1
|
Idaszek J, Jaroszewicz J, Choińska E, Górecka Ż, Hyc A, Osiecka-Iwan A, Wielunska-Kuś B, Święszkowski W, Moskalewski S. Toward osteomimetic formation of calcium phosphate coatings with carbonated hydroxyapatite. BIOMATERIALS ADVANCES 2023; 149:213403. [PMID: 37075660 DOI: 10.1016/j.bioadv.2023.213403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 04/21/2023]
Abstract
Biomimetic production of coatings on various types of scaffolds is based mainly on simulated body fluid precipitation (SBF) of apatites, or, if the HCO3- is present, carbonated apatites. Recently, we proposed formation of calcium phosphates (CaP) precipitates by alkaline phosphatase (ALP) hydrolysing glycerophosphate in presence of calcium ions as an alternative to SBF. Since apatites synthesized in bone by the ALP activity contain carbonate anions, it was tempting to investigate whether the phosphatase method could be advanced into osteomimetic one. Therefore, taking example from the SBF studies, phosphatase incubation medium was enriched with carbonate ions at 4.2 and 27 mM concentration. X-ray diffraction of the precipitates disclosed peaks typical for hydroxyapatite (HAP). FTIR analysis showed that at both concentration of carbonate ions, apatites underwent both B and A substitution, more extensive at higher concentration. Thus, osteomimetic approach produced carbonated hydroxyapatites of the type encountered in bone tissue even at HCO3- concentration as low as 4.2 mM. Composite plates made of poly(ε-caprolactone) and mixture of β-tricalcium phosphate and hydroxyapatite at mass ratio of 1:0.5:0.5, respectively, were covered by CaP coatings, i.e., CaP-0, CaP-4.2, CaP-27, by incubation in phosphatase medium containing 0, 4.2 or 27 mM of NaHCO3, respectively. Pristine or coated PCL50 plates were used to study release of calcium and adsorption/desorption of proteins, or seeded with human bone marrow mesenchymal stem cells (hMSC) for study of cell adhesion, spreading and osteogenic differentiation. Introduction of carbonate into the CaP coatings significantly increased release of Ca2+ in a carbonate concentration-dependent manner; the release was up to 4 times higher, when compared to CaP-0 coating, and reached 0.41 ± 0.01 mM for CaP-27 after first 24 h. Coating CaP-4.2 yielded significantly higher adsorption of bovine serum albumin and cytochrome C than CaP-0. All of the CaP coatings improved significantly hMSC adhesion, however, only CaP-4.2 provided 2 times higher cell number than PCL50 after 2 weeks of culture. Interestingly, ALP activity calculated per cell number was the highest on pristine plates, presumably because hMSC differentiate preferentially into osteoblasts at lower seeding densities. It appears, therefore, that the osteomimetic approach may be useful for production of carbonated hydroxyapatite coatings, but requires further studies and replacing intestinal phosphatase used in this work with one originating from bone.
Collapse
Affiliation(s)
- Joanna Idaszek
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw 02-507, Poland.
| | - Jakub Jaroszewicz
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw 02-507, Poland
| | - Emilia Choińska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw 02-507, Poland
| | - Żaneta Górecka
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw 02-507, Poland
| | - Anna Hyc
- Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Anna Osiecka-Iwan
- Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Barbara Wielunska-Kuś
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw 02-507, Poland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw 02-507, Poland
| | - Stanisław Moskalewski
- Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
2
|
Could BMPs Therapy Be Improved if BMPs Were Used in Composition Acting during Bone Formation in Endochondral Ossification? Int J Mol Sci 2022; 23:ijms231810327. [PMID: 36142232 PMCID: PMC9499665 DOI: 10.3390/ijms231810327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/28/2022] Open
Abstract
The discovery of bone morphogenetic proteins (BMPs) inspired hope for the successful treatment of bone disorders, but side effects worsening the clinical effects were eventually observed. BMPs exert a synergistic effect, stimulating osteogenesis; however, predicting the best composition of growth factors for use in humans is difficult. Chondrocytes present within the growth plate produce growth factors stored in calcified cartilage adhering to metaphysis. These factors stimulate initial bone formation in metaphysis. We have previously determined the growth factors present in bovine calcified cartilage and produced by rat epiphyseal chondrocytes. The results suggest that growth factors stimulating physiological ossification are species dependent. The collection of human calcified cartilage for growth factors determination does not appear feasible, but chondrocytes for mRNA determination could be obtained. Their collection from young recipients, in view of the Academy of Medical Royal Colleges Recommendation, would be ethical. The authors of this review do not have facilities to conduct such a study and can only appeal to competent institutions to undertake the task. The results could help to formulate a better recipe for the stimulation of bone formation and improve clinical results.
Collapse
|