1
|
Xu Q, Yu Y, Chen K. The potential application of fermented tea as a drink for regulating bone mass. Front Pharmacol 2024; 15:1353811. [PMID: 39027330 PMCID: PMC11254645 DOI: 10.3389/fphar.2024.1353811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Currently, there is evidence to suggest the benefits of drinking fermented tea for people with osteoporosis, and based on this, many studies have been conducted on the dosage, exact ingredients, mechanisms, and industrial applications of fermented tea for protecting against osteoporosis. A summary and analysis of studies on the regulation of bone mass by oolong tea, black tea, and their active ingredients (including 39 known catechin compounds) was conducted. It was found that the regulation of bone mass by fermented tea is backed by evidence from epidemiology, animal experiments, and cell experiments. The main active components of fermented tea are tea polyphenols, tea pigments, and trace amino acids. The specific mechanisms involved include regulating bone marrow mesenchymal stem cell osteogenesis, inhibiting osteoclast activity, promoting calcium and phosphorus absorption, reducing inflammation levels, regulating gut microbiota, regulating endocrine function, and inhibiting oxidative stress. In terms of its application, extraction, precipitation, biosynthesis and membrane separation method are mainly used to separate the active ingredients of anti osteoporosis from fermented tea. In conclusion, fermented tea has sufficient theoretical and practical support for regulating bone mass and preventing osteoporosis, and is suitable for development as a health supplement. At the same time, a large amount of epidemiological evidence is needed to prove the specific dosage of tea consumption.
Collapse
Affiliation(s)
- Qiaolu Xu
- Department of Geriatric Medicine, The Second Hospital of Jinhua, Jinhua, China
| | - Yikang Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ke Chen
- Orthopedics and Traumatology Department, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Research on the Mechanism of Liuwei Dihuang Decoction for Osteoporosis Based on Systematic Biological Strategies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7017610. [PMID: 36185080 PMCID: PMC9522519 DOI: 10.1155/2022/7017610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 02/21/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022]
Abstract
Background Osteoporosis is an important health problem worldwide. Liuwei Dihuang Decoction (LDD) and its main ingredients may have a good clinical effect on osteoporosis. Meanwhile, its mechanism for treating osteoporosis needs to be further revealed in order to provide a basis for future drug development. Methods A systematic biological methodology was utilized to construct and analyze the LDD-osteoporosis network. After that, the human transcription data of LDD intervention in patients with osteoporosis and protein arrays data of LDD intervention in osteoporosis rats were collected. The human transcription data analysis, protein arrays data analysis, and molecular docking were performed to validate the findings of the prediction network (LDD-osteoporosis PPI network). Finally, animal experiments were conducted to verify the prediction results of systematic pharmacology. Results (1) LDD-osteoporosis PPI network shows the potential compounds, potential targets (such as ALB, IGF1, SRC, and ESR1), clusters, biological processes (such as positive regulation of calmodulin 1-monooxygenase activity, estrogen metabolism, and endothelial cell proliferation), and signaling and Reactome pathways (such as JAK-STAT signaling pathway, osteoclast differentiation, and degradation of the extracellular matrix) of LDD intervention in osteoporosis. (2) Human transcriptomics data and protein arrays data validated the findings of the LDD-osteoporosis PPI network. (3) The animal experiments showed that LDD can improve bone mineral density (BMD), increase serum estradiol (E2) and alkaline phosphatase (ALP) levels, and upregulate Wnt3a and β-catenin mRNA expression (P < 0.05). (4) Molecular docking results showed that alisol A, dioscin, loganin, oleanolic acid, pachymic acid, and ursolic acid may stably bind to JAK2, ESR1, and CTNNB1. Conclusion LDD may have a therapeutic effect on osteoporosis through regulating the targets (such as ALB, IGF1, SRC, and ESR1), biological processes (such as positive regulation of calmodulin 1-monooxygenase activity, estrogen metabolism, and endothelial cell proliferation), and pathways (such as JAK-STAT signaling pathway, osteoclast differentiation, and degradation of the extracellular matrix) found in this research.
Collapse
|
3
|
Kawabata T, Tokuda H, Kuroyanagi G, Fujita K, Sakai G, Kim W, Matsushima-Nishiwaki R, Iida H, Yata KI, Wang S, Mizoguchi A, Otsuka T, Kozawa O. Incretin accelerates platelet-derived growth factor-BB-induced osteoblast migration via protein kinase A: The upregulation of p38 MAP kinase. Sci Rep 2020; 10:2341. [PMID: 32047216 PMCID: PMC7012849 DOI: 10.1038/s41598-020-59392-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/27/2020] [Indexed: 11/18/2022] Open
Abstract
Incretins, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), secreted from enteroendocrine cells after food ingestion, are currently recognized to regulate glucose metabolism through insulin secretion. We previously demonstrated that platelet-derived growth factor-BB (PDGF-BB) induces the migration of osteoblast-like MC3T3-E1 cells through mitogen-activated protein (MAP) kinases, including p38 MAP kinase. In the present study, we investigated whether or not incretins affect the osteoblast migration. The PDGF-BB-induced cell migration was significantly reinforced by GLP-1, GIP or cAMP analogues in MC3T3-E1 cells and normal human osteoblasts. The upregulated migration by GLP-1 or cAMP analogues was suppressed by H89, an inhibitor of protein kinase A. The amplification by GLP-1 of migration induced by PDGF-BB was almost completely reduced by SB203580, a p38 MAP kinase inhibitor in MC3T3-E1 cells and normal human osteoblasts. In addition, GIP markedly strengthened the PDGF-BB-induced phosphorylation of p38 MAP kinase. Exendin-4, a GLP-1 analogue, induced Rho A expression and its translocation from cytoplasm to plasma membranes in osteoblasts at the epiphyseal lines of developing mouse femurs in vivo. These results strongly suggest that incretins accelerates the PDGF-BB-induced migration of osteoblasts via protein kinase A, and the up-regulation of p38 MAP kinase is involved in this acceleration. Our findings may highlight the novel potential of incretins to bone physiology and therapeutic strategy against bone repair.
Collapse
Affiliation(s)
- Tetsu Kawabata
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.,Department of Orthopedic Surgery, Toyokawa City Hospital, Toyokawa, 442-8561, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Clinical Laboratory/Medical Genome Center Biobank, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Gen Kuroyanagi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Kazuhiko Fujita
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Go Sakai
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Woo Kim
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | | | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Ken-Ichiro Yata
- Department of Neurology, Graduate School of Medicine, Mie University, Tsu, 514-8507, Japan
| | - Shujie Wang
- Deaprtment of Neural Regeneration and Cell Communication, Graduate School of Medicine, Mie University, Tsu, 514-8507, Japan
| | - Akira Mizoguchi
- Deaprtment of Neural Regeneration and Cell Communication, Graduate School of Medicine, Mie University, Tsu, 514-8507, Japan
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.
| |
Collapse
|
4
|
Liu J, Lu Y, Liu J, Jin C, Meng Y, Pei D. Influence of epigallocatechin-3-gallate in promoting proliferation and osteogenic differentiation of human periodontal ligament cells. BMC Oral Health 2019; 19:73. [PMID: 31046751 PMCID: PMC6498622 DOI: 10.1186/s12903-019-0768-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/16/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Epigallocatechin-3-gallate (EGCG) was recently proposed to have the potential to regulate bone metabolism, however, its influence on osteogenesis remains controversial. The present study aimed to investigate the effects of EGCG on the proliferation and osteogenesis of human periodontal ligament cells (hPDLCs). METHODS Cells were cultured in osteogenic medium and treated with EGCG at various concentrations. Cell proliferation was analyzed using a CCK-8 assay and acridine orange (AO)/ethidium bromide (EB) staining. Flow cytometry was used to measure the intracellular reactive oxygen species (ROS) potential of hPDLCs. The expression levels of osteogenic marker genes and proteins in hPDLCs, including type I collagen (COL1), runt-related transcription factor 2 (RUNX2), osteopontin (OPN), and osterix (OSX), were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis. In addition, alkaline phosphatase (ALP) activity was monitored both quantitatively and qualitatively. Extracellular matrix mineralization was further analyzed by alizarin red S staining. RESULTS The results showed that EGCG concentrations from 6 to 10 μM increased the ROS level and inhibited the cell proliferation of hPDLCs. EGCG concentrations from 2 to 8 μM effectively increased extracellular matrix mineralization, in which 4 and 6 μM EGCG generated the most mineralizing nodules. The ALP activity and the mRNA and protein expression levels of the tested osteogenic markers were most strongly up-regulated by treatment with 4 and 6 μM EGCG. CONCLUSIONS The present study demonstrated that EGCG might promote the osteogenesis of hPDLCs in a dose-dependent manner, with concentrations of 4 and 6 μM EGCG showing the strongest osteogenic enhancement without cytotoxicity, indicating a promising role for EGCG in periodontal regeneration in patients with deficient alveolar bone in the future.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, 98 Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Yi Lu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Jin Liu
- Department of Periodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Changxiong Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yuchen Meng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China. .,Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, 98 Xiwu Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
5
|
Kawabata T, Tokuda H, Sakai G, Fujita K, Matsushima-Nishiwaki R, Kuroyanagi G, Otsuka T, Kozawa O. HSP70 Inhibitor Suppresses IGF-I-Stimulated Migration of Osteoblasts through p44/p42 MAP Kinase. Biomedicines 2018; 6:E109. [PMID: 30469446 PMCID: PMC6316248 DOI: 10.3390/biomedicines6040109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 11/16/2022] Open
Abstract
Heat shock protein 70 (HSP70) is a ubiquitously expressed molecular chaperone in a variety of cells including osteoblasts. We previously showed that insulin-like growth factor-I (IGF-I) elicits migration of osteoblast-like MC3T3-E1 cells through the activation of phosphatidylinositol 3-kinase/Akt and p44/p42 mitogen-activated protein (MAP) kinase. In the present study, we investigated the effects of HSP70 inhibitors on the IGF-I-elicited migration of these cells and the mechanism involved. The IGF-I-stimulated osteoblast migration evaluated by a wound-healing assay and by a transwell cell migration was significantly reduced by VER-155008 and YM-08, which are both HSP70 inhibitors. VER-155008 markedly suppressed the IGF-I-induced phosphorylation of p44/p42 MAP kinase without affecting that of Akt. In conclusion, our results strongly suggest that the HSP70 inhibitor reduces the IGF-I-elicited migration of osteoblasts via the p44/p42 MAP kinase.
Collapse
Affiliation(s)
- Tetsu Kawabata
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
- Department of Orthopedic Surgery, Toyokawa City Hospital, Toyokawa 442-8561, Japan.
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
- Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan.
| | - Go Sakai
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| | - Kazuhiko Fujita
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| | | | - Gen Kuroyanagi
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| |
Collapse
|