1
|
Shen Y, Cui SS, Teng XB, Han MF, Zhang YB. Clinical, Laboratory, and Imaging Characteristics of Tropheryma Whipplei Detection in Bronchoalveolar Lavage Fluid Using Next-Generation Sequencing: A Case-Control Study. Infect Drug Resist 2024; 17:3101-3112. [PMID: 39050831 PMCID: PMC11268753 DOI: 10.2147/idr.s470084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
Objective The aim of this study was to assess the prevalence of Tropheryma whipplei (TW) infection in the population and to investigate the clinical symptoms, as well as the laboratory and imaging characteristics of patients testing positive for TW using next-generation sequencing (NGS). Methods A retrospective review was conducted on 1346 bronchoalveolar lavage fluid (BALF) samples collected between January 2021 and September 2023. The case group comprised patients with TW detected using NGS while the control group included 65 randomly chosen Gram-positive bacterial infection patients without TW. Comparative analyses were carried out on the basic demographics, laboratory parameters, and imaging findings between the two groups. Additionally, the case group underwent an in-depth examination of underlying diseases, pathogens, final diagnoses, treatment strategies. Results The case group comprised of 51 patients with TW, constituting 3.8% of the total. There was no significant difference in gender and age between the case and control groups (P = 0.84, P = 0.07). Symptoms such as coughing, expectoration, wheezing, fever, and hemoptysis are less commonly detected in the case group with a higher incidence of chest pain when compared to the control group (P >0.05). The case group exhibited decreased albumin levels and increased C-reactive protein and D-dimer levels compared to normal levels. Imaging findings in the case group commonly included nodules, patchy images, and interstitial changes, the most common underlying disease is cardiovascular disease, and the most frequently co-occurring pathogen is the human herpesvirus. Among the case group, 27 patients received a final diagnosis of pneumonia, and 3 patients clinically diagnosed with Whipple's disease demonstrated improvement in both symptoms and imaging after treatment. Conclusion NGS revealed a relatively low overall detection rate of TW-positive patients using BALF. TW was more prevalent in middle-aged and elderly male patients characterized by symptoms such as cough, expectoration, shortness of breath, and fever. Chest imaging in these cases typically showed nodules and interstitial changes.
Collapse
Affiliation(s)
- Ya Shen
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Fuyang Infectious Disease Clinical College of Anhui Medical University, Fuyang, 236000, People’s Republic of China
| | - Shun-Shun Cui
- Department of Respiratory and Critical Care Medicine, Fuyang People’s Hospital, Fuyang, 236000, People’s Republic of China
| | - Xiao-Bao Teng
- Department of Respiratory and Critical Care Medicine, Fuyang Infectious Disease Clinical College of Anhui Medical University, Fuyang, 236000, People’s Republic of China
| | - Ming-Feng Han
- Department of Respiratory and Critical Care Medicine, Fuyang Infectious Disease Clinical College of Anhui Medical University, Fuyang, 236000, People’s Republic of China
| | - Yan-Bei Zhang
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, People’s Republic of China
| |
Collapse
|
2
|
Herman EK, Lacoste SR, Freeman CN, Otto SJG, McCarthy EL, Links MG, Stothard P, Waldner CL. Bacterial enrichment prior to third-generation metagenomic sequencing improves detection of BRD pathogens and genetic determinants of antimicrobial resistance in feedlot cattle. Front Microbiol 2024; 15:1386319. [PMID: 38779502 PMCID: PMC11110911 DOI: 10.3389/fmicb.2024.1386319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Bovine respiratory disease (BRD) is one of the most important animal health problems in the beef industry. While bacterial culture and antimicrobial susceptibility testing have been used for diagnostic testing, the common practice of examining one isolate per species does not fully reflect the bacterial population in the sample. In contrast, a recent study with metagenomic sequencing of nasal swabs from feedlot cattle is promising in terms of bacterial pathogen identification and detection of antimicrobial resistance genes (ARGs). However, the sensitivity of metagenomic sequencing was impeded by the high proportion of host biomass in the nasal swab samples. Methods This pilot study employed a non-selective bacterial enrichment step before nucleic acid extraction to increase the relative proportion of bacterial DNA for sequencing. Results Non-selective bacterial enrichment increased the proportion of bacteria relative to host sequence data, allowing increased detection of BRD pathogens compared with unenriched samples. This process also allowed for enhanced detection of ARGs with species-level resolution, including detection of ARGs for bacterial species of interest that were not targeted for culture and susceptibility testing. The long-read sequencing approach enabled ARG detection on individual bacterial reads without the need for assembly. Metagenomics following non-selective bacterial enrichment resulted in substantial agreement for four of six comparisons with culture for respiratory bacteria and substantial or better correlation with qPCR. Comparison between isolate susceptibility results and detection of ARGs was best for macrolide ARGs in Mannheimia haemolytica reads but was also substantial for sulfonamide ARGs within M. haemolytica and Pasteurella multocida reads and tetracycline ARGs in Histophilus somni reads. Discussion By increasing the proportion of bacterial DNA relative to host DNA through non-selective enrichment, we demonstrated a corresponding increase in the proportion of sequencing data identifying BRD-associated pathogens and ARGs in deep nasopharyngeal swabs from feedlot cattle using long-read metagenomic sequencing. This method shows promise as a detection strategy for BRD pathogens and ARGs and strikes a balance between processing time, input costs, and generation of on-target data. This approach could serve as a valuable tool to inform antimicrobial management for BRD and support antimicrobial stewardship.
Collapse
Affiliation(s)
- Emily K. Herman
- Department of Agricultural, Food, and Nutritional Science, Faculty of Agricultural, Life, and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Stacey R. Lacoste
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Claire N. Freeman
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Simon J. G. Otto
- HEAT-AMR (Human-Environment-Animal Transdisciplinary AMR) Research Group, School of Public Health, University of Alberta, Edmonton, AB, Canada
- Healthy Environments Thematic Area Lead, Centre for Healthy Communities, School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - E. Luke McCarthy
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Matthew G. Links
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Computer Science, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul Stothard
- Department of Agricultural, Food, and Nutritional Science, Faculty of Agricultural, Life, and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Cheryl L. Waldner
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Yang CJ, Song JS, Yoo JJ, Park KW, Yun J, Kim SG, Kim YS. 16S rRNA Next-Generation Sequencing May Not Be Useful for Examining Suspected Cases of Spontaneous Bacterial Peritonitis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:289. [PMID: 38399576 PMCID: PMC10890036 DOI: 10.3390/medicina60020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: Ascites, often associated with liver cirrhosis, poses diagnostic challenges, particularly in detecting bacterial infections. Traditional methods have limitations, prompting the exploration of advanced techniques such as 16S rDNA next-generation sequencing (NGS) for improved diagnostics in such low-biomass fluids. The aim of this study was to investigate whether the NGS method enhances detection sensitivity compared to a conventional ascites culture. Additionally, we aimed to explore the presence of a microbiome in the abdominal cavity and determine whether it has a sterile condition. Materials and Methods: Ten patients with clinically suspected spontaneous bacterial peritonitis (SBP) were included in this study. A traditional ascites culture was performed, and all ascites samples were subjected to 16S ribosomal RNA gene amplification and sequencing. 16S rRNA gene sequencing results were interpreted by comparing them to positive and negative controls for each sample. Results: Differential centrifugation was applied to all ascites samples, resulting in very small or no bacterial pellets being harvested. The examination of the 16S amplicon sequencing libraries indicated that the target amplicon products were either minimally visible or exhibited lower intensity than their corresponding negative controls. Contaminants present in the reagents were also identified in the ascites samples. Sequence analysis of the 16S rRNA gene of all samples showed microbial compositions that were akin to those found in the negative controls, without any bacteria isolated that were unique to the samples. Conclusions: The peritoneal cavity and ascites exhibit low bacterial biomass even in the presence of SBP, resulting in a very low positivity rate in 16S rRNA gene sequencing. Hence, the 16S RNA sequencing method does little to enhance the rate of positive samples compared to traditional culture methods, including in SBP cases.
Collapse
Affiliation(s)
- Chan Jin Yang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (C.J.Y.); (J.Y.); (S.G.K.); (Y.S.K.)
| | - Ju Sun Song
- GC Genome, Department of Laboratory Medicine, Green Cross Laboratories, Youngin 16924, Republic of Korea;
| | - Jeong-Ju Yoo
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (C.J.Y.); (J.Y.); (S.G.K.); (Y.S.K.)
| | - Keun Woo Park
- Preclinical Stroke Modeling Laboratory Weill Cornell Medicine, Burke Medical Research Institute, White Plains, NY 10605, USA;
| | - Jina Yun
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (C.J.Y.); (J.Y.); (S.G.K.); (Y.S.K.)
| | - Sang Gyune Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (C.J.Y.); (J.Y.); (S.G.K.); (Y.S.K.)
| | - Young Seok Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (C.J.Y.); (J.Y.); (S.G.K.); (Y.S.K.)
| |
Collapse
|
4
|
Xu CH, Chen X, Zhu GQ, Yi HM, Chen SL, Liu T, Yu YT, Zhang QH, Jiang EL, Feng SZ. Diagnostic performance and clinical impacts of metagenomic sequencing after allogeneic hematopoietic stem cell transplantation. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:11-19. [PMID: 38065767 DOI: 10.1016/j.jmii.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND Metagenomic Next-Generation Sequencing (mNGS) is a rapid, non-culture-based, high-throughput technique for pathogen diagnosis. Despite its numerous advantages, only a few studies have investigated its use in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS We conducted a retrospective analysis of 404 mNGS tests performed on 264 patients after allo-HSCT. The tests were divided into three groups (Phase A, B, C) based on the time spent hospitalized post-transplantation, and we evaluated the analytical performance of mNGS in comparison with conventional microbiological tests (CMT), while also analyzing its clinical utility for clinical impacts. RESULTS Metagenomic sequencing demonstrated a significantly higher rate of positive microbiological findings as compared to CMT (334/404 (82.7 %) vs. 159/404 (39.4 %), respectively, P < 0.001). The detection rates by both mNGS and CMT varied across the three-phase (mNGS: A-60/89 (67.4 %), B-147/158 (93.0 %), C-125/157 (79.6 %), respectively, P < 0.001; CMT: A-21/89 (23.6 %), B-79/158 (50.0 %), C-59/157 (37.6 %), respectively, P < 0.001). The infection sites and types of pathogens were also different across the three phases. Compared to non-GVHD cases, mNGS detected more Aspergillus spp. and Mucorales in GVHD patients (Aspergillus: 12/102 (11.8 %) vs. 8/158 (5.1 %), respectively, P = 0.048; Mucorales: 6/102 (5.9 %) vs. 2/158 (1.3 %), respectively, P = 0.035). Forty-five (181/404) percent of mNGS tests yielded a positive impact on the clinical diagnosis, while 24.3 % (98/404) of tests benefited the patients in antimicrobial treatment. CONCLUSION mNGS is an indispensable diagnostic tool in identifying pathogens and optimizing antibiotic therapy for hematological patients receiving allo-HSCT.
Collapse
Affiliation(s)
- Chun-Hui Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Microbiology Laboratory, Tianjin Union Precision Medical Diagnostic Co., Ltd, Tianjin 301617, China
| | - Xin Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Guo-Qing Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Hui-Ming Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Shu-Lian Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Teng Liu
- Microbiology Laboratory, Tianjin Union Precision Medical Diagnostic Co., Ltd, Tianjin 301617, China
| | - Yue-Tian Yu
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiu-Hui Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Er-Lie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Si-Zhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| |
Collapse
|
5
|
Ogunbayo AE, Mogotsi MT, Sondlane H, Sabiu S, Nyaga MM. Metagenomics characterization of respiratory viral RNA pathogens in children under five years with severe acute respiratory infection in the Free State, South Africa. J Med Virol 2023; 95:e28753. [PMID: 37212321 PMCID: PMC10952945 DOI: 10.1002/jmv.28753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 05/23/2023]
Abstract
Prompt detection of viral respiratory pathogens is crucial in managing respiratory infection including severe acute respiratory infection (SARI). Metagenomics next-generation sequencing (mNGS) and bioinformatics analyses remain reliable strategies for diagnostic and surveillance purposes. This study evaluated the diagnostic utility of mNGS using multiple analysis tools compared with multiplex real-time PCR for the detection of viral respiratory pathogens in children under 5 years with SARI. Nasopharyngeal swabs collected in viral transport media from 84 children admitted with SARI as per the World Health Organization definition between December 2020 and August 2021 in the Free State Province, South Africa, were used in this study. The obtained specimens were subjected to mNGS using the Illumina MiSeq system, and bioinformatics analysis was performed using three web-based analysis tools; Genome Detective, One Codex and Twist Respiratory Viral Research Panel. With average reads of 211323, mNGS detected viral pathogens in 82 (97.6%) of the 84 patients. Viral aetiologies were established in nine previously undetected/missed cases with an additional bacterial aetiology (Neisseria meningitidis) detected in one patient. Furthermore, mNGS enabled the much needed viral genotypic and subtype differentiation and provided significant information on bacterial co-infection despite enrichment for RNA viruses. Sequences of nonhuman viruses, bacteriophages, and endogenous retrovirus K113 (constituting the respiratory virome) were also uncovered. Notably, mNGS had lower detectability rate for severe acute respiratory syndrome coronavirus 2 (missing 18/32 cases). This study suggests that mNGS, combined with multiple/improved bioinformatics tools, is practically feasible for increased viral and bacterial pathogen detection in SARI, especially in cases where no aetiological agent could be identified by available traditional methods.
Collapse
Affiliation(s)
- Ayodeji E. Ogunbayo
- Next Generation Sequencing Unit and Division of VirologyFaculty of Health Sciences, University of the Free StateBloemfonteinSouth Africa
| | - Milton T. Mogotsi
- Next Generation Sequencing Unit and Division of VirologyFaculty of Health Sciences, University of the Free StateBloemfonteinSouth Africa
| | - Hlengiwe Sondlane
- Next Generation Sequencing Unit and Division of VirologyFaculty of Health Sciences, University of the Free StateBloemfonteinSouth Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food ScienceDurban University of TechnologyDurbanSouth Africa
| | - Martin M. Nyaga
- Next Generation Sequencing Unit and Division of VirologyFaculty of Health Sciences, University of the Free StateBloemfonteinSouth Africa
| |
Collapse
|
6
|
Zhang H, Wang M, Han X, Wang T, Lei Y, Rao Y, Xu P, Wang Y, Gu H. The application of targeted nanopore sequencing for the identification of pathogens and resistance genes in lower respiratory tract infections. Front Microbiol 2022; 13:1065159. [PMID: 36620015 PMCID: PMC9822541 DOI: 10.3389/fmicb.2022.1065159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives Lower respiratory tract infections (LRTIs) are one of the causes of mortality among infectious diseases. Microbial cultures commonly used in clinical practice are time-consuming, have poor sensitivity to unculturable and polymicrobial patterns, and are inadequate to guide timely and accurate antibiotic therapy. We investigated the feasibility of targeted nanopore sequencing (TNPseq) for the identification of pathogen and antimicrobial resistance (AMR) genes across suspected patients with LRTIs. TNPseq is a novel approach, which was improved based on nanopore sequencing for the identification of bacterial and fungal infections of clinical relevance. Methods This prospective study recruited 146 patients suspected of having LRTIs and with a median age of 61 years. The potential pathogens in these patients were detected by both TNPseq and the traditional culture workups. We compared the performance between the two methods among 146 LRTIs-related specimens. AMR genes were also detected by TNPseq to prompt the proper utilization of antibiotics. Results At least one pathogen was detected in 133 (91.1%) samples by TNPseq, but only 37 (25.3%) samples contained positive isolates among 146 cultured specimens. TNPseq possessed higher sensitivity than the conventional culture method (91.1 vs. 25.3%, P < 0.001) in identifying pathogens. It detected more samples with bacterial infections (P < 0.001) and mixed infections (P < 0.001) compared with the clinical culture tests. The most frequent AMR gene identified by TNPseq was bla TEM (n = 29), followed by bla SHV (n = 4), bla KPC (n = 2), bla CTX-M (n = 2), and mecA (n = 2). Furthermore, TNPseq discovered five possible multi-drug resistance specimens. Conclusion TNPseq is efficient to identify pathogens early, thus assisting physicians to conduct timely and precise treatment for patients with suspected LRTIs.
Collapse
Affiliation(s)
- Hongying Zhang
- Department of Pulmonary Medicine, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, China,*Correspondence: Hongying Zhang ✉
| | - Meng Wang
- Institute of Health Education, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Ximei Han
- Department of Pulmonary Medicine, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, China
| | - Ting Wang
- Department of Pulmonary Medicine, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, China
| | - Yanjuan Lei
- Department of Medicine, Zhejiang ShengTing Biotech Co., Ltd., Hangzhou, China
| | - Yu Rao
- Department of Pulmonary Medicine, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, China
| | - Peisong Xu
- Department of Medicine, Zhejiang ShengTing Biotech Co., Ltd., Hangzhou, China
| | - Yunfei Wang
- Department of Medicine, Zhejiang ShengTing Biotech Co., Ltd., Hangzhou, China
| | - Hongcang Gu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China,Graduate School, University of Science and Technology of China, Hefei, China,Hongcang Gu ✉
| |
Collapse
|
7
|
Guo W, Cui X, Wang Q, Wei Y, Guo Y, Zhang T, Zhan J. Clinical evaluation of metagenomic next-generation sequencing for detecting pathogens in bronchoalveolar lavage fluid collected from children with community-acquired pneumonia. Front Med (Lausanne) 2022; 9:952636. [PMID: 35911412 PMCID: PMC9334703 DOI: 10.3389/fmed.2022.952636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 01/05/2023] Open
Abstract
This study is to evaluate the usefulness of pathogen detection using metagenomic next-generation sequencing (mNGS) on bronchoalveolar lavage fluid (BALF) specimens from children with community-acquired pneumonia (CAP). We retrospectively collected BALF specimens from 121 children with CAP at Tianjin Children's Hospital from February 2021 to December 2021. The diagnostic performances of mNGS and conventional tests (CT) (culture and targeted polymerase chain reaction tests) were compared, using composite diagnosis as the reference standard. The results of mNGS and CT were compared based on pathogenic and non-pathogenic organisms. Pathogen profiles and co-infections between the mild CAP and severe CAP groups were also analyzed. The overall positive coincidence rate was 86.78% (105/121) for mNGS and 66.94% (81/121) for CT. The proportion of patients diagnosed using mNGS plus CT increased to 99.18%. Among the patients, 17.36% were confirmed only by mNGS; Streptococcus pneumoniae accounted for 52.38% and 23.8% of the patients were co-infected. Moreover, Bordetella pertussis and Human bocavirus (HBoV) were detected only using mNGS. Mycoplasma pneumoniae, which was identified in 89 (73.55%) of 121 children with CAP, was the most frequent pathogen detected using mNGS. The infection rate of M. pneumoniae in the severe CAP group was significantly higher than that in the mild CAP group (P = 0.007). The symptoms of single bacterial infections (except for mycoplasma) were milder than those of mycoplasma infections. mNGS identified more bacterial infections when compared to the CT methods and was able to identify co-infections which were initially missed on CT. Additionally, it was able to identify pathogens that were beyond the scope of the CT methods. The mNGS method is a powerful supplement to clinical diagnostic tools in respiratory infections, as it can increase the precision of diagnosis and guide the use of antibiotics.
Collapse
Affiliation(s)
- Wei Guo
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Xiaojian Cui
- Department of Clinical Lab, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Qiushi Wang
- Infection Business Unit, Tianjin Novogene Med LAB Co., Ltd., Tianjin, China
| | - Yupeng Wei
- Department of Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Yanqing Guo
- Infection Business Unit, Tianjin Novogene Med LAB Co., Ltd., Tianjin, China
- *Correspondence: Yanqing Guo
| | - Tongqiang Zhang
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
- Tongqiang Zhang
| | - Jianghua Zhan
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
- Department of Pediatric Surgery, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
- Jianghua Zhan
| |
Collapse
|