1
|
Epi-miRNAs: Regulators of the Histone Modification Machinery in Human Cancer. JOURNAL OF ONCOLOGY 2022; 2022:4889807. [PMID: 35087589 PMCID: PMC8789461 DOI: 10.1155/2022/4889807] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death and disability worldwide. Epigenetic deregulation is one of the most critical mechanisms in carcinogenesis and can be classified into effects on DNA methylation and histone modification. MicroRNAs are small noncoding RNAs involved in fine-tuning their target genes after transcription. Various microRNAs control the expression of histone modifiers and are involved in a variety of cancers. Therefore, overexpression or downregulation of microRNAs can alter cell fate and cause malignancies. In this review, we discuss the role of microRNAs in regulating the histone modification machinery in various cancers, with a focus on the histone-modifying enzymes such as acetylases, deacetylases, methyltransferases, demethylases, kinases, phosphatases, desumoylases, ubiquitinases, and deubiquitinases. Understanding of microRNA-related aberrations underlying histone modifiers in pathogenesis of different cancers can help identify novel therapeutic targets or early detection approaches that allow better management of patients or monitoring of treatment response.
Collapse
|
2
|
Piao L, Che N, Li H, Li M, Feng Y, Liu X, Kim S, Jin Y, Xuan Y. SETD8 promotes stemness characteristics and is a potential prognostic biomarker of gastric adenocarcinoma. Exp Mol Pathol 2020; 117:104560. [PMID: 33127342 DOI: 10.1016/j.yexmp.2020.104560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
SETD8 is a lysine methyltransferase containing an SET domain, which is involved in the carcinogenesis of many cancer types through monomethylation of the histone H4 lysine 20. However, its prognostic value and underlying mechanisms in gastric adenocarcinoma (GA) have not been extensively studied. Here, we assessed SETD8 expression and its relationship with clinicopathological parameters, cancer stemness-related proteins, cell cycle-related proteins, and PI3K/Akt pathway proteins in GA. SETD8 expression in GA tissues was correlated with the primary tumor stage, lymph node metastasis, tumor size, gross type, and clinical stage. SETD8 was an independent predictor of poor overall survival of patients with GA. Cox regression analysis showed that SETD8 is a potential biomarker of unfavorable clinical outcomes in patients with GA. Moreover, SETD8 overexpression was associated with cancer stemness-related genes, cell cycle-related genes, and PI3K/Akt/NF-κB pathway genes in clinical GA tissue samples. SETD8 silencing downregulated the expression of cancer stemness-associated genes (LSD1 and SOX2) and inhibited GA cell proliferation, spheroid formation, invasion, and migration. Additionally, LY294002 significantly reduced the expression of SETD8, pAkt-Ser473, pPI3K-p85, and NFκB-p65 in MKN74 and MKN28 cells. SETD8 may be a novel cancer stemness-associated protein and potential prognostic biomarker in GA.
Collapse
Affiliation(s)
- Lihua Piao
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Histology and Embryology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Nan Che
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Haoyue Li
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Mengxuan Li
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Anatomy, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Ying Feng
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Xingzhe Liu
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Seokhyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul 110-745, Republic of Korea
| | - Yu Jin
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Anatomy, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China.
| | - Yanhua Xuan
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China.
| |
Collapse
|
3
|
Fukuura K, Inoue Y, Miyajima C, Watanabe S, Tokugawa M, Morishita D, Ohoka N, Komada M, Hayashi H. The ubiquitin-specific protease USP17 prevents cellular senescence by stabilizing the methyltransferase SET8 and transcriptionally repressing p21. J Biol Chem 2019; 294:16429-16439. [PMID: 31533987 DOI: 10.1074/jbc.ra119.009006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/13/2019] [Indexed: 01/12/2023] Open
Abstract
Su(var)3-9, Enhancer-of-zeste, and Trithorax (SET) domain-containing protein 8 (SET8) is the sole enzyme that monomethylates Lys-20 of histone H4 (H4K20). SET8 has been implicated in the regulation of multiple biological processes, such as gene transcription, the cell cycle, and senescence. SET8 quickly undergoes ubiquitination and degradation by several E3 ubiquitin ligases; however, the enzyme that deubiquitinates SET8 has not yet been identified. Here we demonstrated that ubiquitin-specific peptidase 17-like family member (USP17) deubiquitinates and therefore stabilizes the SET8 protein. We observed that USP17 interacts with SET8 and removes polyubiquitin chains from SET8. USP17 knockdown not only decreased SET8 protein levels and H4K20 monomethylation but also increased the levels of the cyclin-dependent kinase inhibitor p21. As a consequence, USP17 knockdown suppressed cell proliferation. We noted that USP17 was down-regulated in replicative senescence and that USP17 inhibition alone was sufficient to trigger cellular senescence. These results reveal a regulatory mechanism whereby USP17 prevents cellular senescence by removing ubiquitin marks from and stabilizing SET8 and transcriptionally repressing p21.
Collapse
Affiliation(s)
- Keishi Fukuura
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan .,Department of Innovative Therapeutics Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.,Department of Innovative Therapeutics Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Shin Watanabe
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Muneshige Tokugawa
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Masayuki Komada
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan .,Department of Innovative Therapeutics Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| |
Collapse
|
4
|
Liu S, Dong H, Wu J, Wang C. Association of an miR-502-binding site polymorphism in the 3'-untranslated region of SET8 with colorectal cancer. Oncol Lett 2019; 17:3960-3964. [PMID: 30881512 DOI: 10.3892/ol.2019.10026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/07/2018] [Indexed: 01/04/2023] Open
Abstract
The histone methyltransferase SET8 is regulated by microRNA-502 through the binding site in its 3'-untranslated region, and the rs16917496 polymorphism at the miR-502-binding site in the SET8 gene has been implicated in a number of cancer types. The rs16917496 polymorphism including CC, CT and TT genotypes was analyzed in patients with colorectal cancer; the CC genotype was identified to be independently associated with longer post-operative survival times using multivariate analysis (relative risk, 2.406; 95% confidence interval, 1.017-5.691; P=0.046). In addition, decreased SET8 expression was associated with the SET8 CC genotype and longer survival times for patients with colorectal cancer. The results of the present study indicated that miR-502 mediates SET8 expression at least partly by altering the binding affinity between miR-502 and SET8 so as to modify the colorectal cancer outcome. The results indicate that SET8 may be a novel target for colorectal cancer therapy.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Pathology, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
| | - Hailing Dong
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jianhua Wu
- Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Cuiju Wang
- Department of Gynaecology Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
5
|
The association between rs16917496 T/C polymorphism of SET8 gene and cancer risk in Asian populations: a meta-analysis. Biosci Rep 2018; 38:BSR20180702. [PMID: 30341251 PMCID: PMC6239252 DOI: 10.1042/bsr20180702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/30/2018] [Accepted: 10/14/2018] [Indexed: 01/03/2023] Open
Abstract
Epidemiological studies have demonstrated close associations between SET8 rs16917496 T/C polymorphism and cancer risk, but the results of published studies were not consistent. We therefore performed this meta-analysis to explore the associations between rs16917496 T/C polymorphism and cancer risk. Five online databases were searched. Odds ratios (ORs) with a 95% confidence interval (CI) were calculated to assess the association between rs16917496 T/C polymorphism and cancer risk. In addition, heterogeneity, accumulative, sensitivity analysis, and publication bias were conducted to check the statistical power. Overall, 13 publications involving 5878 subjects were identified according to included criteria. No significant cancer risk was observed in genetic model of SET8 rs16917496 T/C polymorphism in Asian populations (C vs. T: OR = 1.04, 95%CI = 0.88–1.23, P = 0.63%; TC vs. TT: OR = 1.17, 95%CI = 0.96–1.24, P = 0.11%; CC vs. TT: OR = 0.90, 95%CI = 0.60–1.37, P = 0.63; TC+CC vs. TT: OR = 1.11, 95%CI = 0.90–1.38, P = 0.33; CC vs. TT+TC: OR = 0.92, 95%CI = 0.65–1.30, P = 0.63). Furthermore, similar associations were found in the subgroup analysis of race diversity, control design, genotyping methods, and different cancer types. In summary, our meta-analysis indicated that the SET8 rs16917496 T/C polymorphism may not play a critical role in cancer development in Asian populations.
Collapse
|
6
|
Lukyanova EN, Snezhkina AV, Kalinin DV, Pokrovsky AV, Golovyuk AL, Stepanov OA, Pudova EA, Razmakhaev GS, Orlova MV, Polyakov AP, Kiseleva MV, Kaprin AD, Kudryavtseva AV. Analysis of mutations in CDC27, CTBP2, HYDIN and KMT5A genes in carotid paragangliomas. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Carotid paragangliomas (CPGLs) are rare neuroendocrine tumors that arise from paraganglionic tissue of the carotid body localizing at the bifurcation of carotid artery. These tumors are slowly growing, but occasionally they become aggressive and metastatic. Surgical treatment remains high-risk and extremely challenging; radiation and chemotherapy are poorly effective. The study of molecular pathogenesis of CPGLs will allow developing novel therapeutic approaches and revealing biomarkers. Previously, we performed the exome sequencing of 52 CPGLs and estimated mutational load (ML). Paired histologically normal tissues or blood were unavailable, so potentially germline mutations were excluded from the analysis with strong filtering conditions using 1000 Genomes Project and ExAC databases. In this work, ten genes (ZNF717, CDC27, FRG2C, FAM104B, CTBP2, HLA-DRB1, HYDIN, KMT5A, MUC3A, and PRSS3) characterized by the highest level of mutational load were analyzed. Using several prediction algorithms (SIFT, PolyPhen-2, MutationTaster, and LRT), potentially pathogenic mutations were identified in four genes (CDC27, CTBP2, HYDIN, and KMT5A). Many of these mutations occurred in the majority of cases, and their mutation type was checked using exome sequencing data of blood prepared with the same exome enrichment kit that was used for preparation of exome libraries from CPGLs. The majority of the mutations were germline that can apparently be associated with annotation errors in 1000 Genomes Pro ject and ExAC. However, part of the mutations identified in CDC27, CTBP2, HYDIN, and KMT5A remain potentially pathogenic, and there is a large body of data on the involvement of these genes in the formation and progression of other tumors. This allows considering CDC27, CTBP2, HYDIN, and KMT5A genes as potentially associated with CPGL pathogenesis and requires taking them into account in further investigations. Thus, there is a necessity to improve the methods for identification of cancer-asso ciated genes as well as pathogenic mutations.
Collapse
Affiliation(s)
| | | | - D. V. Kalinin
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation
| | - A. V. Pokrovsky
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation
| | - A. L. Golovyuk
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation
| | | | - E. A. Pudova
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation
| | - G. S. Razmakhaev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation
| | - M. V. Orlova
- Peoples’ Friendship University of Russia (RUDN University)
| | - A. P. Polyakov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation
| | - M. V. Kiseleva
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation
| | - A. D. Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation
| | - A. V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, RAS; National Medical Research Radiological Center, Ministry of Health of the Russian Federation
| |
Collapse
|
7
|
Nourbakhsh N, Emadi-Baygi M, Salehi R, Nikpour P. Gene Expression Analysis of Two Epithelial-mesenchymal Transition-related Genes: Long Noncoding RNA-ATB and SETD8 in Gastric Cancer Tissues. Adv Biomed Res 2018; 7:42. [PMID: 29657927 PMCID: PMC5887690 DOI: 10.4103/abr.abr_252_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Cancer is the second cause of death after cardiovascular diseases worldwide. Tumor metastasis is the main cause of death in patients with cancer; therefore, unraveling the molecular mechanisms involved in metastasis is critical. Epithelial-mesenchymal transition (EMT) is believed to promote tumor metastasis. Based on the critical roles of long noncoding RNA-ATB (lncRNA-ATB) and SETD8 genes in cancer pathogenesis and EMT, in this study, we aimed to assess expression profile and clinicopathological relevance of these two genes in human gastric cancer. Materials and Methods Quantitative real-time polymerase chain reaction was performed to assess these gene expressions in gastric cancer tissues and various cell lines. The associations between these gene expressions and clinicopathological characteristics were also analyzed. Results Insignificant downregulation of lncRNA-ATB and significant upregulation of SETD8 in cancerous versus noncancerous gastric tissues were observed. Among different examined cell lines, all displayed both genes expression. Except for a significant inverse correlation between the expression levels of lncRNA-ATB and depth of invasion (T) and a direct association between SETD8 levels and advanced tumor grades, no significant association was found with other clinicopathological characteristics. Conclusion lncRNA-ATB and SETD8 genes may play a critical role in gastric cancer progression and may serve as potential diagnostic/prognostic biomarkers in cancer patients.
Collapse
Affiliation(s)
- Nooshin Nourbakhsh
- Applied Physiology Research Center, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Modjtaba Emadi-Baygi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.,Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Applied Physiology Research Center, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Child Growth and Development Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Diao L, Su H, Wei G, Li T, Gao Y, Zhao G, Guo Z. Prognostic Value of microRNA 502 Binding Site SNP in the 3′-Untranslated Region of the SET8 Gene in Patients with Non-Hodgkin's Lymphoma. TUMORI JOURNAL 2018. [DOI: 10.1177/1660.18180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lanping Diao
- Department of Hematology, Hebei Medical University Affiliated North China Petroleum Bureau General Hospital, Cangzhou
| | - Huiling Su
- Department of Oncology, Hebei Medical University Affiliated North China Petroleum Bureau General Hospital, Cangzhou
| | - Guangchuan Wei
- Department of Ophthalmology, Hebei Medical University Affiliated North China Petroleum Bureau General Hospital, Cangzhou
| | - Tao Li
- Department of Epidemiology and Statistics, College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yuhuan Gao
- Department of Hematology, Hebei Medical University Affiliated North China Petroleum Bureau General Hospital, Cangzhou
| | - Guimin Zhao
- Department of Hematology, Hebei Medical University Affiliated North China Petroleum Bureau General Hospital, Cangzhou
| | - Zhanjun Guo
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang
| |
Collapse
|
9
|
Liu B, Zhang X, Song F, Liu Q, Dai H, Zheng H, Cui P, Zhang L, Zhang W, Chen K. A functional single nucleotide polymorphism of SET8 is prognostic for breast cancer. Oncotarget 2018; 7:34277-87. [PMID: 27144429 PMCID: PMC5085155 DOI: 10.18632/oncotarget.9099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/10/2016] [Indexed: 01/28/2023] Open
Abstract
A single-nucleotide polymorphism (SNP) locus rs16917496 (T > C) within the 3′-untranslated region (3′-UTR) of SET8 was associated with susceptibility in several malignancies including breast cancer. To further elucidate the prognostic relevance of this SNP in breast cancer, we conducted a clinical study as well as SET8 expression analysis in a cohort of 1,190 breast cancer patients. We demonstrated the expression levels of SET8 in TT genotype were higher than in CC genotypes, and high levels of SET8 were associated with poor survival. SET8 expression was significantly higher in breast tumor tissue than in paired adjacent normal tissue. In addition, survival analysis in 315 patients showed SNP rs16917496 was an independent prognostic factor of breast cancer outcome with TT genotype associated with poor survival compared with CC/CT genotypes. Thus, this SNP may serve as a genetic prognostic factor and a treatment target for breast cancer. Future studies are warranted.
Collapse
Affiliation(s)
- Ben Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Xining Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Qun Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,Department of Neurosurgery, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Hongji Dai
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Ping Cui
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Lina Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wei Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| |
Collapse
|
10
|
Zhang S, Guo Z, Xu J, Wang J, Zhang J, Cui L, Zhang H, Liu Y, Bai Y. miR-502-mediated histone methyltransferase SET8 expression is associated with clear cell renal cell carcinoma risk. Oncol Lett 2017; 14:7131-7138. [PMID: 29250163 PMCID: PMC5727589 DOI: 10.3892/ol.2017.7115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/27/2017] [Indexed: 12/20/2022] Open
Abstract
Genetic variants may affect the interactions between microRNAs (miRNAs/miRs) and their target genes by modulating their binding affinity or by creating, or destroying a miRNA-binding site. SET domain containing (lysine methyltransferase) 8 (SET8) is the sole lysine methyltransferase that catalyzes the monomethylation of histone H4 lysine 20, and is associated with tumor growth, invasion and metastasis. In the present study, the rs16917496 polymorphism within the miR-502 binding site of the SET8 mRNA 3' untranslated region (3'UTR) in patients with clear cell renal cell carcinoma (ccRCC) and healthy controls was genotyped. The SET8 CC genotype was associated with a decreased ccRCC risk compared with the CT [P=0.003; odds ratio (OR)=0.318; 95% confidence interval (CI), 0.146-0.691], TT (P=0.011; OR=0.402; 95% CI, 0.197-0.819) and CT+TT (P=0.004; OR=0.370; 95% CI, 0.186-0.736) genotypes. The SET8 CC genotype was associated with reduced SET8 expression based on immunostaining of ccRCC tissue. Low SET8 protein levels were negatively associated with tumor-node-metastasis staging in patients with ccRCC according to the size of tumor and lymph node metastases. SET8-knockdown inhibited renal carcinoma 786-O cell proliferation, migration and invasion. c-Myc and matrix metalloproteinase-7 mRNA expression were downregulated upon SET8-knockdown in renal carcinoma 786-O cells. These data indicated that SET8 may be a functional tumor promoter and that its activation, which is partially regulated by changing the miR-502 and SET8 3'UTR binding affinity, may serve an important role in ccRCC development.
Collapse
Affiliation(s)
- Shenglei Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Zhanjun Guo
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jinsheng Xu
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jing Wang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Junxia Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Liwen Cui
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Huiran Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yaling Bai
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
11
|
Mosallayi M, Simonian M, Khosravi S, Salehi AR, Khodadoostan M, Sebghatollahi V, Baradaran A, Salehi R. Polymorphism (rs16917496) at the miR-502 Binding Site of the Lysine Methyltransferase 5A ( SET8) and Its Correlation with Colorectal Cancer in Iranians. Adv Biomed Res 2017; 6:77. [PMID: 28808643 PMCID: PMC5539672 DOI: 10.4103/2277-9175.210656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: One of the gene expression regulatory mechanisms is mediated by small noncoding RNAs called microRNA (miRNA). They interact with a recognition sequence located mostly in 3’-untranslated regions (3’-UTRs) of mRNAs. Polymorphisms in miRNAs recognition sequences could affect gene expression which in turn may alter disease susceptibility. SET8, a member of the SET domain-containing methyltransferase, acts in a variety of biological processes such as genomic stability. Here, we report correlation of rs16917496 polymorphism, located in the recognition sequence of miR-502 within 3’-UTR of SET8, with colorectal cancer (CRC) in Iranians. Materials and Methods: One hundred and seventy CRC patients and 170 noncancer counterparts were recruited in this case–control study. Genotyping of rs16917496 was performed using polymerase chain reaction-restriction fragment length polymorphism method. Results: There was no significant association of rs16917496 with CRC in population under study (P value for genotype and allele distribution were >0.05). However, stratification analysis based on smoking status revealed that TT+TC genotypes of SET8 rs16917496 are strongly associated with increased risk of CRC (odds ratio: 5.8, 95% confidence interval: 1.37–24.34, P - 0.005) in smoker subgroup. Conclusion: Correlation of rs16917496 T allele with CRC in smokers is emphasizing the importance of individuals’ genotype in the recruitment of adverse health hazards of smoking more profoundly for certain people compared to others.
Collapse
Affiliation(s)
- Meysam Mosallayi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Miganoosh Simonian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharifeh Khosravi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Reza Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Khodadoostan
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vahid Sebghatollahi
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azar Baradaran
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Gerfa Namayesh Azmayesh (GENAZMA) Science and Research Institute, Isfahan, Iran
| |
Collapse
|
12
|
Narouie B, Ziaee SAM, Basiri A, Hashemi M. Functional polymorphism at the miR-502-binding site in the 3' untranslated region of the SETD8 gene increased the risk of prostate cancer in a sample of Iranian population. Gene 2017; 626:354-357. [PMID: 28578017 DOI: 10.1016/j.gene.2017.05.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/20/2017] [Accepted: 05/31/2017] [Indexed: 12/30/2022]
Abstract
MicroRNAs (miRNAs), a class of non-coding RNAs, bind to the 3' untranslated regions (3'-UTRs) of target mRNAs and regulate gene expression. Genetic variations in miRNA binding domains influence the susceptibility to several diseases such as cancer. Several studies investigated the impact of single-nucleotide polymorphism (SNP) rs16917496 T>C within the 3'-UTR of SETD8 on cancer susceptibility, but the results were controversial. In addition, no study has been conducted to inspect the impact of this SNP in prostate cancer (PCa). Thus, the present study aimed to find out the possible association between rs16917496 polymorphism at the 3'UTR of SETD8 and PCa risk. This case-control study was done on 169 patients with pathologically confirmed PCa and 182 benign prostatic hyperplasia (BPH). Genotyping was done using PCR-RFLP method. The findings revealed that rs16917496 variant significantly increased the risk of PCa in codominant (OR=2.54, 95%CI=1.50-4.30, p<0.001, TC VS TT and OR=3.03, 95%CI=1.63-5.66, p<0.001, CC vs TT), dominant (OR=2.86, 95%CI=1.62-4.43, p<0.001, p<0.001). The C allele significantly increased the risk of PCa (OR=1.72, 95%CI=1.28-2.33, p<0.001) compared to T allele. In conclusion, the findings indicated that rs16917496 polymorphism may be a risk for predisposition to PCa in an Iranian population. Further studies with larger sample sizes and different ethnicities are required to confirm our findings.
Collapse
Affiliation(s)
- Behzad Narouie
- Urology and Nephrology Research Center, Department of Urology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| | - Seyed Amir Mohsen Ziaee
- Urology and Nephrology Research Center, Department of Urology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| | - Abbas Basiri
- Urology and Nephrology Research Center, Department of Urology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| | - Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran; Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran.
| |
Collapse
|
13
|
Li MP, Hu YD, Hu XL, Zhang YJ, Yang YL, Jiang C, Tang J, Chen XP. MiRNAs and miRNA Polymorphisms Modify Drug Response. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111096. [PMID: 27834829 PMCID: PMC5129306 DOI: 10.3390/ijerph13111096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/17/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022]
Abstract
Differences in expression of drug response-related genes contribute to inter-individual variation in drugs’ biological effects. MicroRNAs (miRNAs) are small noncoding RNAs emerging as new players in epigenetic regulation of gene expression at post-transcriptional level. MiRNAs regulate the expression of genes involved in drug metabolism, drug transportation, drug targets and downstream signal molecules directly or indirectly. MiRNA polymorphisms, the genetic variations affecting miRNA expression and/or miRNA-mRNA interaction, provide a new insight into the understanding of inter-individual difference in drug response. Here, we provide an overview of the recent progress in miRNAs mediated regulation of biotransformation enzymes, drug transporters, and nuclear receptors. We also describe the implications of miRNA polymorphisms in cancer chemotherapy response.
Collapse
Affiliation(s)
- Mu-Peng Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Yao-Dong Hu
- Department of Cardiology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China.
| | - Xiao-Lei Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Yan-Jiao Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Yong-Long Yang
- Haikou People's Hospital and Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou 570311, China.
| | - Chun Jiang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| |
Collapse
|
14
|
Milite C, Feoli A, Viviano M, Rescigno D, Cianciulli A, Balzano AL, Mai A, Castellano S, Sbardella G. The emerging role of lysine methyltransferase SETD8 in human diseases. Clin Epigenetics 2016; 8:102. [PMID: 27688818 PMCID: PMC5034662 DOI: 10.1186/s13148-016-0268-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/14/2016] [Indexed: 01/07/2023] Open
Abstract
SETD8/SET8/Pr-SET7/KMT5A is the only known lysine methyltransferase (KMT) that monomethylates lysine 20 of histone H4 (H4K20) in vivo. Lysine residues of non-histone proteins including proliferating cell nuclear antigen (PCNA) and p53 are also monomethylated. As a consequence, the methyltransferase activity of the enzyme is implicated in many essential cellular processes including DNA replication, DNA damage response, transcription modulation, and cell cycle regulation. This review aims to provide an overview of the roles of SETD8 in physiological and pathological pathways and to discuss the progress made to date in inhibiting the activity of SETD8 by small molecules, with an emphasis on their discovery, selectivity over other methyltransferases and cellular activity.
Collapse
Affiliation(s)
- Ciro Milite
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy
| | - Alessandra Feoli
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Programma di Dottorato di Ricerca in Scienze del Farmaco, Università degli studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy
| | - Monica Viviano
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy
| | - Donatella Rescigno
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Programma di Dottorato di Ricerca in Scienze del Farmaco, Università degli studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy
| | - Agostino Cianciulli
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Programma di Dottorato di Ricerca in Scienze del Farmaco, Università degli studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy
| | - Amodio Luca Balzano
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Programma di Dottorato di Ricerca in Scienze del Farmaco, Università degli studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy
| | - Antonello Mai
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P.le A. Moro 5, I-00185 Rome, Italy
| | - Sabrina Castellano
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Dipartimento di Medicina e Chirurgia, Università degli Studi di Salerno, Via Salvador Allende, Baronissi, I-84081 Salerno, Italy
| | - Gianluca Sbardella
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy
| |
Collapse
|
15
|
Zheng N, Dai X, Wang Z, Wei W. A new layer of degradation mechanism for PR-Set7/Set8 during cell cycle. Cell Cycle 2016; 15:3042-3047. [PMID: 27649746 DOI: 10.1080/15384101.2016.1234552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Set8 is critically involved in transcription regulation, cell cycle progression and genomic stability. Emerging evidence has revealed that E3 ubiquitin ligases such as CRL4cdt2 and SCFSkp2 regulate Set8 protein abundance. However, it is unclear whether other E3 ligase(s) could govern Set8 level for proper cell cycle progression in response to genotoxic stress such as UV irradiation. Recently, we report that the SCFβ-TRCP complex regulates Set8 protein stability by targeting it for ubiquitination and subsequent degradation. Notably, Set8 interacts with the SCFβ-TRCP E3 ligase complex. We further revealed a critical role of CKI in SCFβ-TRCP-mediated degradation of Set8. Mechanistically, CKI-mediated phosphorylation of Set8 at the S253 site promotes its destruction by SCFβ-TRCP. Importantly, SCFβ-TRCP-dependent Set8 destruction also contributes to the tight control of cell proliferation and cell cycle progression, in response to UV irradiation. Here, we summarize our new findings regarding the crucial role of β-TRCP in CKI-mediated Set8 degradation, which could provide new evidence to support that dysregulation of a tight regulatory network of Set8 could lead to aberrant cell cycle process.
Collapse
Affiliation(s)
- Nana Zheng
- a The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University , Suzhou , P. R. China
| | - Xiangpeng Dai
- b Department of Pathology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Zhiwei Wang
- a The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University , Suzhou , P. R. China
| | - Wenyi Wei
- b Department of Pathology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
16
|
Wang C, Wu J, Zhao Y, Guo Z. miR-502 medaited histone methyltransferase SET8 expression is associated with outcome of esophageal squamous cell carcinoma. Sci Rep 2016; 6:32921. [PMID: 27605386 PMCID: PMC5015112 DOI: 10.1038/srep32921] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 08/16/2016] [Indexed: 11/21/2022] Open
Abstract
The histone methyltransferase SET8, whose expression is regulated by miR-502 though the binding site in the 3′ UTR of SET8, implicated in cancer development. Single nucleotide polymorphism (SNP) of rs16917496 located in the miR-502 and SET8 binding site was analyzed in esophageal squamous cell carcinoma (ESCC) patients, the SET8 C/C genotype was independently associated with longer post-operative survival by multivariate analysis (relative risk, 2.250; 95% CI, 1.041–4.857; p = 0.039). Moreover, the reduced SET8 expression mediated by SET8 C/C genotype was associated with longer ESCC survival. Functional assay indicated that the SET8 knock down could inhibit proliferation and promote apoptosis of ESCC cells. The subsequent assay also showed the markedly inhibition of ESCC cell migration and invasion by SET8 knock down. Our data suggested that the altering SET8 expression, which is mediated at least partly by miR-502 through changing the binding affinity between miR-502 and SET8 3′ UTR, could modify the ESCC outcome by inhibiting the proliferation and invasion as well as promoting the apoptosis of ECSS cell. Our data indicated that SET8 was a new target for ESCC therapy.
Collapse
Affiliation(s)
- Cuiju Wang
- Department of Gynaecology Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Jianhua Wu
- Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Yue Zhao
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Zhanjun Guo
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| |
Collapse
|
17
|
Kruglyak KM, Lin E, Ong FS. Next-Generation Sequencing and Applications to the Diagnosis and Treatment of Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 890:123-36. [PMID: 26703802 DOI: 10.1007/978-3-319-24932-2_7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer is a genetic disease characterized by uncontrolled growth of abnormal cells. Over time, somatic mutations accumulate in the cells of an individual due to replication errors, chromosome segregation errors, or DNA damage. When not caught by traditional mechanisms, these somatic mutations can lead to cellular proliferation, the hallmark of cancer. Lung cancer is the leading cause of cancer-related mortality in the United States, accounting for approximately 160,000 deaths annually. Five year survival rates for lung cancer remain low (<50 %) for all stages, with even worse prognosis (<15 %) in late stage cases. Technological advances, including advances in next-generation sequencing (NGS), offer the vision of personalized medicine or precision oncology, wherein an individual's treatment can be based on his or her individual molecular profile, rather than on historical population-based medicine. Towards this end, NGS has already been used to identify new biomarker candidates for the early diagnosis of lung cancer and is increasingly used to guide personalized treatment decisions. In this review we will provide a high-level overview of NGS technology and summarize its application to the diagnosis and treatment of lung cancer. We will also describe how NGS can drive advances that bring us closer to precision oncology and discuss some of the technical challenges that will need to be overcome in order to realize this ultimate goal.
Collapse
Affiliation(s)
| | - Erick Lin
- Medical Affairs, Ambry Genetics, Inc., Aliso Viejo, CA, USA
| | - Frank S Ong
- Medical Affairs and Clinical Development, NantHealth, LLC, Culver City, CA, USA.
| |
Collapse
|
18
|
Liu B, Zhang X, Song F, Zheng H, Zhao Y, Li H, Zhang L, Yang M, Zhang W, Chen K. MiR-502/SET8 regulatory circuit in pathobiology of breast cancer. Cancer Lett 2016; 376:259-67. [PMID: 27080302 DOI: 10.1016/j.canlet.2016.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 12/26/2022]
Abstract
Our previous research and extensive epidemiological studies reproducibly demonstrated that miR-502 potentially targeted the expression of H4K20 methyltransferase SET8 in a wide spectrum of cancer. Yet, the direct targeting of SET8 by miR-502 has not been definitively proven. The clinical significance of the miR-502/SET8 regulatory circuit is also not clear. Here, we conducted cell-based experiments and clinical studies in a cohort of 279 breast cancer samples. We provide evidence that SET8 is a direct target of miR-502. Treatment with miR-502 or downregulation of SET8 suppressed cell proliferation and cell cycle, and reduced cell migration, invasion and EMT. Clinical analyses showed the miR-502 expression was lower in tumor tissues than in adjacent non-tumor tissues and had a significant inverse correlation with that of SET8. Furthermore, high expression of SET8 was significantly associated with poor overall survival (OS) and disease free survival (DFS) of breast cancer. The low expression ratio of miR-502 to SET8 mRNA was also significantly associated with poor OS. Thus, the miR-502/SET8 regulatory circuit emerges as a key regulator of the pathobiology of cancer and a focal point for possible therapeutic intervention.
Collapse
Affiliation(s)
- Ben Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Xining Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yanrui Zhao
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Haixin Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Lina Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Meng Yang
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wei Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA.
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| |
Collapse
|
19
|
SCF(β-TRCP) promotes cell growth by targeting PR-Set7/Set8 for degradation. Nat Commun 2015; 6:10185. [PMID: 26666832 PMCID: PMC4682171 DOI: 10.1038/ncomms10185] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 11/12/2015] [Indexed: 12/21/2022] Open
Abstract
The Set8/PR-Set7/KMT5a methyltransferase plays critical roles in governing transcriptional regulation, cell cycle progression and tumorigenesis. Although CRL4(Cdt2) was reported to regulate Set8 stability, deleting the PIP motif only led to partial resistance to ultraviolet-induced degradation of Set8, indicating the existence of additional E3 ligase(s) controlling Set8 stability. Furthermore, it remains largely undefined how DNA damage-induced kinase cascades trigger the timely destruction of Set8 to govern tumorigenesis. Here, we report that SCF(β-TRCP) earmarks Set8 for ubiquitination and degradation in a casein kinase I-dependent manner, which is activated by DNA-damaging agents. Biologically, both CRL4(Cdt2) and SCF(β-TRCP)-mediated pathways contribute to ultraviolet-induced Set8 degradation to control cell cycle progression, governing the onset of DNA damage-induced checkpoints. Therefore, like many critical cell cycle regulators including p21 and Cdt1, we uncover a tight regulatory network to accurately control Set8 abundance. Our studies further suggest that aberrancies in this delicate degradation pathway might contribute to aberrant elevation of Set8 in human tumours.
Collapse
|
20
|
Non-coding RNA: a new tool for the diagnosis, prognosis, and therapy of small cell lung cancer. J Thorac Oncol 2015; 10:28-37. [PMID: 25654726 DOI: 10.1097/jto.0000000000000394] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, novel classes of noncoding RNAs (ncRNAs) have been discovered, which are implicated in diverse functional and regulatory activities. Growing evidence indicates that deregulated ncRNAs play crucial roles in the onset and progression of cancer, including small-cell lung cancer. In this review, we highlight nearly all of the findings regarding the roles and the possible mechanisms of ncRNAs as oncogenes or tumor suppressors in small-cell lung cancer. Furthermore, we discuss the possible role of ncRNAs as diagnostic biomarkers, their significant contribution to the prognosis, and their functions in regulating the response to therapy.
Collapse
|
21
|
Yang SD, Cai YL, Jiang P, Li W, Tang JX. Association of a miR-502-binding site single nucleotide polymorphism in the 3'-untranslated region of SET8 and the TP53 codon 72 polymorphism with cervical cancer in the Chinese population. Asian Pac J Cancer Prev 2015; 15:6505-10. [PMID: 25169478 DOI: 10.7314/apjcp.2014.15.16.6505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE This study was conducted to identify whether polymorphic variants of set domain-containing protein 8 (SET8) and tumor protein p53 (TP53) codon 72, either independently or jointly, might be associated with increased risk for cervical cancer. METHODS We genotyped SET8 and TP53 codon 72 polymorphisms of peripheral blood DNA from 114 cervical cancer patients and 200 controls using the polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP) and direct DNA sequencing. RESULTS The frequency of SET8 CC (odds ratios (OR) = 2.717, 95% CI=1.436-5.141) or TP53 GG (OR=2.168, 95% CI=1.149-4.089) genotype was associated with an increased risk of cervical cancer on comparison with the SET8 TT or TP53 CC genotypes, respectively. In additional, interaction between the SET8 and TP53 polymorphisms increased the risk of cervical cancer in a synergistic manner, with the OR being 9.913 (95% CI=2.028-48.459) for subjects carrying both SET8 CC and TP53 GG genotypes. CONCLUSION These data suggest that there are significant associations between the miR-502-binding site SNP in the 3'-UTR of SET8 and the TP53 codon 72 polymorphism with cervical cancer in Chinese, and there is a gene-gene interaction.
Collapse
Affiliation(s)
- Shao-Di Yang
- Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, China E-mail :
| | | | | | | | | |
Collapse
|
22
|
Cipollini M, Landi S, Gemignani F. MicroRNA binding site polymorphisms as biomarkers in cancer management and research. Pharmgenomics Pers Med 2014; 7:173-91. [PMID: 25114582 PMCID: PMC4126202 DOI: 10.2147/pgpm.s61693] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of eukaryotic gene expression. They have been implicated in a broad range of biological processes, and miRNA-related genetic alterations probably underlie several human diseases. Single nucleotide polymorphisms of transcripts may modulate the posttranscriptional regulation of gene expression by miRNAs and explain interindividual variability in cancer risk and in chemotherapy response. On the basis of recent association studies published in the literature, the present review mainly summarizes the potential role of miRNAs as molecular biomarkers for disease susceptibility, diagnosis, prognosis, and drug-response prediction in tumors. Many clues suggest a role for polymorphisms within the 3' untranslated regions of KRAS rs61764370, SET8 rs16917496, and MDM4 rs4245739 as SNPs in miRNA binding sites highly promising in the biology of human cancer. However, more studies are needed to better characterize the composite spectrum of genetic determinants for future use of markers in risk prediction and clinical management of diseases, heading toward personalized medicine.
Collapse
Affiliation(s)
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
23
|
Hashemi M, Sheybani-Nasab M, Naderi M, Roodbari F, Taheri M. Association of functional polymorphism at the miR-502-binding site in the 3' untranslated region of the SETD8 gene with risk of childhood acute lymphoblastic leukemia, a preliminary report. Tumour Biol 2014; 35:10375-9. [PMID: 25048968 DOI: 10.1007/s13277-014-2359-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/14/2014] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs), a class of non-coding RNAs, bind to the 3' untranslated regions (UTRs) of mRNAs, where they interfere with translation of genes and are implicated in the pathogenesis of diverse diseases. In the present study, we evaluate the impact of rs16917496 polymorphism within the miR-502 miRNA seed region at the 3'UTR of SEDT8 on childhood acute lymphoblastic leukemia (ALL). This case-control study was done on 75 ALL and 115 healthy children. Genotyping of rs16917496 C/T polymorphism was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The results showed that CT as well as CT + TT decreased the risk of ALL in comparison with CC genotype (odds ratio (OR) = 0.29, 95 % confidence intervals (95 % CI) = 0.11-0.78, P = 0.014 and OR = 0.31, 95 % CI = 0.12-0.82, P = 0.016, respectively). Our results demonstrated that SETD8 rs16917496 C/T polymorphism was associated with decreased risk of developing pediatric ALL in Zahedan, southeast Iran. Larger studies with different ethnicities are desired to validate our findings.
Collapse
Affiliation(s)
- Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran,
| | | | | | | | | |
Collapse
|
24
|
Li S, Xie Y, Zhang W, Gao J, Wang M, Zheng G, Yin X, Xia H, Tao X. Interferon alpha-inducible protein 27 promotes epithelial-mesenchymal transition and induces ovarian tumorigenicity and stemness. J Surg Res 2014; 193:255-64. [PMID: 25103640 DOI: 10.1016/j.jss.2014.06.055] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/19/2014] [Accepted: 06/25/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Interferon alpha-inducible protein 27 (IFI27) is an interferon alpha-inducible protein, which was found to be upregulated in some cancers, such as breast cancer, squamous cell carcinoma, hepatocellular carcinoma, and serous ovarian carcinoma. However, the role of IFI27 in ovarian cancer remains to be elucidated. This study was designed to investigate the role of IFI27 in ovarian cancer tumorigenicity. MATERIALS AND METHODS The expression of IFI27 was examined in ovarian cancer tissues and cell lines by real time quantitative reverse transcription polymerase chain reaction and immunohistochemistry. The cell migration and invasion was investigated by wound healing and transwell invasion assay. The epithelial-mesenchymal transition markers were detected by Western blotting and the stemness was evaluated by sphere formation. The tumor growth was examined in the athymic mice model. RESULTS We found that IFI27 is overexpressed in ovarian cancer and associated with patients' survival. Interestingly, we further observed that the expression of IFI27 was associated with the expression of mesenchymal marker vimentin in ovarian cancer. Overexpression of IFI27 induces epithelial-mesenchymal transition and promotes epithelial ovarian cancer cells migration and invasion, tumorigenicity, stemness, and drug resistance. Moreover, overexpression of IFI27 is associated with loss of miR-502 in ovarian cancer. Reexpression of miR-502 inhibits IFI27-induced tumorigenicity, migration, and drug resistance. CONCLUSIONS These data suggested that IFI27 may be a potential target for developing novel diagnosis strategies and therapeutic interventions.
Collapse
Affiliation(s)
- Shuqin Li
- Department of Obstetrics and Gynecology, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Yan Xie
- Department of Obstetrics and Gynecology, Yangpu District Central Hospital, Shanghai, China
| | - Wei Zhang
- Department of Pathology, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Junfeng Gao
- Department of Oncology, Hefei First People's Hospital, Hefei, China
| | - Man Wang
- Department of Obstetrics and Gynecology, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Guoxuan Zheng
- Department of Obstetrics and Gynecology, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Xing Yin
- Department of Obstetrics and Gynecology, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Hongping Xia
- Department of Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, China.
| | - Xiang Tao
- Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Sun LL, Wang J, Zhao ZJ, Liu N, Wang AL, Ren HY, Yang F, Diao KX, Fu WN, Wan EH, Mi XY. Suppressive role of miR-502-5p in breast cancer via downregulation of TRAF2. Oncol Rep 2014; 31:2085-92. [PMID: 24677135 DOI: 10.3892/or.2014.3105] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/07/2014] [Indexed: 11/06/2022] Open
Abstract
TRAF2 promotes cancer cell survival, proliferation and metastasis through the NF-κB pathway by directly interacting with various TNF recepors. However, the molecular mechanism of TRAF2 dysregulation in breast cancer remains to be elucidated. In the present study, miR-502-5p was predicted as a potential regulator of TRAF2. miR-502-5p was significantly downregulated in breast cancer tissues when compared to the level in paired normal breast tissues. The breast cancer cell lines including MCF-7 and MDA-MB-231 expressed a lower level of miR-502-5p when compared to the level in the non-malignant breast epithelial cell line MCF-10A. In vitro, miR-502-5p enhanced early apoptosis and inhibited proliferation of breast cancer cells. Luciferase reporter assay results showed that miR-502-5p could bind to the 3'-untranslated region of the TRAF2 gene, thus, exerting an inhibitory effect on TRAF2. Furthermore, silencing of TRAF2 exhibited effects similar to those of exogenous miR‑502-5p, while overexpression of TRAF2 partially abrogated miR-502-5p-mediated suppression in breast cancer cells. In conclusion, miR-502-5p may act as a tumor-suppressor gene by targeting oncogenic TRAF2 in breast cancer and, therefore, may be a potential diagnostic and anticancer therapeutic marker for breast cancer.
Collapse
Affiliation(s)
- Li-Li Sun
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jian Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhi-Juan Zhao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ning Liu
- Department of Pancreatic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ai-Lian Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hua-Yan Ren
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Fan Yang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ke-Xin Diao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wei-Neng Fu
- Department of Medical Genetics, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - En-Hua Wan
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiao-Yi Mi
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
26
|
Yang S, Guo H, Wei B, Zhu S, Cai Y, Jiang P, Tang J. Association of miR-502-binding site single nucleotide polymorphism in the 3'-untranslated region of SET8 and TP53 codon 72 polymorphism with non-small cell lung cancer in Chinese population. Acta Biochim Biophys Sin (Shanghai) 2014; 46:149-54. [PMID: 24374662 DOI: 10.1093/abbs/gmt138] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The objective of this study was to identify whether the miR-502-binding site single nucleotide polymorphism (SNP) in the 3'-untranslated region (3'-UTR) of set domain-containing protein 8 (SET8) and the tumor protein p53 (TP53) codon 72 polymorphism were associated with the risk for non-small cell lung cancer (NSCLC), either independently or jointly, among Chinese people from southern Han. The genotypes of SET8 and TP53 codon 72 polymorphisms of peripheral blood DNA were detected using polymerase chain reaction-restriction fragment length polymorphism and direct DNA sequencing in a case-control study on 164 NSCLC cases and 199 controls. The SET8 TT (odds ratio, OR = 2.173, 95% confidence interval, CI = 1.0454.517) or TP53 GG (OR = 2.579, 95% CI = 1.366-4.870) genotype was associated with an increased risk of NSCLC by comparing with the SET8 CC or TP53 CC genotype, respectively. Similar results were obtained in SET8 recessive model (OR = 2.074, 95% CI = 1.019-4.221, P < 0.05), and the dominant and recessive model of TP53 codon 72 were performed, respectively (OR = 1.809, 95% CI = 1.159-2.825, P < 0.05; OR = 1.933, 95% CI = 1.096-3.409, P < 0.05). In addition, interaction between the SET8 and TP53 polymorphisms increased the risk of NSCLC in a multiply manner, with the OR being 3.032 (95%CI = 1.580-5.816) for subjects carrying both SET8 TT and TP53 GG genotypes. Therefore, the miR-502-binding site SNP in the 3'-UTR of SET8 and the TP53 codon 72 polymorphism may be markers of genetic susceptibility to NSCLC in Chinese population, and there is a possible gene-gene interaction in the incidence of NSCLC.
Collapse
Affiliation(s)
- Shaodi Yang
- Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou 412007, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Genetic variation in a microRNA-502 minding site in SET8 gene confers clinical outcome of non-small cell lung cancer in a Chinese population. PLoS One 2013; 8:e77024. [PMID: 24146953 PMCID: PMC3795636 DOI: 10.1371/journal.pone.0077024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/27/2013] [Indexed: 12/28/2022] Open
Abstract
Background Genetic variants may influence microRNA-target interaction through modulate their binding affinity, creating or destroying miRNA-binding sites. SET8, a member of the SET domain-containing methyltransferase, has been implicated in a variety array of biological processes. Methods Using Taqman assay, we genotyped a polymorphism rs16917496 T>C within the miR-502 binding site in the 3′-untranslated region of the SET8 gene in 576 non-small cell lung cancer (NSCLC) patients. Functions of rs16917496 were investigated using luciferase activity assay and validated by immunostaining. Results Log-rank test and cox regression indicated that the CC genotype was associated with a longer survival and a reduced risk of death for NSCLC [58.0 vs. 41.0 months, P = 0.031; hazard ratio = 0.44, 95% confidential interval: 0.26–0.74]. Further stepwise regression analysis suggested rs16917496 was an independently favorable factor for prognosis and the protective effect more prominent in never smokers, patients without diabetes and patients who received chemotherapy. A significant interaction was observed between rs16917496 and smoking status in relation to NSCLC survival (P<0.001). Luciferase activity assay showed a lower expression level for C allele as compared with T allele, and the miR-502 had an effect on modulation of SET8 gene in vitro. The CC genotype was associated with reduced SET8 protein expression based on immunostaining of 192 NSCLC tissue sample (P = 0.007). Lower levels of SET8 were associated with a non-significantly longer survival (55.0 vs. 43.1 months). Conclusion Our data suggested that the rs16917496 T>C located at miR-502 binding site contributes to NSCLC survival by altering SET8 expression through modulating miRNA-target interaction.
Collapse
|
28
|
GUO ZHANJUN, WANG HONGJING, LI YANTAO, LI BIN, LI CUIQIAO, DING CUIMIN. A microRNA-related single nucleotide polymorphism of the XPO5 gene is associated with survival of small cell lung cancer patients. Biomed Rep 2013; 1:545-548. [PMID: 24648983 PMCID: PMC3917003 DOI: 10.3892/br.2013.92] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/20/2013] [Indexed: 01/19/2023] Open
Abstract
MicroRNA (miRNA)-related single nucleotide polymorphisms (miR-SNPs) in miRNA processing machinery genes affect cancer risk, treatment efficacy and patient prognosis. A miR-SNP of rs11077 located in the 3'UTR of miRNA processing machinery gene XPO5 was examined in small cell lung cancer (SCLC) patients to evaluate its association with cancer survival. A total of 42 patients were enrolled in the present study and genotyped for rs11077 and survival was assessed using the Kaplan-Meier method, as well as univariate and multivariate analyses. The AA genotype of rs11077 was identified for its significant association with better survival time (P=0.023). In addition, rs11077 was found to associate independently with overall survival in SCLC patients by multivariate analysis (relative risk 2.469; 95% CI, 1.088-5.603; P=0.031). The findings of this study suggest that although miR-SNP studies for miRNA processing machinery genes are still at an early age, miR-SNPs have an impact on cancer survival. In conclusion, a miR-SNP in the 3'UTR region of the XPO5 gene was identified as an independent prognostic marker for survival of advanced SCLC patients.
Collapse
Affiliation(s)
- ZHANJUN GUO
- Departments of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011,
P.R. China
| | - HONGJING WANG
- Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011,
P.R. China
| | - YANTAO LI
- Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011,
P.R. China
| | - BIN LI
- Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011,
P.R. China
| | - CUIQIAO LI
- Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011,
P.R. China
| | - CUIMIN DING
- Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011,
P.R. China
| |
Collapse
|
29
|
Chen Z, Xu L, Ye X, Shen S, Li Z, Niu X, Lu S. Polymorphisms of microRNA sequences or binding sites and lung cancer: a meta-analysis and systematic review. PLoS One 2013; 8:e61008. [PMID: 23613771 PMCID: PMC3628762 DOI: 10.1371/journal.pone.0061008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/05/2013] [Indexed: 01/01/2023] Open
Abstract
Objective Functional single nucleotide polymorphisms (SNPs) of microRNA (miRNA) sequences or binding sites (miRNA-SNPs) are associated with lung cancer risk and survival. The objective of this study was to systematically review genetic association studies about miRNA-SNPs in lung cancer. Methods Eligible genetic association studies were retrieved from databases of PubMed, EMBASE, China National Knowledge Infrastructure and SinoMed. Two investigators selected related studies and assessed methodological quality independently. Quantitative data synthesis was conducted for common SNPs of miRNA (miRNA-196a2 rs11614913, miRNA146a rs2910164, miRNA149 rs2292832, miRNA-605 rs2043556 and miRNA499 rs3746444). GRADE profiler was used to grade the quality of evidence for each miRNA-SNP. Results 15 eligible studies and 27 miRNA-SNPs were retrieved and 10 miRNA-SNPs were reported with a significant association with susceptibility to or survival of lung cancer. Methodological quality of eligible studies was adequate with an average score of 8.5. miRNA-196a2 rs11614913 polymorphism was associated with increased lung cancer risk (homozygote comparison, OR = 1.299, 95% CI: 1.096–1.540; dominant model, OR = 1.217, 95% CI: 1.041–1.421) and decreased survival. And according to GRADE profiler, quality of evidence was moderate for MYCL1 rs3134615, while quality of the other significant associations was low. Conclusions Based on this first systematic review about miRNA-SNPs in lung cancer, quality of evidence was low for most genetic association studies. Polymorphisms of miRNA-196a2 rs11614913 and MYCL1 rs3134615 could be potential biomarkers of lung cancer.
Collapse
Affiliation(s)
- Zhiwei Chen
- Shanghai Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangyun Ye
- Shanghai Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shengping Shen
- Shanghai Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ziming Li
- Shanghai Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomin Niu
- Shanghai Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shun Lu
- Shanghai Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| |
Collapse
|
30
|
The role of microRNAs in cancer susceptibility. BIOMED RESEARCH INTERNATIONAL 2013; 2013:591931. [PMID: 23586049 PMCID: PMC3615597 DOI: 10.1155/2013/591931] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/14/2013] [Indexed: 12/21/2022]
Abstract
Single nucleotide polymorphisms (SNPs) are germline variations interspersed in the human genome. These subtle changes of DNA sequence can influence the susceptibility to various pathologies including cancer. The functional meaning of SNPs is not always clear, being, the majority of them, localized in noncoding regions. The discovery of microRNAs, tiny noncoding RNAs able to bind the 3′ untranslated region (UTR) of target genes and to consequently downregulate their expression, has provided a functional explanation of how some SNPs positioned in noncoding regions contribute to cancer susceptibility. In this paper we summarize the current knowledge of the effect on cancer susceptibility of SNPs included in regions related with miRNA-dependent pathways. Hereditary cancer comes up from mutations that occur in high-penetrant predisposing tumor genes. However, a considerable part of inherited cancers arises from multiple low-penetrant predisposing gene variants that influence the behavior of cancer insurgence. Despite the established significance of such polymorphic variants in cancer predisposition, sometimes their functional role remains unknown. The discovery of a new group of genes called microRNAs (miRNAs) opened an avenue for the functional interpretation of polymorphisms involved in cancer predisposition.
Collapse
|
31
|
Zhang TF, Cheng KW, Shi WY, Zhang JT, Liu KD, Xu SG, Chen JQ. MiRNA Synergistic Network Construction and Enrichment Analysis for Common Target Genes in Small-cell Lung Cancer. Asian Pac J Cancer Prev 2012; 13:6375-8. [DOI: 10.7314/apjcp.2012.13.12.6375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|