1
|
Stasiłowicz-Krzemień A, Gościniak A, Formanowicz D, Cielecka-Piontek J. Natural Guardians: Natural Compounds as Radioprotectors in Cancer Therapy. Int J Mol Sci 2024; 25:6937. [PMID: 39000045 PMCID: PMC11241526 DOI: 10.3390/ijms25136937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Cancer remains a significant global health challenge, with millions of deaths attributed to it annually. Radiotherapy, a cornerstone in cancer treatment, aims to destroy cancer cells while minimizing harm to healthy tissues. However, the harmful effects of irradiation on normal cells present a formidable obstacle. To mitigate these effects, researchers have explored using radioprotectors and mitigators, including natural compounds derived from secondary plant metabolites. This review outlines the diverse classes of natural compounds, elucidating their roles as protectants of healthy cells. Furthermore, the review highlights the potential of these compounds as radioprotective agents capable of enhancing the body's resilience to radiation therapy. By integrating natural radioprotectors into cancer treatment regimens, clinicians may improve therapeutic outcomes while minimizing the adverse effects on healthy tissues. Ongoing research in this area holds promise for developing complementary strategies to optimize radiotherapy efficacy and enhance patient quality of life.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (A.G.)
| | - Anna Gościniak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (A.G.)
| | - Dorota Formanowicz
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (A.G.)
| |
Collapse
|
2
|
Sun Y, Jin D, Zhang Z, Ji H, An X, Zhang Y, Yang C, Sun W, Zhang Y, Duan Y, Kang X, Jiang L, Zhao X, Lian F. N6-methyladenosine (m6A) methylation in kidney diseases: Mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194967. [PMID: 37553065 DOI: 10.1016/j.bbagrm.2023.194967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The N6-methyladenosine (m6A) modification is regulated by methylases, commonly referred to as "writers," and demethylases, known as "erasers," leading to a dynamic and reversible process. Changes in m6A levels have been implicated in a wide range of cellular processes, including nuclear RNA export, mRNA metabolism, protein translation, and RNA splicing, establishing a strong correlation with various diseases. Both physiologically and pathologically, m6A methylation plays a critical role in the initiation and progression of kidney disease. The methylation of m6A may also facilitate the early diagnosis and treatment of kidney diseases, according to accumulating research. This review aims to provide a comprehensive overview of the potential role and mechanism of m6A methylation in kidney diseases, as well as its potential application in the treatment of such diseases. There will be a thorough examination of m6A methylation mechanisms, paying particular attention to the interplay between m6A writers, m6A erasers, and m6A readers. Furthermore, this paper will elucidate the interplay between various kidney diseases and m6A methylation, summarize the expression patterns of m6A in pathological kidney tissues, and discuss the potential therapeutic benefits of targeting m6A in the context of kidney diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hangyu Ji
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Lu Z, Wu J, Wu J, Zhang T, Liu J, Mu Q, Terigele, Wu Z, Zhang Y, Su R, Liu Z, Wang Z, Wang R, Qi L, Zhao Y. Melatonin regulates the periodic growth of secondary hair follicles through the nuclear receptor RORα. Front Vet Sci 2023; 10:1203302. [PMID: 37520005 PMCID: PMC10374452 DOI: 10.3389/fvets.2023.1203302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Cashmere is the fine bottom hair produced by the secondary hair follicles of the skin. This hair is economically important. Previous studies by our research group have shown that exogenous melatonin (MT) can regulate the periodic growth of secondary hair follicles, induce the secondary development of villi, and alter the expression of some genes related to hair follicle development. Few studies on the regulation of villus growth by MT binding receptors have been published. In this study, MT was implanted subcutaneously behind the ear of Inner Mongolia cashmere goats. RT-qPCR, in situ hybridization, Western blot analysis, immunofluorescence and RNAi techniques were used to investigate the receptors and functions of MT in regulating the development of secondary hair follicles in Inner Mongolia cashmere goats. The results showed that MT binds to the nuclear receptor RORα on dermal papilla stimulates hair follicle development and promotes villus growth. The RORα mRNA expression in the skin of Inner Mongolia cashmere goats was periodic and showed a trend of first increasing and then decreasing. The expression began to increase in February, peaked in April, and reached the lowest level in May. RORα significantly affected the mRNA expression of β-catenin gene, a key gene in hair follicle development, in the presence of MT. It will lay a solid molecular foundation for further research on the regulation mechanism between MT receptor and villus growth and development and to achieve artificial regulation of villus growth time and yield to improve the effect of villus production.
Collapse
Affiliation(s)
- Zeyu Lu
- State Key Laboratory of Animal Genetics and Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Jing Wu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Jing Wu
- Shangdu County Vocational and Technical School, Ulanqab, Inner Mongolia, China
| | - Tiejia Zhang
- Zhangbei Liang Mianjing People's Government, Zhangjiakou, Hebei, China
| | - Junyang Liu
- State Key Laboratory of Animal Genetics and Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Qing Mu
- State Key Laboratory of Animal Genetics and Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Terigele
- State Key Laboratory of Animal Genetics and Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zixian Wu
- State Key Laboratory of Animal Genetics and Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yanjun Zhang
- State Key Laboratory of Animal Genetics and Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Rui Su
- State Key Laboratory of Animal Genetics and Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhihong Liu
- State Key Laboratory of Animal Genetics and Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhiying Wang
- State Key Laboratory of Animal Genetics and Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Ruijun Wang
- State Key Laboratory of Animal Genetics and Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Lv Qi
- State Key Laboratory of Animal Genetics and Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yanhong Zhao
- State Key Laboratory of Animal Genetics and Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
4
|
Jit BP, Pattnaik S, Arya R, Dash R, Sahoo SS, Pradhan B, Bhuyan PP, Behera PK, Jena M, Sharma A, Agrawala PK, Behera RK. Phytochemicals: A potential next generation agent for radioprotection. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154188. [PMID: 36029645 DOI: 10.1016/j.phymed.2022.154188] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/13/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Radiation hazards are accountable for extensive damage in the biological system and acts as a public health burden. Owing to the rapid increasing in radiation technology, both Ionizing radiation (IR) from natural and man made source poses detrimental outcome to public health. IR releases free radicals which induces oxidative stress and deleterious biological damage by modulating radiation induced signalling intermediates. The efficacy of existing therapeutic approach and treatment strategy are limited owing to their toxicity and associated side effects. Indian system of traditional medicine is enriched with prospective phytochemicals with potential radioprotection ability. PURPOSE The present review elucidated and summarized the potential role of plant derived novel chemical compound with prospective radioprotective potential. METHOD So far as the traditional system of Indian medicine is concerned, plant kingdom is enriched with potential bioactive molecules with diverse pharmacological activities. We reviewed several compounds mostly secondary metabolites from plant origin using various search engines. RESULTS Both compounds from land plants and marine source exhibited antioxidant antiinflammatory, free radical scavenging ability. These compounds have tremendous potential in fine-tuning of several signalling intermediates, which are actively participated in the progression and development of a pathological condition associated with radiation stress. CONCLUSION Development and explore of an operational radioprotective agent from originated from plant source that can be used as a novel molecular tool to eliminate the widespread damage caused by space exploration, ionizing radiation, nuclear war and radiotherapy has been significantly appreciated. Through extensive literature search we highlighted several compounds from both land plant and marine origin can be implemented for a better therapeutic potential against radiation induced injury. Furthermore, extensive clinical trials must be carried out in near future for better therapeutic modality and clinical efficacy.
Collapse
Affiliation(s)
- Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India; School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla 768019, India
| | - Subhaswaraj Pattnaik
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Rakesh Arya
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India; School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla 768019, India
| | - Rutumbara Dash
- Departement of Gastroenterology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | - Biswajita Pradhan
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India; Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Prajna Paramita Bhuyan
- Department of Botany, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha 757003, India
| | - Pradyota Kumar Behera
- Department of Chemistry, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Paban Kumar Agrawala
- Institute of Nuclear Medicine and Allied Science, Defence Research and Development Organization, New Delhi 110054, India
| | | |
Collapse
|
5
|
Effects of Genistein on Common Kidney Diseases. Nutrients 2022; 14:nu14183768. [PMID: 36145144 PMCID: PMC9506319 DOI: 10.3390/nu14183768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/16/2022] Open
Abstract
Genistein is a naturally occurring phytoestrogen (soy or soybean products) that is classified as an isoflavone, and its structure is similar to that of endogenous estrogens; therefore, genistein can exert an estrogen-like effect via estrogen receptors. Additionally, genistein is a tyrosine kinase inhibitor, which enables it to block abnormal cell growth and proliferation signals through the inhibition of tyrosine kinase. Genistein is also an angiogenesis inhibitor and an antioxidant. Genistein has effects on kidney cells, some of the kidney’s physiological functions, and a variety of kidney diseases. First, genistein exerts a protective effect on normal cells by reducing the inflammatory response, inhibiting apoptosis, inhibiting oxidative stress, inhibiting remodeling, etc., but after cell injury, the protective effect of genistein decreases or even has the opposite effect. Second, genistein can regulate renin intake to maintain blood pressure balance, regulate calcium uptake to regulate Ca2+ and Pi balances, and reduce vasodilation to promote diuresis. Third, genistein has beneficial effects on a variety of kidney diseases (including acute kidney disease, kidney cancer, and different chronic kidney diseases), such as reducing symptoms, delaying disease progression, and improving prognosis. Therefore, this paper reviews animal and human studies on the protective effects of genistein on the kidney in vivo and in vitro to provide a reference for clinical research in the future.
Collapse
|
6
|
Turkyilmaz IB, Us H, Sezen Us A, Karabulut-Bulan O, Yanardag R. Protective effect of melatonin and carnosine against radiation induced kidney injury. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Kidney cell DNA damage caused by combined exposure to volatile anaesthetics and 1 Gy or 2 Gy radiotherapy dose in vivo. Arh Hig Rada Toksikol 2022; 73:62-70. [PMID: 35390237 PMCID: PMC8999587 DOI: 10.2478/aiht-2022-73-3600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Patient immobilisation with volatile anaesthetics (VA) during radiotherapy is sometimes unavoidable. Although it is known that both VAs and ionising radiation can have nephrotoxic effects, there are no studies of their combined effects on DNA damage. The aim of this in vivo study was to address this gap by investigating whether 48 groups of healthy Swiss albino mice (totalling 240) would differ in kidney cell DNA damage response (alkaline comet assay) to isoflurane, sevoflurane, or halothane anaesthesia and exposure to 1 Gy or 2 Gy of ionising radiation. We took kidney cortex samples after 0, 2, 6, and 24 h of exposure and measured comet parameters: tail length and tail intensity. To quantify the efficiency of the cells to repair and re-join DNA strand breaks, we also calculated cellular DNA repair index. Exposure to either VA alone increased DNA damage, which was similar between sevoflurane and isoflurane, and the highest with halothane. In combined exposure (VA and irradiation with 1 Gy) DNA damage remained at similar levels for all time points or was even lower than damage caused by radiation alone. Halothane again demonstrated the highest damage. In combined exposure with irradiation of 2 Gy sevoflurane significantly elevated tail intensity over the first three time points, which decreased and was even lower on hour 24 than in samples exposed to the corresponding radiation dose alone. This study confirmed that volatile anaesthetics are capable of damaging DNA, while combined VA and 1 Gy or 2 Gy treatment did not have a synergistic damaging effect on DNA. Further studies on the mechanisms of action are needed to determine the extent of damage in kidney cells after longer periods of observation and how efficiently the cells can recover from exposure to single and multiple doses of volatile anaesthetics and radiotherapy.
Collapse
|
8
|
Leelaviwat N, Mekraksakit P, Cross KM, Landis DM, McLain M, Sehgal L, Payne JD. Melatonin: Translation of Ongoing Studies Into Possible Therapeutic Applications Outside Sleep Disorders. Clin Ther 2022; 44:783-812. [DOI: 10.1016/j.clinthera.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
|
9
|
Wei-Yun B, Cailin Z. Genistein ameliorates hyperuricemia-associated nephropathy in hyperuricemic mice. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1996540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Bi Wei-Yun
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Department of Clinical Skills Training Center, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhu Cailin
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
10
|
Ning Y, Chen J, Shi Y, Song N, Yu X, Fang Y, Ding X. Genistein Ameliorates Renal Fibrosis Through Regulation Snail via m6A RNA Demethylase ALKBH5. Front Pharmacol 2020; 11:579265. [PMID: 33364952 PMCID: PMC7751752 DOI: 10.3389/fphar.2020.579265] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Renal tubule-interstitial fibrosis is related to chronic kidney disease progression and a typical feature of the aging kidney. Epigenetic modifications of fibrosis-prone genes regulate the development of renal fibrosis. As a kind of “epigenetic diet”, soy isoflavone genistein was reported to have renal protective action and epigenetic-modulating effects. However, its renal protection role and underlying mechanisms are yet to be fully clarified. Herein, we showed that genistein exhibits a demonstrable anti-fibrotic effect on kidney in vivo UUO (unilateral ureteral occlusion) model and renal epithelial cells in vitro model. The mechanism is strongly associated with epithelial-to-mesenchymal transition and m6A RNA demethylase ALKBH5. Mouse fibrotic kidneys induced by UUO exhibited adverse expression of renal fibrosis-related proteins and significant increases in the total m6A level. As an eraser, ALKBH5 showed severer suppression in the renal fibrosis process. However, genistein pretreatment restored ALKBH5 loss remarkably and reduced renal fibrosis, abnormal protein, and inflammatory markers. The examination of possible mechanisms revealed that genistein promoted ALKBH5 and maybe induced the level of mRNA m6A methylation in some epithelial-to-mesenchymal transition-related transcription factors. We found snail was the critical regulator and critical for the protective role of genistein. To verify the relationship between ALKBH5 and snail, we generated knockdown and overexpression of ALKBH5 cells in vitro. ALKBH5 knockdown enhanced the mesenchymal phenotype marker α-smooth muscle actin and snail expression. In agreement, overexpression ALKBH5 increased epithelial adhesion molecule E-cadherin and reduced snail expression. In conclusion, genistein increased renal ALKBH5 expression in UUO-induced renal fibrosis and reduced RNA m6A levels and ameliorates renal damages.
Collapse
Affiliation(s)
- Yichun Ning
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jing Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yiqin Shi
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| |
Collapse
|
11
|
Prša P, Karademir B, Biçim G, Mahmoud H, Dahan I, Yalçın AS, Mahajna J, Milisav I. The potential use of natural products to negate hepatic, renal and neuronal toxicity induced by cancer therapeutics. Biochem Pharmacol 2020; 173:113551. [PMID: 31185225 DOI: 10.1016/j.bcp.2019.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022]
|
12
|
Mashhadi Akbar Boojar M. An Overview of the Cellular Mechanisms of Flavonoids Radioprotective Effects. Adv Pharm Bull 2019; 10:13-19. [PMID: 32002357 PMCID: PMC6983988 DOI: 10.15171/apb.2020.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022] Open
Abstract
Considering the remarkable application of radiotherapy in the treatment and diagnosis of various diseases and even nuclear war, it is important to protect healthy tissues and people at risk from the radiation. Currently, there is no ideal and safe radioprotective agent available and we are seeing a great effort to find these agents from natural sources. Phenolic compounds, as well as flavonoid, are presented widely as the second metabolite in plants and they have been considered for investigation according to their benefits for human health, healing and preventing many disorders. The major bioactive benefits of flavonoids include antioxidant, anti-inflammatory, anti-tumor, anti-aging, anti-bacterial and viral, neuroprotection and radioprotective effects. Their lower toxicity and oral administration have made it suitable for radiotherapy patient, radiation, military forces, and even the general public. This review attempts to provide a summary of the main molecular mechanisms involved in flavonoid radio-protective effects. Data of these studies will provide a comprehensive perspective to flavonoids and can help to optimize their effects in radioprotection procedures.
Collapse
Affiliation(s)
- Mahdi Mashhadi Akbar Boojar
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Landauer MR, Harvey AJ, Kaytor MD, Day RM. Mechanism and therapeutic window of a genistein nanosuspension to protect against hematopoietic-acute radiation syndrome. JOURNAL OF RADIATION RESEARCH 2019; 60:308-317. [PMID: 31038675 PMCID: PMC6530628 DOI: 10.1093/jrr/rrz014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Indexed: 05/17/2023]
Abstract
There are no FDA-approved drugs that can be administered prior to ionizing radiation exposure to prevent hematopoietic-acute radiation syndrome (H-ARS). A suspension of synthetic genistein nanoparticles was previously shown to be an effective radioprotectant against H-ARS when administered prior to exposure to a lethal dose of total body radiation. Here we aimed to determine the time to protection and the duration of protection when the genistein nanosuspension was administered by intramuscular injection, and we also investigated the drug's mechanism of action. A single intramuscular injection of the genistein nanosuspension was an effective radioprotectant when given prophylactically 48 h to 12 h before irradiation, with maximum effectiveness occurring when administered 24 h before. No survival advantage was observed in animals administered only a single dose of drug after irradiation. The dose reduction factor of the genistein nanosuspension was determined by comparing the survival of treated and untreated animals following different doses of total body irradiation. As genistein is a selective estrogen receptor beta agonist, we also explored whether this was a central component of its radioprotective mechanism of action. Mice that received an intramuscular injection of an estrogen receptor antagonist (ICI 182,780) prior to administration of the genistein nanosuspension had significantly lower survival following total body irradiation compared with animals only receiving the nanosuspension (P < 0.01). These data define the time to and duration of radioprotection following a single intramuscular injection of the genistein nanosuspension and identify its likely mechanism of action.
Collapse
Affiliation(s)
- Michael R Landauer
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4555 South Palmer Road, Building 42, Bethesda, MD, USA
| | - Adam J Harvey
- Humanetics Corporation, 7650 Edinborough Way, Suite 620, Edina, MN, USA
| | - Michael D Kaytor
- Humanetics Corporation, 7650 Edinborough Way, Suite 620, Edina, MN, USA
| | - Regina M Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Building C, Roomm 2023, 4301 Jones Bridge Road, Bethesda, MD, USA
- Corresponding author. Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Building C, Room 2023, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA. Tel: +301-295-3236; fax: +301-295-3220;
| |
Collapse
|
14
|
PK-PD based optimal dose and time for orally administered supra-pharmacological dose of melatonin to prevent radiation induced mortality in mice. Life Sci 2019; 219:31-39. [PMID: 30625289 DOI: 10.1016/j.lfs.2019.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/31/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
AIMS The study reports preclinical pharmacokinetics (PK) and correlation with pharmacological effect at suprapharmacological dose of orally administered melatonin along with time and dose optimization, which have been lacking in earlier reports of radioprotection using melatonin. METHODS PK of melatonin in C57BL/6 mice was evaluated after dose of 250 mg/kg using HPLC. Tissue distribution study was conducted in vital organs following oral administration. Plasma total antioxidant capacity (TAC) was determined by ABTS+ radical assay and was correlated to plasma concentrations of melatonin. Using the outcomes of PK and Pharmacodynamics (PD), survival study was conducted for optimization of 'drug radiation gap period' (DRGP). Optimal oral dose for radioprotection was determined using survival as an end point. KEY FINDINGS PK analysis of melatonin revealed Tmax at 5 min with closely spaced another distinct concentration peak at 20 min. Plasma TAC of melatonin showed similar peaks at 5 min and 45 min, with the highest TAC at 45 min. Survival following a lethal (9 Gy) radiation dose was 20% and 40% after 5 and 45 min of melatonin administration, respectively. DRGP for melatonin was thus 45 min, while optimal oral dose ranged from 125 to 250 mg/kg. PK parameters at 250 mg/kg dose were qualitatively similar to low dose of melatonin, thus preventing chances of unexpected toxicity. SIGNIFICANCE Survival enhancement at 45 min suggested as probable interval required as 'DRGP'. The optimum oral therapeutic window appears large with no substantial toxicity. The outcomes will be useful in development of radioprotectors as well as other therapeutic applications.
Collapse
|
15
|
Zhang QY, Wang FX, Jia KK, Kong LD. Natural Product Interventions for Chemotherapy and Radiotherapy-Induced Side Effects. Front Pharmacol 2018; 9:1253. [PMID: 30459615 PMCID: PMC6232953 DOI: 10.3389/fphar.2018.01253] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/15/2018] [Indexed: 12/24/2022] Open
Abstract
Cancer is the second leading cause of death in the world. Chemotherapy and radiotherapy are the common cancer treatments. However, the development of adverse effects resulting from chemotherapy and radiotherapy hinders the clinical use, and negatively reduces the quality of life in cancer patients. Natural products including crude extracts, bioactive components-enriched fractions and pure compounds prepared from herbs as well as herbal formulas have been proved to prevent and treat cancer. Of significant interest, some natural products can reduce chemotherapy and radiotherapy-induced oral mucositis, gastrointestinal toxicity, hepatotoxicity, nephrotoxicity, hematopoietic system injury, cardiotoxicity, and neurotoxicity. This review focuses in detail on the effectiveness of these natural products, and describes the possible mechanisms of the actions in reducing chemotherapy and radiotherapy-induced side effects. Recent advances in the efficacy of natural dietary supplements to counteract these side effects are highlighted. In addition, we draw particular attention to gut microbiotan in the context of prebiotic potential of natural products for the protection against cancer therapy-induced toxicities. We conclude that some natural products are potential therapeutic perspective for the prevention and treatment of chemotherapy and radiotherapy-induced side effects. Further studies are required to validate the efficacy of natural products in cancer patients, and elucidate potential underlying mechanisms.
Collapse
Affiliation(s)
- Qing-Yu Zhang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei-Xuan Wang
- Department of Pathology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Ke-Ke Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Bala S, Chugh NA, Bansal SC, Garg ML, Koul A. Radiomodulatory effects of Aloe vera on hepatic and renal tissues of X-ray irradiated mice. Mutat Res 2018; 811:1-15. [PMID: 30014950 DOI: 10.1016/j.mrfmmm.2018.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 01/14/2023]
Abstract
The present study was aimed to explore the protective role of Aloe vera gel extract against hepatic and renal damage caused by X-ray exposure to mice. Male balb/c mice were divided into four groups: control, Aloe vera gel extract [AV] (50 mg/ kg b.w on alternate days for 30 days), X-ray (2 Gy) and AV + X-ray. X-ray irradiation enhanced the serum levels of liver function indices and chromosomal abnormalities in liver. Kidney function markers were found to be deranged and were accompanied by reduced glomerular filtration rate indicating renal dysfunction. Irradiation caused histopathological and biochemical alterations in both tissues which was associated with enhanced reactive oxygen species (ROS), lipid peroxidation (LPO) levels, lactate dehydrogenase (LDH) activity and enhanced apoptosis as revealed by TUNEL assay and DNA fragmentation. The administration of Aloe vera gel extract to X-ray exposed animals significantly improved their hepatic and renal function parameters which were associated with a reduction in ROS/LPO levels, LDH activity and chromosomal abnormalities as compared to their irradiated counterparts. In vitro assays revealed effective radical scavenging ability of Aloe vera gel extract, which may be linked to its potential in exhibiting antioxidant effects in in vivo conditions. This data suggested that Aloe vera may serve to boost the antioxidant system, thus providing protection against hepatic and renal damage caused by X-ray.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Neha Arora Chugh
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | | | - Mohan Lal Garg
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Ashwani Koul
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
17
|
Mercantepe F, Mercantepe T, Topcu A, Yılmaz A, Tumkaya L. Protective effects of amifostine, curcumin, and melatonin against cisplatin-induced acute kidney injury. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:915-931. [DOI: 10.1007/s00210-018-1514-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/13/2018] [Indexed: 12/21/2022]
|
18
|
Bellés M, Gonzalo S, Serra N, Esplugas R, Arenas M, Domingo JL, Linares V. Environmental exposure to low-doses of ionizing radiation. Effects on early nephrotoxicity in mice. ENVIRONMENTAL RESEARCH 2017; 156:291-296. [PMID: 28371757 DOI: 10.1016/j.envres.2017.03.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
Nuclear accidents of tremendous magnitude, such as those of Chernobyl (1986) and Fukushima (2011), mean that individuals living in the contaminated areas are potentially exposed to ionizing radiation (IR). However, the dose-response relationship for effects of low doses of radiation is not still established. The present study was aimed at investigating in mice the early effects of low-dose internal radiation exposure on the kidney. Adult male (C57BL/6J) mice were divided into three groups. Two groups received a single subcutaneous (s.c.) doses of cesium (137Cs) with activities of 4000 and 8000Bq/kg bw. A third group (control group) received a single s.c. injection of 0.9% saline. To evaluate acute and subacute effects, mice (one-half of each group) were euthanized at 72h and 10 days post-exposure to 137Cs, respectively. Urine samples were collected for biochemical analysis, including the measurement of F2-isoprostane (F2-IsoP) and kidney injury molecule-1 (KIM-1) levels. Moreover, the concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a sensitive marker of oxidative DNA damage, were measured in renal tissue. Urinary excretion of total protein significantly increased at 72h in mice exposed to Cs4000. Uric acid and lactate dehydrogenase (LDH) decreased significantly at both times post-exposure in animals exposed to Cs8000. After 72h and 10d of exposure to Cs4000, a significant increase in the γ-glutamil transferase (GGT) and N-acetyl-β-D-glucosaminidase (NAG) activities was observed. In turn, F2-IsoP levels increased -mainly in the Cs4000 group- at 72h post-exposure. Following irradiation (137Cs), the highest level of KIM-1 was corresponded to the Cs4000 group at 72h. Likewise, the main DNA damage was detected in mice exposed to Cs4000, mainly at 10d after irradiation. The alterations observed in several biomarkers suggest an immediate renal damage following exposure to low doses of IR (given as 137Cs). Further investigations are required to clarify the mechanisms involved in the internal IR-induced nephrotoxicity.
Collapse
Affiliation(s)
- Montserrat Bellés
- Physiology Unit, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain
| | - Sergio Gonzalo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain
| | - Noemí Serra
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain
| | - Roser Esplugas
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain
| | - Meritxell Arenas
- Radiation Oncology Department, Sant Joan University Hospital, IISPV, Rovira i Virgili University, Reus, Spain
| | - José Luis Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain
| | - Victoria Linares
- Physiology Unit, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain.
| |
Collapse
|
19
|
Li WF, Yang K, Zhu P, Zhao HQ, Song YH, Liu KC, Huang WF. Genistein Ameliorates Ischemia/Reperfusion-Induced Renal Injury in a SIRT1-Dependent Manner. Nutrients 2017; 9:nu9040403. [PMID: 28425936 PMCID: PMC5409742 DOI: 10.3390/nu9040403] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 12/29/2022] Open
Abstract
Renal ischemia/reperfusion (I/R) injury continues to be a complicated situation in clinical practice. Genistein, the main isoflavone found in soy products, is known to possess a wide spectrum of biochemical and pharmacological activities. However, the protective effect of genistein on renal I/R injury has not been well investigated. In the current study, we explore whether genistein exhibits its renal-protective effects through SIRT1 (Sirtuin 1) in I/R-induced mice model. We found the treatment of genistein significantly reduced renal I/R-induced cell death, simultaneously stimulating renal cell proliferation. Meanwhile, SIRT1 expression was up-regulated following the administration of genistein in renal region. Furthermore, pharmacological inhibition or shRNA-mediated depletion of SIRT1 significantly reversed the protective effect of genistein on renal dysfunction, cellular damage, apoptosis, and proliferation following I/R injury, suggesting an indispensible role of the increased SIRT1 expression and activity in this process. Meanwhile, the reduced p53 and p21 expression and increased PCNA (Proliferating Cell Nuclear Antigen) expression were blocked after the depletion of SIRT1 compared with the genistein treatment group in the renal I/R process. Hence, our results provided further experimental basis for the potential use of genistein for the treatment of kidney disease with deficiency of SIRT1 activity.
Collapse
Affiliation(s)
- Wei-Fang Li
- Medical College, China Three Gorges University, Yichang 443002, China.
| | - Kang Yang
- Medical College, China Three Gorges University, Yichang 443002, China.
| | - Ping Zhu
- Department of Medicine, the First College of Clinical Medical Science, China Three Gorges University, Yichang 443002, China.
| | - Hong-Qian Zhao
- Medical College, China Three Gorges University, Yichang 443002, China.
| | - Yin-Hong Song
- Medical College, China Three Gorges University, Yichang 443002, China.
| | - Kuan-Can Liu
- Institute for Laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou 350025, China.
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.
- Dongfang Hospital, Xiamen University, Fuzhou 350025, China.
| | - Wei-Feng Huang
- Medical College, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
20
|
Najafi M, Shirazi A, Motevaseli E, Geraily G, Norouzi F, Heidari M, Rezapoor S. The melatonin immunomodulatory actions in radiotherapy. Biophys Rev 2017; 9:139-148. [PMID: 28510090 PMCID: PMC5425818 DOI: 10.1007/s12551-017-0256-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/05/2017] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy has a key role in cancer treatment in more than half of patients with cancer. The management of severe side effects of this treatment modality is a limiting factor to appropriate treatment. Immune system responses play a pivotal role in many of the early and late side effects of radiation. Moreover, immune cells have a significant role in tumor response to radiotherapy, such as angiogenesis and tumor growth. Melatonin as a potent antioxidant has shown appropriate immune regulatory properties that may ameliorate toxicity induced by radiation in various organs. These effects are mediated through various modulatory effects of melatonin in different levels of tissue reaction to ionizing radiation. The effects on the DNA repair system, antioxidant enzymes, immune cells, cytokines secretion, transcription factors, and protein kinases are most important. Moreover, anti-cancer properties of melatonin may increase the therapeutic ratio of radiotherapy. Clinical applications of this agent for the management of malignancies such as breast cancer have shown promising results. It seems anti-proliferative, anti-angiogenesis, and stimulation or suppression of some immune cell responses are the main anti-tumor effects of melatonin that may help to improve response of the tumor to radiotherapy. In this review, the effects of melatonin on the modulation of immune responses in both normal and tumor tissues will be discussed.
Collapse
Affiliation(s)
- M Najafi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - A Shirazi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - E Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Gh Geraily
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - F Norouzi
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - M Heidari
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - S Rezapoor
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|