1
|
Wu G, Wang D, Xiong F, Wang Q, Liu W, Chen J, Chen Y. The emerging roles of CEACAM6 in human cancer (Review). Int J Oncol 2024; 64:27. [PMID: 38240103 PMCID: PMC10836497 DOI: 10.3892/ijo.2024.5615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Carcinoembryonic antigen (CEA)‑related cell adhesion molecule 6 (CEACAM6) is a cell adhesion protein of the CEA family of glycosyl phosphatidyl inositol anchored cell surface glycoproteins. A wealth of research has demonstrated that CEACAM6 is generally upregulated in pancreatic adenocarcinoma, breast cancer, non‑small cell lung cancer, gastric cancer, colon cancer and other cancers and promotes tumor progression, invasion and metastasis. The transcriptional expression of CEACAM6 is regulated by various factors, including the CD151/TGF‑β1/Smad3 axis, microRNA (miR)‑146, miR‑26a, miR‑29a/b/c, miR‑128, miR‑1256 and DNA methylation. In addition, the N‑glycosylation of CEACAM6 protein at Asn256 is mediated by α‑1,6‑mannosylglycoptotein 6‑β‑N‑acetylglucosaminyltransferase. In terms of downstream signaling pathways, CEACAM6 promotes tumor proliferation by increasing levels of cyclin D1 and cyclin‑dependent kinase 4 proteins. CEACAM6 can activate the ERK1/2/MAPK or SRC/focal adhesion kinase/PI3K/AKT pathways directly or through EGFR, leading to stimulation of tumor proliferation, invasion, migration, resistance to anoikis and chemotherapy, as well as angiogenesis. This article provides a review of the expression pattern, biological function and relationship with prognosis of CEACAM6 in cancer. In summary, CEACAM6 may be a valuable diagnostic biomarker and potential therapeutic target for human cancers exhibiting overexpression of CEACAM6.
Collapse
Affiliation(s)
- Guanhua Wu
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Da Wang
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Fei Xiong
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Qi Wang
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Wenzheng Liu
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Junsheng Chen
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Yongjun Chen
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| |
Collapse
|
2
|
Zhu R, Ge J, Ma J, Zheng J. Carcinoembryonic antigen related cell adhesion molecule 6 promotes the proliferation and migration of renal cancer cells through the ERK/AKT signaling pathway. Transl Androl Urol 2019; 8:457-466. [PMID: 31807423 DOI: 10.21037/tau.2019.09.02] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Carcinoembryonic antigen related cell adhesion molecule 6 (CEACAM6) is a versatile glycoprotein and a member of the CEACAM family. Studies suggested that it served as a diagnostic and prognostic biomarker in some malignancies. In addition, it is involved in tumorigenesis by stimulating proliferation, suppressing apoptosis, facilitating migration and invasion, promoting angiogenesis, and inducing drug resistance. In the present study, we demonstrated the oncogenic effects of CEACAM6 in clear cell renal cell carcinoma (ccRCC). Methods CEACAM6 expression was detected by quantitative real-time PCR (qRT-PCR), immunohistochemical staining and western blot in ccRCC tumor tissues and cell lines. Survival analysis was performed using the data of TCGA database. Cell proliferation and migration were detected by CCK-8 and transwell assays with the overexpression or silencing of CEACAM6. LY294002 was used to block the activation of PI3K/AKT pathway. Associated pathway proteins were detected by western blot. Results CEACAM6 was upregulated in ccRCC cell lines and tumor tissues. Longer overall survival was observed in patients with relatively low CEACAM6 levels. Furthermore, overexpression of CEACAM6 promoted the proliferation and migration of ccRCC cells. Conversely, shRNA-mediated CEACAM6 depletion modulated those changes. Further investigation demonstrated that the ERK/AKT signaling pathway activation played a pivotal role. In addition, PI3K/AKT pathway blockade abrogated the effects of CEACAM6 overexpression. Conclusions Aberrantly high expression of CEACAM6 is a stimulus for the formation and progression of ccRCC.
Collapse
Affiliation(s)
- Rujian Zhu
- Department of Urology, The Affiliated Shanghai No.10 People's Hospital, Nanjing Medical University, Shanghai 200072, China.,Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Jiong Ge
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Junjie Ma
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Junhua Zheng
- Department of Urology, The Affiliated Shanghai No.10 People's Hospital, Nanjing Medical University, Shanghai 200072, China.,Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
3
|
Javan B, Shahbazi M. Constructing a Novel Hypoxia-Inducible Bidirectional shRNA Expression Vector for Simultaneous Gene Silencing in Colorectal Cancer Gene Therapy. Cancer Biother Radiopharm 2018; 33:118-123. [PMID: 29641253 DOI: 10.1089/cbr.2017.2401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Nonspecific siRNA expression limits its application in cancer gene therapy. Therefore, a tightly regulated and reversibly inducible RNAi system is required to conditionally control the gene expression. This investigation aims at constructing a hypoxia/colorectal tumor dual-specific bidirectional short hairpin RNA (shRNA) expression vector. MATERIALS AND METHODS First, carcinoma embryonic antigen (CEA) promoter designed in two directions. Then, pRNA-bipHRE-CEA vector was constructed by insertion of the vascular endothelial growth factor enhancer between two promoters for hypoxic cancer-specific gene expression. To confirm the therapeutic effect of the dual-specific vector, two shRNA oligonucleotides were inserted in the downstream of each promoter. QRT-polymerase chain reaction and western blot assays were performed to estimate the mRNA and protein expression levels. RESULTS Both mRNA and protein levels were significantly reduced (50%-60%) in the hypoxic colorectal cancer-treated cells when compared with the controls. CONCLUSION The novel bidirectional hypoxia-inducible shRNA expression vector may be efficient in colorectal cancer-specific gene therapy.
Collapse
Affiliation(s)
- Bita Javan
- 1 Department of Molecular Medicine, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences , Gorgan, Iran .,2 Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences , Gorgan, Iran
| | - Majid Shahbazi
- 1 Department of Molecular Medicine, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences , Gorgan, Iran .,2 Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences , Gorgan, Iran .,3 Arya Tina Gene (ATG), Biopharmaceutical Company , Gorgan, Iran
| |
Collapse
|
4
|
Ye L, Yang Y, Ma XY, Li D, Xu ML, Tan P, Long LM, Wang HQ, Liu T, Guo YH. Construction of a novel vector expressing Survivin-shRNA and fusion suicide gene yCDglyTK and its application in inhibiting proliferation and migration of colon cancer cells. Exp Ther Med 2017; 14:4721-4728. [PMID: 29201172 PMCID: PMC5704315 DOI: 10.3892/etm.2017.5154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/02/2017] [Indexed: 11/05/2022] Open
Abstract
Despite progress achieved in cancer chemotherapy in recent decades, adverse effects remain a limiting factor for a number of patients with colorectal cancer, suggesting the requirement for novel therapeutic strategies. Gene therapy appears to be a promising strategy for treating cancer. The present study aimed to investigate the anti-tumor effect of a combined gene therapy, using Survivin downregulation by RNAi and a fusion suicide gene yCDglyTK therapy system. A triple-gene vector expressing Survivin-targeted small hairpin RNA (Survivin-shRNA) and fusion suicide gene yCDglyTK was constructed, and administered to HCT116 cells. Survivin expression decreased significantly and yCDglyTK fusion gene expression was confirmed by both reverse transcription-quantitative polymerase chain reaction and western blot analysis. Introduction of Survivin-shRNA into yCDglyTK/prodrug system eradicated colon cancer cells and induced apoptosis more effectively. Furthermore, this therapeutic system is able to inhibit the migration of HCT116 cells. These results indicate that the recombinant plasmid may serve as a novel gene therapy approach to treat colorectal carcinoma.
Collapse
Affiliation(s)
- Ling Ye
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yuan Yang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xin-Yu Ma
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Dan Li
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Mei-Li Xu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Pan Tan
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Li-Min Long
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Hai-Qin Wang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Yong-Hong Guo
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
5
|
Tissue Specific Promoters in Colorectal Cancer. DISEASE MARKERS 2015; 2015:390161. [PMID: 26648599 PMCID: PMC4662999 DOI: 10.1155/2015/390161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/26/2015] [Indexed: 01/29/2023]
Abstract
Colorectal carcinoma is the third most prevalent cancer in the world. In the most advanced stages, the use of chemotherapy induces a poor response and is usually accompanied by other tissue damage. Significant progress based on suicide gene therapy has demonstrated that it may potentiate the classical cytotoxic effects in colorectal cancer. The inconvenience still rests with the targeting and the specificity efficiency. The main target of gene therapy is to achieve an effective vehicle to hand over therapeutic genes safely into specific cells. One possibility is the use of tumor-specific promoters overexpressed in cancers. They could induce a specific expression of therapeutic genes in a given tumor, increasing their localized activity. Several promoters have been assayed into direct suicide genes to cancer cells. This review discusses the current status of specific tumor-promoters and their great potential in colorectal carcinoma treatment.
Collapse
|
6
|
Yan L, Wang Y, Wang ZZ, Rong YT, Chen LL, Li Q, Liu T, Chen YH, Li YD, Huang ZH, Peng J. Cell motility and spreading promoted by CEACAM6 through cyclin D1/CDK4 in human pancreatic carcinoma. Oncol Rep 2015; 35:418-26. [PMID: 26497080 DOI: 10.3892/or.2015.4338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/22/2015] [Indexed: 11/06/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) belongs to the human carcino-embryonic antigen (CEA) family. Numerous lines of studies have indicated that altered expression of CEACAM6 may have a role in carcinogenesis and development. However, few studies have defined functional roles and mechanisms of action. In the present study, the relationship between clinical and pathological parameters was also analyzed. The relative CEACAM6 protein expression of pancreatic carcinoma was significantly higher than that in non-cancerous tissue. Different clinical stages and lymph node metastasis between groups were significantly different (P<0.05). We used siRNA and forced-expression in multiple cell lines to define the role of CEACAM6 in the regulation of proliferation of pancreatic carcinoma in vitro and in vivo. Knockdown of endogenous CEACAM6 decreased proliferation of BxPC-3 and SW1990 cells. These changes significantly reduced cyclin D1 and CDK4 protein levels. Conversely, overexpression of CEACAM6 in MIA PaCa-2 cells stimulated proliferation and increased cyclin D1 and CDK4 protein levels. Our results confirm that CEACAM6 promoted cell proliferation, and these changes were mediated by cyclin D1/CDK4. These observations contribute to our understanding of the important roles of CEACAM6 in pancreatic carcinoma development and progression and could be a promising molecular target for the development of new diagnostic and therapeutic strategies of pancreatic carcinoma.
Collapse
Affiliation(s)
- Lu Yan
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuan Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhi-Zhi Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yan-Ting Rong
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lin-Lin Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qian Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yong-Heng Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yan-Dong Li
- Department of Pathology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, Shanxi 710077, P.R. China
| | - Zhao-Hong Huang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jie Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
7
|
Specific Colon Cancer Cell Cytotoxicity Induced by Bacteriophage E Gene Expression under Transcriptional Control of Carcinoembryonic Antigen Promoter. Int J Mol Sci 2015; 16:12601-15. [PMID: 26053394 PMCID: PMC4490463 DOI: 10.3390/ijms160612601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer is one of the most prevalent cancers in the world. Patients in advanced stages often develop metastases that require chemotherapy and usually show a poor response, have a low survival rate and develop considerable toxicity with adverse symptoms. Gene therapy may act as an adjuvant therapy in attempts to destroy the tumor without affecting normal host tissue. The bacteriophage E gene has demonstrated significant antitumor activity in several cancers, but without any tumor-specific activity. The use of tumor-specific promoters may help to direct the expression of therapeutic genes so they act against specific cancer cells. We used the carcinoembryonic antigen promoter (CEA) to direct E gene expression (pCEA-E) towards colon cancer cells. pCEA-E induced a high cell growth inhibition of human HTC-116 colon adenocarcinoma and mouse MC-38 colon cancer cells in comparison to normal human CCD18co colon cells, which have practically undetectable levels of CEA. In addition, in vivo analyses of mice bearing tumors induced using MC-38 cells showed a significant decrease in tumor volume after pCEA-E treatment and a low level of Ki-67 in relation to untreated tumors. These results suggest that the CEA promoter is an excellent candidate for directing E gene expression specifically toward colon cancer cells.
Collapse
|
8
|
Zhao X, Huang Q, Jin Y. Gold nanorod delivery of LSD1 siRNA induces human mesenchymal stem cell differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 54:142-9. [PMID: 26046277 DOI: 10.1016/j.msec.2015.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/28/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
Abstract
Over the past decade, theranostic nanoparticles with microsize and multifunctional ability have emerged as a new platform in biomedical field, such as cancer therapy, optical imaging and gene therapy. Gene therapy has been recently shown as a promising tool for tissue engineering as safe and effective nanotechnology-based delivery methods are developed. Controlling adhesion and differentiation of stem cells is critical for tissue regeneration. In this study, we have developed poly-sodium 4-styrenesulfonate (PSS) and poly-allylamine hydrochloride (PAH) coated AuNR-based nanocarriers, which are capable of delivering small interfering RNA (siRNA) against LSD1 to induce the differentiation of human mesenchymal stem cells. To further study the mechanism, we tested the stemness and differentiation genes and found that they have been changed with LSD1 down-regulation. In addition, with the hepatocyte growth factor (HGF), LSD1 siRNA delivery by AuNRs could promote the differentiation of the human mesenchymal stem cells (human MSCs) into a hepatocyte lineage in vitro. Our results suggest for the first time use of AuNRs as nanocarriers of delivery LSD1 siRNA to induce the differentiation of human MSCs into a hepatocyte lineage, and envision the potential application of nanotechnology in tissue remodeling (such as liver and bone) in vivo, eventually translating to clinical applications.
Collapse
Affiliation(s)
- Xiongfei Zhao
- R&D center, Shanghai Angecon Biotechnology Co., Ltd, 588 Qiangdai Road, Pudong District, Shanghai 201318, China
| | - Qianying Huang
- R&D center, Shanghai Angecon Biotechnology Co., Ltd, 588 Qiangdai Road, Pudong District, Shanghai 201318, China
| | - Yiqiang Jin
- R&D center, Shanghai Angecon Biotechnology Co., Ltd, 588 Qiangdai Road, Pudong District, Shanghai 201318, China.
| |
Collapse
|