1
|
Kruger B, Shamley D, Soko ND, Dandara C. Pharmacogenetics of tamoxifen in breast cancer patients of African descent: Lack of data. Clin Transl Sci 2024; 17:e13761. [PMID: 38476074 PMCID: PMC10933661 DOI: 10.1111/cts.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Tamoxifen, a selective estrogen receptor modulator, is used to treat hormone receptor-positive breast cancer. Tamoxifen acts as a prodrug, with its primary therapeutic effect mediated by its principal metabolite, endoxifen. However, tamoxifen has complex pharmacokinetics involving several drug-metabolizing enzymes and transporters influencing its disposition. Genes encoding enzymes involved in tamoxifen disposition exhibit genetic polymorphisms which vary widely across world populations. This review highlights the lack of data on tamoxifen pharmacogenetics among African populations. Gaps in data are described in this study with the purpose that future research can address this dearth of research on the pharmacogenetics of tamoxifen among African breast cancer patients. Initiatives such as the African Pharmacogenomics Network (APN) are crucial in promoting comprehensive pharmacogenetics studies to pinpoint important variants in pharmacogenes that could be used to reduce toxicity and improve efficacy.
Collapse
Affiliation(s)
- Bianca Kruger
- Platform for Pharmacogenomics Research and Translation (PREMED)South African Medical Research CouncilCape TownSouth Africa
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Delva Shamley
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Nyarai Desiree Soko
- Platform for Pharmacogenomics Research and Translation (PREMED)South African Medical Research CouncilCape TownSouth Africa
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Department of Pharmaceutical Technology, School of Allied Health SciencesHarare Institute of TechnologyHarareZimbabwe
| | - Collet Dandara
- Platform for Pharmacogenomics Research and Translation (PREMED)South African Medical Research CouncilCape TownSouth Africa
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
2
|
Saghafi F, Salehifar E, Ebrahimi P, Shiran MR, Zaboli E, Sohrevardi SM, Jamialahmadi T, Sahebnasagh A, Sahebkar A. Evaluation of the effect of CYP2D6*3, *4,*10, and *17 polymorphisms on the pharmacokinetic of tamoxifen and its metabolites in patients with hormone-positive breast cancer. J Pharm Biomed Anal 2024; 238:115839. [PMID: 37976989 DOI: 10.1016/j.jpba.2023.115839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND OBJECTIVE A high rate of interindividual variability in response to tamoxifen (TAM) in breast cancer patients with CYP2D6 polymorphism has been reported, which affects the patient's therapeutic outcome. The objective of this study was to investigate the pharmacogenomics of CYP2D6 genotyping in Iranian patients with breast cancer treated with adjuvant TAM. METHODS A peripheral blood sample was obtained to determine the steady-state plasma concentrations of TAM and its metabolites (Endoxifen (EN) and 4-Hydroxytamoxifen (4-OHT)) using high-performance liquid chromatography with fluorescence detection (HPLC-FLU) assay. We detected CYP2D6 * 3, * 4, * 10, and * 17 single nucleotide polymorphisms via polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) method. RESULTS A total of 84 Iranian estrogen receptor‑positive breast cancer patients receiving the daily dose of 20 mg tamoxifen were recruited. Although a consequent decrease in the median EN and 4-OHT concentrations was observed by comparing poor or intermediate metabolizer patients with an extensive metabolizer population, this difference did not reach a significant level. The mean plasma EN concentrations in poor and intermediate metabolizers were 46.1% (95% CI, 7.4-27.8%) and 59.4% (95% CI, 11.9-37.3%) of extensive metabolizer subjects, respectively. Poor and intermediate metabolizers had the mean plasma 4-OHT concentrations that were 46.6% (95% CI, 0.9-61.7%) and 73.2% (95% CI, 2.7-93.1%) of those of subjects who were extensive metabolizer, respectively. CONCLUSIONS The possible role of genotyping in Iranian patients' response to treatment may explain inter-individual differences in the plasma concentrations of active metabolites of TAM.
Collapse
Affiliation(s)
- Fatemeh Saghafi
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Ebrahim Salehifar
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Pouneh Ebrahimi
- Department of Chemistry, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Mohammad Reza Shiran
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Zaboli
- Department of Internal Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mojtaba Sohrevardi
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Slanař O, Hronová K, Bartošová O, Šíma M. Recent advances in the personalized treatment of estrogen receptor-positive breast cancer with tamoxifen: a focus on pharmacogenomics. Expert Opin Drug Metab Toxicol 2020; 17:307-321. [PMID: 33320718 DOI: 10.1080/17425255.2021.1865310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Tamoxifen is still an important drug in hormone-dependent breast cancer therapy. Personalization of its clinical use beyond hormone receptor positivity could improve the substantial variability of the treatment response.Areas covered: The overview of the current evidence for the treatment personalization using therapeutic drug monitoring, or using genetic biomarkers including CYP2D6 is provided. Although many studies focused on the PK aspects or the impact of CYP2D6 variability the translation into clinical routine is not clearly defined due to the inconsistent clinical outcome data.Expert opinion: We believe that at least the main candidate factors, i.e. CYP2D6 polymorphism, CYP2D6 inhibition, endoxifen serum levels may become important predictors of clinical relevance for tamoxifen treatment personalization in the future. To achieve this aim, however, further research should take into consideration more precise characterization of the disease, epigenetic factors and also utilize an appropriately powered multifactorial approach instead of a single gene evaluating studies.
Collapse
Affiliation(s)
- Ondřej Slanař
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Karolína Hronová
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Olga Bartošová
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Šíma
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
4
|
Rangel-Méndez JA, Rubi-Castellanos R, Ascencio-Montiel IDJ, Moo-Puc RE. CYP2D6 does not impact on breast cancer-free survival in Southeast Mexican patients under tamoxifen treatment. Per Med 2020; 17:261-270. [DOI: 10.2217/pme-2019-0135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aim: We conducted a retrospective analysis in 71 Mexican Mestizo patients to evaluate the breast cancer-free survival (BCFS) among the inferred genetic phenotypes (GP) of CYP2D6. Patients & methods: CYP2D6 was genotyped through Taqman-probe analysis; GP were inferred according to international guidelines. The BCFS was estimated through Kaplan–Meier method and analyzed with a log-rank test; hazard ratios were calculated with 95% CI and p < 0.05. Results: The BCFS did not differ among CYP2D6 GP (p = 0.45) and recurrence risk was similar between gNM + gUM and gPM + gIM groups (hazard ratio: 1.54, 95% CI: 0.37–6.38; p = 0.55). Conclusion: The findings do not support any impact of CYP2D6 on BCFS. Evaluation of other genetic/nongenetic biomarkers is needed in Mexican Mestizo patients under tamoxifen treatment.
Collapse
Affiliation(s)
- Jorge-Aarón Rangel-Méndez
- Unidad de Investigación Médica Yucatán, Unidad Médica de Alta Especialidad, Hospital de Especialidades del Centro Médico Nacional ‘Ignacio García Téllez’, Instituto Mexicano del Seguro Social, Calle 41 No. 439, Col. Industrial, 97150 Mérida, Yucatán, México
| | - Rodrigo Rubi-Castellanos
- Centro de Investigaciones Regionales ‘Dr Hideyo Noguchi’ Calle 96 S/N, Avenida Jacinto Canek y calle 47, Paseo de las Fuentes, 97225 Mérida, Yucatán, México
| | - Iván de Jesús Ascencio-Montiel
- División Vigilancia Epidemiológica de Enfermedades No Transmisibles, Instituto Mexicano del Seguro Social, Mier y Pesado 120, Col. Del Valle, Benito Juárez, 03100 Ciudad de México, México
| | - Rosa Esther Moo-Puc
- Unidad de Investigación Médica Yucatán, Unidad Médica de Alta Especialidad, Hospital de Especialidades del Centro Médico Nacional ‘Ignacio García Téllez’, Instituto Mexicano del Seguro Social, Calle 41 No. 439, Col. Industrial, 97150 Mérida, Yucatán, México
| |
Collapse
|
5
|
Chan CWH, Law BMH, So WKW, Chow KM, Waye MMY. Pharmacogenomics of breast cancer: highlighting CYP2D6 and tamoxifen. J Cancer Res Clin Oncol 2020; 146:1395-1404. [PMID: 32270286 DOI: 10.1007/s00432-020-03206-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To review recent pharmacogenomics studies on breast cancer patients undergoing tamoxifen therapy, highlighting how our knowledge on cytochrome P450 2D6 (CYP2D6) can help to guide the development of adjuvant therapies for these patients. METHODS A comprehensive literature search was conducted. Articles reporting findings pertaining to the effect of CYP2D6 on the therapeutic efficacy of tamoxifen, those reporting how targeting CYP2D6 could inform tamoxifen-based therapy development, and those on the tamoxifen effects on cell lines and animal models were included in the review. RESULTS With CYP2D6 being the primary enzyme for tamoxifen metabolism, single-nucleotide polymorphisms (SNPs) in this gene were one of the determinants in the rate of tamoxifen metabolism, thereby potentially having an effect on the efficacy of tamoxifen-based therapies. Our review indicates the potential effectiveness of targeting these SNPs, including those for the CYP2D6*10 allele (c. 100C > T), in modifying the level of tamoxifen metabolism. These findings suggest the importance of pharmacogenomics research in our understanding of the efficacy of adjuvant therapies. However, the involvement of multiple enzymes in tamoxifen metabolism, dietary factors, ethnic differences in gene frequencies, and patients' compliance to tamoxifen therapies in studies do present challenges in pharmacogenomics research. CONCLUSIONS Pharmacogenomics could play important roles in mediating the advancement of tamoxifen-based adjuvant therapies. Research efforts should be directed towards the exploration of further SNPs of CYP2D6 that affect tamoxifen metabolism, as well as epigenetic changes in CYP2D6, enabling the design of precision medicine and confirming clinical validity in the use of pharmacogenomics for tamoxifen.
Collapse
Affiliation(s)
- Carmen W H Chan
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, 6/F Esther Lee Building, Hong Kong, China
| | - Bernard M H Law
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, 6/F Esther Lee Building, Hong Kong, China
| | - Winnie K W So
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, 6/F Esther Lee Building, Hong Kong, China
| | - Ka Ming Chow
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, 6/F Esther Lee Building, Hong Kong, China
| | - Mary M Y Waye
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, 6/F Esther Lee Building, Hong Kong, China. .,The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Rodrigues-Soares F, Suarez-Kurtz G. Pharmacogenomics research and clinical implementation in Brazil. Basic Clin Pharmacol Toxicol 2019; 124:538-549. [PMID: 30589990 DOI: 10.1111/bcpt.13196] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022]
Abstract
We searched PubMed entries and the Lattes database of Brazilian Pharmacogenetics Network investigators, for pharmacogenetic/genomic (PGx) studies in the Brazilian population, focusing on the drugs and genes included in the Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines. Warfarin was the most extensively studied drug in a PGx context: a genomewide association study targeting warfarin stable dose identified significant signals in VKORC1 and CYP2C9, several PGx dosing algorithms were developed based on these and other genes, and the implications of population admixture on extrapolation of dosing recommendations in the CPIC guidelines were examined. A study in renal transplanted patients disclosed association of CYP3A5*6 and CYP3A5*7 with tacrolimus dosing, which led to addition of these variants to CYP3A5*3 in the CPIC tacrolimus guideline. Studies verified predisposition of HIV-positive carriers of UGT1A1*28 to severe atazanavir-induced hyperbilirubinaemia, intolerance to 5-fluorouracyl in gastrointestinal cancer patients with deleterious DPYD variants, failure of HCV-infected carriers of IFNL3 rs12979860 to obtain a sustained viral response to PEG-IFN-α, and hypersensitivity reactions to abacavir in HIV-positive carriers of HLA-B*57:01. No prospective analyses of drug therapy outcomes or cost-effectiveness assessments of PGx-guided therapy were found. In conclusion, the limited adoption of PGx-informed drug prescription in Brazil reflects combination of recognized barriers to PGx implementation worldwide plus factors specific to the Brazilian population. The latter include rarity/absence of genetic variants on which international PGx guidelines are based (eg HLA-B*15.02 for phenytoin and carbamazepine) and the caveat of extrapolating to the admixed Brazilian population, guidelines based on categorical variables, such as continental ancestry (eg warfarin guidelines), "race" or ethnicity.
Collapse
|
7
|
Saghafi F, Salehifar E, Janbabai G, Zaboli E, Hedayatizadeh-Omran A, Amjadi O, Moradi S. CYP2D6*3 (A2549del), *4 (G1846A), *10 (C100T) and *17 (C1023T) genetic polymorphisms in Iranian breast cancer patients treated with adjuvant tamoxifen. Biomed Rep 2018; 9:446-452. [PMID: 30345040 DOI: 10.3892/br.2018.1145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/06/2018] [Indexed: 01/04/2023] Open
Abstract
There is controversy regarding the efficacy of tamoxifen in breast cancer patients who are carriers of cytochrome P450 2D6 (CYP2D6) gene polymorphisms. Poor metabolizer genotypes may not fully convert tamoxifen to its active metabolite endoxifen and thus have less exposure to anti-estrogen therapy. The present study was conducted to identify the prevalence of CYP2D6 genotypes among Iranian breast cancer patients. A total of 84 estrogen receptor-positive breast cancer patients treated at a referral center in the north of Iran were examined. A peripheral blood sample was obtained from each patient to determine the presence of *3, *4, *10 and *17 single nucleotide polymorphisms of the CYP2D6 gene by polymerase chain reaction-based restriction fragment-length polymorphism analysis. Of the four genotypes assessed, CYP2D6*4 was the most common variant and was identified in 41 (48.8%) patients as heterozygous (G/A) and 3 (3.6%) as homozygous (A/A) alleles. CYP2D6*10 heterozygous mutated alleles (C/T) were also a common genotype that presented in 22 (26.2%) of the study subjects. Variant *17 was less common and was detected only as heterozygous (C/T) in 3 patients (3.6%). No CYP2D6*3 heterozygous or homozygous mutated alleles were observed. In conclusion, the frequency of the CYP2D6 nonfunctional alleles *4 and *10 appeared relatively high in Iranian patients with hormone-sensitive breast cancer. This finding may affect the selection of an optimal hormone therapy, as patients with low CYP2D6 pathway activity may not sufficiently convert tamoxifen to its active metabolite endoxifen.
Collapse
Affiliation(s)
- Fatemeh Saghafi
- Pharmaceutical Research Center, Mazandaran University of Medical Sciences, Sari 48471-16548, Iran
| | - Ebrahim Salehifar
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48471-16548, Iran
| | - Ghasem Janbabai
- Department of Internal Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48471-16548, Iran
| | - Ehsan Zaboli
- Department of Internal Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48471-16548, Iran
| | - Akbar Hedayatizadeh-Omran
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari 48166-33131, Iran
| | - Omolbanin Amjadi
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari 48166-33131, Iran
| | - Siavash Moradi
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari 48166-33131, Iran
| |
Collapse
|
8
|
Abstract
Pharmacogenetics, a major component of individualized or precision medicine, relies on human genetic diversity. The remarkable developments in sequencing technologies have revealed that the number of genetic variants modulating drug action is much higher than previously thought and that a true personalized prediction of drug response requires attention to rare mutations (minor allele frequency, MAF<1%) in addition to polymorphisms (MAF>1%) in pharmacogenes. This has major implications for the conceptual development and clinical implementation of pharmacogenetics. Drugs used in cancer treatment have been major targets of pharmacogenetics studies, encompassing both germline polymorphisms and somatic variants in the tumor genome. The present overview, however, has a narrower scope and is focused on germline cancer pharmacogenetics, more specifically, on drug/gene pairs for which pharmacogenetics-informed prescription guidelines have been published by the Clinical Pharmacogenetics Implementation Consortium and/or the Dutch Pharmacogenetic Working Group, namely, thiopurines/TPMT, fluoropyrimidines/UGT1A1, irinotecan/UGT1A1 and tamoxifen/CYP2D6. I begin by reviewing the general principles of pharmacogenetics-informed prescription, pharmacogenetics testing and the perceived barriers to the adoption of routine pharmacogenetics testing in clinical practice. Then, I highlight aspects of the pharmacogenetics testing of the selected drug-gene pairs and finally present pharmacogenetics data from Brazilian studies pertinent to these drug-gene pairs. I conclude with the notion that pharmacogenetics testing has the potential to greatly benefit patients by enabling precision medicine applied to drug therapy, ensuring better efficacy and reducing the risk of adverse effects.
Collapse
Affiliation(s)
- Guilherme Suarez-Kurtz
- Instituto Nacional de Cancer, Rio de Janeiro, RJ, BR
- Rede Nacional de Farmacogenetica, Rio de Janeiro, RJ, BR
- *Corresponding author. E-mail:
| |
Collapse
|
9
|
Cronin-Fenton DP, Damkier P. Tamoxifen and CYP2D6: A Controversy in Pharmacogenetics. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 83:65-91. [PMID: 29801584 DOI: 10.1016/bs.apha.2018.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tamoxifen reduces the rate of breast cancer recurrence by about one-half. It is converted to more active metabolites by enzymes encoded by polymorphic genes, including cytochrome P450 2D6 (CYP2D6) and transported by ATP-binding cassette transporters. Genetic polymorphisms that confer reduced CYP2D6 activity or concurrent use of CYP2D6-inhibiting drugs may reduce the clinical efficacy of tamoxifen. The issue of the clinical utility of CYP2D6 genotype testing is subject to considerable and ongoing academic and clinical controversy. In this chapter, we outline tamoxifen's clinical pharmacology and give an overview of the research to date on the association between CYP2D6 inhibition and tamoxifen effectiveness. Based on the evidence to date, the impact of drug-induced and/or gene-induced inhibition of CYP2D6 activity is likely to be null or small, or at most moderate in subjects carrying two reduced function alleles. Future research should examine the effect of polymorphisms in genes encoding enzymes in tamoxifen's complete metabolic pathway, should comprehensively evaluate other biomarkers that affect tamoxifen effectiveness, such as the transport enzymes, and focus on subgroups of patients, such as premenopausal breast cancer patients, for whom tamoxifen is the only guideline approved endocrine therapy.
Collapse
Affiliation(s)
| | - Per Damkier
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|