degradation products of belinostat using UHPLC-Q-TOF-MS/MS and in silico toxicity prediction. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2021.1906271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lovekesh Mehta
- Amity Institute of Pharmacy, Amity University, Noida, India
| | - Tanveer Naved
- Amity Institute of Pharmacy, Amity University, Noida, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Monika Bhardwaj
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Debaraj Mukherjee
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine, Jammu, India
| | - Dushyanth R. Vennapu
- Department of Pharmaceutical Chemistry, KLE University College of Pharmacy, Belagavi, India
| |
Collapse
|
6
|
Zhu M, Huang Y, Tang J, Shao S, Zhang L, Zhou Y, He S, Wang Y. Role of Apg-1 in HSF1 activation and bortezomib sensitivity in myeloma cells. Exp Hematol 2020; 81:50-59. [DOI: 10.1016/j.exphem.2019.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2019] [Revised: 12/14/2019] [Accepted: 12/28/2019] [Indexed: 01/08/2023]
|
7
|
Lu P, Gu Y, Li L, Wang F, Yang X, Yang Y. Belinostat suppresses cell proliferation by inactivating Wnt/β-catenin pathway and promotes apoptosis through regulating PKC pathway in breast cancer. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2019; 47:3955-3960. [PMID: 31571495 DOI: 10.1080/21691401.2019.1671855] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/28/2019] [Accepted: 08/10/2019] [Indexed: 12/21/2022]
Abstract
Belinostat is a histone deacetylase inhibitor drug capable of regulating cell growth in diverse cancers. Nonetheless, little information clarified the role of Belinostat in breast cancer. Hence, the functions of Belinostat in breast cancer cells survival was disclosed in this study. Belinostat at 50 and 100 μM were applied to manage MCF-7 cells, cell viability, Ki67 positive cells, cell cycle and apoptosis were monitored via MTT, immunohistochemistry and flow cytometry. Furthermore, the apoptosis-related factors, Wnt/β-catenin pathway and PKC pathway were tested through western blot and qRT-PCR. Lastly, in vivo effect of Belinostat was determined by a murine model. The results showed that Belinostat dampened cell viability, decreased the proportion of Ki67 positive cells and arrested cells at G0/G1 phase. The decreases of Wnt/β-catenin, CCND2 and Myc were observed in MCF-7 cells after Belinostat stimulation. Additionally, Belinostat induced cell apoptosis, meanwhile dampened Bcl-2 and raised Bax and Cleaved caspase 3 in a dose and time-dependent manner. Additionally, Belinostat activated PKC pathway by upgrading PKCδ and P53 expressions. Furthermore, Belinostat restrained tumour weight and volume in vivo. In summary, this study depicted that Belinostat prohibited proliferation and evoked apoptosis via mediating Wnt/β-catenin and PKC pathways in MCF-7 cells.
Collapse
Affiliation(s)
- Pengwei Lu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Lin Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Fang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Xue Yang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Yunqing Yang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| |
Collapse
|
8
|
Wezyk M, Szybinska A, Wojsiat J, Szczerba M, Day K, Ronnholm H, Kele M, Berdynski M, Peplonska B, Fichna JP, Ilkowski J, Styczynska M, Barczak A, Zboch M, Filipek-Gliszczynska A, Bojakowski K, Skrzypczak M, Ginalski K, Kabza M, Makalowska I, Barcikowska-Kotowicz M, Wojda U, Falk A, Zekanowski C. Overactive BRCA1 Affects Presenilin 1 in Induced Pluripotent Stem Cell-Derived Neurons in Alzheimer's Disease. J Alzheimers Dis 2019; 62:175-202. [PMID: 29439343 DOI: 10.3233/jad-170830] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
The BRCA1 protein, one of the major players responsible for DNA damage response has recently been linked to Alzheimer's disease (AD). Using primary fibroblasts and neurons reprogrammed from induced pluripotent stem cells (iPSC) derived from familial AD (FAD) patients, we studied the role of the BRCA1 protein underlying molecular neurodegeneration. By whole-transcriptome approach, we have found wide range of disturbances in cell cycle and DNA damage response in FAD fibroblasts. This was manifested by significantly increased content of BRCA1 phosphorylated on Ser1524 and abnormal ubiquitination and subcellular distribution of presenilin 1 (PS1). Accordingly, the iPSC-derived FAD neurons showed increased content of BRCA1(Ser1524) colocalized with degraded PS1, accompanied by an enhanced immunostaining pattern of amyloid-β. Finally, overactivation of BRCA1 was followed by an increased content of Cdc25C phosphorylated on Ser216, likely triggering cell cycle re-entry in FAD neurons. This study suggests that overactivated BRCA1 could both influence PS1 turnover leading to amyloid-β pathology and promote cell cycle re-entry-driven cell death of postmitotic neurons in AD.
Collapse
Affiliation(s)
- Michalina Wezyk
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Szybinska
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Wojsiat
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marcelina Szczerba
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Kelly Day
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Harriet Ronnholm
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Malin Kele
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mariusz Berdynski
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland.,Department of Pharmacology and Clinical Neuroscience, Umea Universitet, Umea, Sweden
| | - Beata Peplonska
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Piotr Fichna
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Jan Ilkowski
- Department of Emergency Medicine, Faculty of Health Sciences, Poznan University of Medical Sciences, Poznan, Poland
| | - Maria Styczynska
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Anna Barczak
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Marzena Zboch
- Center of Alzheimer's Disease of Wroclaw Medical University, Scinawa, Poland
| | - Anna Filipek-Gliszczynska
- Clinical Department of Neurology, Extrapyramidal Disorders and Alzheimer's Outpatient Clinic, Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
| | - Krzysztof Bojakowski
- Clinical Department of General and Vascular Surgery, Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
| | - Magdalena Skrzypczak
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Michal Kabza
- Department of Integrated Genomics, Institute of Anthropology, Adam Mickiewicz University, Poznan, Poland
| | - Izabela Makalowska
- Department of Integrated Genomics, Institute of Anthropology, Adam Mickiewicz University, Poznan, Poland
| | - Maria Barcikowska-Kotowicz
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Cezary Zekanowski
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Sodium 4-phenylbutyric acid prevents murine acetaminophen hepatotoxicity by minimizing endoplasmic reticulum stress. J Gastroenterol 2017; 52:611-622. [PMID: 27599972 DOI: 10.1007/s00535-016-1256-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/04/2016] [Accepted: 08/26/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acetaminophen (APAP) overdose induces severe oxidative stress followed by hepatocyte apoptosis/necrosis. Previous studies have indicated that endoplasmic reticulum (ER) stress is involved in the cell death process. Therefore, we investigated the effect of the chemical chaperone 4-phenyl butyric acid (PBA) on APAP-induced liver injury in mice. METHODS Eight-week-old male C57Bl6/J mice were given a single intraperitoneal (i.p.) injection of APAP (450 mg/kg body weight), following which some were repeatedly injected with PBA (120 mg/kg body weight, i.p.) every 3 h starting at 0.5 h after the APAP challenge. All mice were then serially euthanized up to 12 h later. RESULTS PBA treatment dramatically ameliorated the massive hepatocyte apoptosis/necrosis that was observed 6 h after APAP administration. PBA also significantly prevented the APAP-induced increases in cleaved activating transcription factor 6 and phosphorylation of c-Jun N-terminal protein kinase and significantly blunted the increases in mRNA levels for binding immunoglobulin protein, spliced X-box binding protein-1, and C/EBP homologous protein. Moreover, PBA significantly prevented APAP-induced Bax translocation to the mitochondria, and the expression of heme oxygenase-1 mRNA and 4-hydroxynonenal. By contrast, PBA did not affect hepatic glutathione depletion following APAP administration, reflecting APAP metabolism. CONCLUSIONS PBA prevents APAP-induced liver injury even when an APAP challenge precedes its administration. The underlying mechanism of action most likely involves the prevention of ER stress-induced apoptosis/necrosis in the hepatocytes during APAP intoxication.
Collapse
|
10
|
Bailey H, McPherson JP, Bailey EB, Werner TL, Gupta S, Batten J, Reddy G, Bhat G, Sharma S, Agarwal N. A phase I study to determine the pharmacokinetics and urinary excretion of belinostat and metabolites in patients with advanced solid tumors. Cancer Chemother Pharmacol 2016; 78:1059-1071. [PMID: 27744565 DOI: 10.1007/s00280-016-3167-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/01/2016] [Accepted: 10/06/2016] [Indexed: 11/27/2022]
Abstract
PURPOSE Belinostat is an inhibitor of histone deacetylase enzymes, resulting in DNA repair inhibition and apoptosis. Present data are lacking to provide dosing recommendations in renal insufficiency. The purpose of this trial was to assess the pharmacokinetics (PK) of belinostat and belinostat metabolites in plasma and urine. METHODS This was a phase I, single-center, open-label, two-part study. In Part I, patients received single-agent belinostat 1000 mg/m2. Blood and urine samples were collected at pre-specified time points to determine PK of belinostat and metabolites and their elimination in urine. In Part II, patients were permitted to continue belinostat in 21-day cycles on Days 1 through 5 until disease progression, unacceptable toxicity, or according to patient preference. RESULTS A total of nine patients with advanced solid tumors were treated. Median t max for belinostat was observed 10 min after the start of infusion. Concentrations of belinostat rapidly declined with a t 1/2 of 2.9 h. The mean fraction of belinostat excreted unchanged in urine was 0.926 %. The metabolites belinostat glucuronide and 3-ASBA represented the largest fractions of belinostat dose excreted in urine (30.5 and 4.61 %, respectively), while renal excretion appeared to be a minor route of elimination for the parent belinostat (<1 %). The most common adverse events were nausea, fatigue, and diarrhea. One Grade 3 adverse event (constipation) was thought to be treatment related. CONCLUSIONS Urinary elimination of parent belinostat was minimal, although a combined 36.7 % of belinostat metabolites were excreted in urine. Since these metabolites are primarily inactive, belinostat may not require dosage adjustment in renal dysfunction.
Collapse
Affiliation(s)
- Hanna Bailey
- Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope, Ste 2123, Salt Lake City, UT, 84112, USA
| | - Jordan P McPherson
- Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope, Ste 2123, Salt Lake City, UT, 84112, USA
| | - Erin B Bailey
- Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope, Ste 2123, Salt Lake City, UT, 84112, USA
| | - Theresa L Werner
- Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope, Ste 2123, Salt Lake City, UT, 84112, USA
| | - Sumati Gupta
- Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope, Ste 2123, Salt Lake City, UT, 84112, USA
| | - Julia Batten
- Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope, Ste 2123, Salt Lake City, UT, 84112, USA
| | - Guru Reddy
- Spectrum Pharmaceuticals, Irvine, CA, USA
| | | | - Sunil Sharma
- Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope, Ste 2123, Salt Lake City, UT, 84112, USA
| | - Neeraj Agarwal
- Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope, Ste 2123, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
11
|
Molecular and cellular effects of a novel hydroxamate-based HDAC inhibitor - belinostat - in glioblastoma cell lines: a preliminary report. Invest New Drugs 2016; 34:552-64. [PMID: 27468826 PMCID: PMC5007275 DOI: 10.1007/s10637-016-0372-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2016] [Accepted: 06/27/2016] [Indexed: 12/13/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are now intensively investigated as potential cytostatic agents in many malignancies. Here, we provide novel information concerning the influence of belinostat (Bel), a hydroxamate-based pan-HDAC inhibitor, on glioblastoma LN-229 and LN-18 cells. We found that LN-229 cells stimulated with 2 μmol/L of Bel for 48 h resulted in 70 % apoptosis, while equivalent treatment of LN-18 cells resulted in only 28 % apoptosis. In LN-229 cells this effect was followed by up-regulation of pro-apoptotic genes including Puma, Bim, Chop and p21. In treated LN-18 cells only p21 was markedly overexpressed. Simultaneously, LN-229 cells treated with 2 μmol/L of Bel for 48 h exhibited down-regulation of molecular chaperones GRP78 and GRP94 at the protein level. In contrast, in LN-18 cells Western blot analysis did not show any marked changes in GRP78 nor GRP94 expression. Despite noticeable overexpression of p21, there were no signs of evident G1 nor G2/M cell cycle arrest, however, the reduction in number of the S phase cells was observed in both cell lines. These results collectively suggest that Bel can be considered as potential anti-glioblastoma agent. To our knowledge this is the first report presenting the effects of belinostat treatment in glioblastoma cell lines.
Collapse
|