1
|
Shen Y, Hou J, Liu W, Lin Z, Ma L, Xu J, Guo Y. An antitumor fungal polysaccharide from Fomitopsis officinalis by activating immunity and inhibiting angiogenesis. Int J Biol Macromol 2024; 267:131320. [PMID: 38569989 DOI: 10.1016/j.ijbiomac.2024.131320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/19/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Macrofungi, a class of unique natural resources, are gaining popularity owing to their potential therapeutic benefits and edibility. From Fomitopsis officinalis, a medicinal macrofungus with anticancer activity, a homogeneous heteropolysaccharide (FOBP50-1) with a molecular weight of 2.21 × 104 g/mol has been extracted and purified. FOBP50-1 was found to be composed of 3-O-methylfucose, fucose, mannose, glucose, and galactose with a ratio of 1: 6.5: 4.4: 8.1: 18.2. The sugar fragments and structure of FOBP50-1 were investigated, which included →6)-α-d-Galp-(1→, →2,6)-α-d-Galp-(1→, →3)-α-l-Fucp-(1→, α-d-Glcp-(1→, →3)-β-d-Manp-(1→, →6)-β-d-Manp-(1→, 3-O-Me-α-l-Fucp-(1→, according to the UV, FT-IR, GC-MS, and NMR data. Besides the structure elucidation, FOBP50-1 showed promising antitumor activity in the zebrafish assays. The following mechanism examination discovered that FOBP50-1 interacted with TLR-4, PD-1, and VEGF to activate immunity and inhibit angiogenesis according to a series of cell, transgenic zebrafish, and surface plasmon resonance (SPR) experiments. The KD values indicating the association of FOBP50-1 with TLR-4, PD-1, and VEGF, were 4.69 × 10-5, 7.98 × 10-6, 3.04 × 10-6 M, respectively, in the SPR experiments. All investigations have demonstrated that the homogenous fungal polysaccharide FOBP50-1 has the potential to be turned into a tumor immunotherapy agent.
Collapse
Affiliation(s)
- Yongye Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jiantong Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Wenhui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Zhen Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Lingling Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, People's Republic of China.
| |
Collapse
|
2
|
Zhang H, Aisa HA, Liu Y, Tohtahon Z, Xin X, Abdulla R. Characterisation and identification of chemical constituents in aqueous extract of Fomes officinalis Ames based on ultrahigh-performance liquid chromatography tandem quadrupole-Orbitrap high-resolution mass spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:369-379. [PMID: 37859582 DOI: 10.1002/pca.3295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
INTRODUCTION Fungal species are an attractive resource for physiologically functional food and drug precursor. Fomes officinalis Ames, a medicinal fungus, is traditionally used as a folk medicine in traditional Chinese medicine prescription for the therapy of cough and asthma. The water-soluble substances in Chinese herbal medicines are likely to play an important physiological function. However, information on probing and identifying chemical components of the aqueous extract of Fomes officinalis Ames (AFO) remains unknown. OBJECTIVE This study was conducted to screen and characterise the chemical components of AFO. MATERIAL AND METHODS An effective and sensitive ultrahigh-performance liquid chromatography tandem quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap-HRMS) method with the Full MS/PIL/dd-MS2 acquisition approach was applied for the profiling of chemical components in AFO. An HSS T3 column was used for component separation, and a strategy of simultaneous targeted and untargeted multicomponent characterisation was implemented. Multiple identification approaches were used, including accurate molecular mass and elemental composition matching, literature and database searching, and fragmentation rules elucidation. RESULTS A total of 115 components, including 20 amino acids and derivatives, six nucleobases, nine nucleosides, 75 dipeptides, two tripeptides, and three other components, were tentatively identified. Among them, the targeted exploring method screened six nucleobases and nine nucleosides including modified nucleosides. To our best knowledge, this is the first time a report has been done on the presence of the 115 compounds in AFO. CONCLUSION Profiling and characterisation compounds of AFO enriched its material basis, which would lay the foundation for improving potential medicinal and nutritional values and effecting comprehensive quality control of Fomes officinalis Ames.
Collapse
Affiliation(s)
- Hongyan Zhang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilisation, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Quality Standards and Testing Technology for Agri-Products, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilisation, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Yongqiang Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilisation, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zeynep Tohtahon
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilisation, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Xuelei Xin
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilisation, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rahima Abdulla
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilisation, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Huang Y, He Z, Zhou H, Wen Y, Ji X, Ding W, Zhu B, Zhang Y, Tan Y, Yang K, Wang Y. The Treatment of Tubal Inflammatory Infertility using Yinjia Tablets through EGFR/MEK/ERK Signaling Pathway based on Network Pharmacology. Curr Pharm Biotechnol 2024; 25:499-509. [PMID: 38572608 DOI: 10.2174/0113892010234591230919074245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 04/05/2024]
Abstract
Background: Salpingitis obstructive infertility (SOI) refers to infertility caused by abnormal conditions such as tubal adhesion and blockage caused by acute and chronic salpingitis. SOI has a serious impact on women's physical and mental health and family harmony, and it is a clinical problem that needs to be solved urgently. Objective: The purpose of the present study was to explore the potential pharmacological mechanisms of the Yinjia tablets (Yin Jia Pian, YJP) on tubal inflammation. Methods: Networks of YJP-associated targets and tubal inflammation-related genes were constructed through the STRING database. Potential targets and pathway enrichment analysis related to the therapeutic efficacy of YJP were identified using Cytoscape and Database for Annotation, Visualization, and Integrated Discovery (metascape). E. coli was used to establish a rat model of tubal inflammation and to validate the predictions of network pharmacology and the therapeutic efficacy of YJP. H&E staining was used to observe the pathological changes in fallopian tubes. TEM observation of the ultrastructure of the fallopian tubes. ELISA was used to detect the changes of IL-6 and TNF-α in fallopian tubes. Immunohistochemistry was used to detect the expression of ESR1. The changes of Bcl-2, ERK1/2, p-ERK1/2, MEK, p-MEK, EGFR, and p-EGFR were detected by western blot. Results: Through database analysis, it was found that YJP shared 105 identical targets with the disease. Network pharmacology analysis showed that IL-6, TNF, and EGFR belong to the top 5 core proteins associated with salpingitis, and EGFR/MEK/ERK may be the main pathway involved. The E. coli-induced disease rat model of fallopian tube tissue showed damage, mitochondrial disruption, and increased levels of the inflammatory factors IL-6 and TNF-α. Tubal inflammatory infertility rats have increased expression of Bcl-2, p-ERK1/2, p-MEK, and p-EGFR, and decreased expression of ESR1. In vivo, experiments showed that YJP improved damage of tissue, inhibited shedding of tubal cilia, and suppressed the inflammatory response of the body. Furthermore, YJP inhibited EGFR/MEK/ERK signaling, inhibited the apoptotic protein Bcl-2, and upregulated ESR1. Conclusion: This study revealed that YJP Reducing tubal inflammation and promoting tissue repair may be associated with inhibition of the EGFR/MEK/ERK signaling pathway. .
Collapse
Affiliation(s)
- Yefang Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhelin He
- Guang'an Traditional Chinese Medicine Hospital, Guang'an, Sichuan, China
| | - Hang Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi Wen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoli Ji
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Weijun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Boyu Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yongqing Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Tan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Kun Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Zhang S, Li Y, Li Z, Liu W, Zhang H, Ohizumi Y, Nakajima A, Xu J, Guo Y. Structure, anti-tumor activity, and potential anti-tumor mechanism of a fungus polysaccharide from Fomes officinalis. Carbohydr Polym 2022; 295:119794. [DOI: 10.1016/j.carbpol.2022.119794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 12/12/2022]
|
5
|
Tao X, Sun Y, Men X, Xu Z. A compound plant extract and its antibacterial and antioxidant properties in vitro and in vivo. 3 Biotech 2020; 10:532. [PMID: 33214979 PMCID: PMC7666253 DOI: 10.1007/s13205-020-02529-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
The present study was conducted to prepare a compound plant extract as a candidate animal feed additive. Firstly, Evodia rutaecarpa (ER), Schisandra sphenanthera (SS), Punica granatum (PG) and Artemisia argyi (AA) were screened out from 17 plants as materials of candidate compound plant extracts by measuring the antibacterial rate on Escherichia coli and Salmonella paratyphoid, and the scavenging capability on 2,2 diphenyl-1-picrylhydrazine radical in vitro. Secondly, proportions of the four materials were optimized with an L9 (43) orthogonal experiment. By range analysis of experimental results, two compound extracts (named as F1 and F2) with the strongest antibacterial and antioxidant functions were obtained. The ratio of ER: SS: PG: AA is 9:9:1:3 in F1 and 9:9:9:3 in F2, respectively. Finally, the effects of F1 and F2 on security and efficacy in vivo were evaluated. In healthy mice, F1 had no significant effects (p > 0.05) on all blood parameters and viscera indices, and at 1000 mg/kg bw dose significantly increased (p < 0.05) the average daily gain (ADG). F2 decreased (p < 0.05) white blood cell count at 3000 mg/kg bw and increased (p < 0.05) red blood cell count at 333 mg/kg bw. In immunosuppressed mice, both F1 and F2 improved ADG (p < 0.05) and the feed intake to gain ratio (p < 0.01), and increased the activities of hepatic superoxide dismutase (p < 0.05), catalase (p < 0.05) and total antioxygen capacity (p < 0.05), and the content of malonaldehyde (p < 0.01). In mice challenged with Escherichia coli, the antidiarrhea and reducing mortality effects of F1 were equivalent to the antibiotic. F2 failed to protect the experimental mice. These results suggested F1, a compound plant extract, show a great potential as a substitute for antibiotics in animal feed.
Collapse
Affiliation(s)
- Xin Tao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang People’s Republic of China
| | - Yuqing Sun
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang People’s Republic of China
| | - Xiaoming Men
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang People’s Republic of China
| | - Ziwei Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang People’s Republic of China
| |
Collapse
|
6
|
Muszyńska B, Fijałkowska A, Sułkowska‐Ziaja K, Włodarczyk A, Kaczmarczyk P, Nogaj E, Piętka J. Fomitopsis officinalis
: a Species of Arboreal Mushroom with Promising Biological and Medicinal Properties. Chem Biodivers 2020; 17:e2000213. [DOI: 10.1002/cbdv.202000213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/09/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Bożena Muszyńska
- Department of Pharmaceutical BotanyJagiellonian University Collegium Medicum 9 Medyczna Street, PL-30-688 Kraków Poland
| | - Agata Fijałkowska
- Department of Pharmaceutical BotanyJagiellonian University Collegium Medicum 9 Medyczna Street, PL-30-688 Kraków Poland
| | - Katarzyna Sułkowska‐Ziaja
- Department of Pharmaceutical BotanyJagiellonian University Collegium Medicum 9 Medyczna Street, PL-30-688 Kraków Poland
| | - Anna Włodarczyk
- Department of Pharmaceutical BotanyJagiellonian University Collegium Medicum 9 Medyczna Street, PL-30-688 Kraków Poland
| | - Piotr Kaczmarczyk
- Higher School of Medicine in Sosnowiec 6 Wojska Polskiego Street, PL-41-200 Sosnowiec Poland
| | - Ewa Nogaj
- Higher School of Medicine in Sosnowiec 6 Wojska Polskiego Street, PL-41-200 Sosnowiec Poland
| | - Jacek Piętka
- Department of Forest ProtectionInstitute of Forest SciencesWarsaw University of Life Sciences – SGGW Nowoursynowska 159/34, PL-02-776 Warsaw Poland
| |
Collapse
|
7
|
Habaike A, Yakufu M, Cong Y, Gahafu Y, Li Z, Abulizi P. Neuroprotective effects of Fomes officinalis Ames polysaccharides on Aβ 25-35-induced cytotoxicity in PC12 cells through suppression of mitochondria-mediated apoptotic pathway. Cytotechnology 2020; 72:539-549. [PMID: 32430659 DOI: 10.1007/s10616-020-00400-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/09/2020] [Indexed: 12/30/2022] Open
Abstract
Aggregation of Aβ is a pathological hallmark of Alzheimer's disease (AD). The purpose of this study was to identify the protective roles of different polysaccharide components in Fomes officinalis Ames polysaccharides (FOAPs) against Aβ25-35-induced neurotoxicity in PC12 cells. Different doses of FOAPs components (i.e. FOAPs-a and FOAPs-b) were added to PC12 cells about 2 h before β-amyloid protein fragment 25-35 (Aβ25-35) exposure. The AD cellular model of PC12 cells was established using Aβ25-35. Then the PC12 cells were divided into 9 groups including: control group, Donepezil hydrochloride (DHCL) group, model group treated using 40 μM Aβ25-35, followed by FOAPs-a and FOAPs-b interference (50, 100 and 200 μg/mL). The mitochondrial reactive oxygen species (ROS), ATP, superoxide dismutase (SOD), malondialdehyde (MDA), lactate dehydrogenase (LDH) and mitochondrial membrane potential (MMP) were determined by commercial kits. The Cytochrome C, Bcl-2 and Bax expressions in the mitochondria and cytosol was determined by using Western blot analysis. FOAPs-a and FOAPs-b could significantly inhibit the LDH release, MDA level and the over accumulation of ROS induced by Aβ25-35 in PC12 cells in a dose-dependent manner. They could also effectively prevent Aβ25-35-stimulated cytotoxicity, which involved in attenuating cell apoptosis, increasing the ratio of Bcl-2/Bax and inhibiting Cytochrome C release from mitochondria to cytosol in PC12 cells. Moreover, FOAPs-a and FOAPs-b significantly alleviated mitochondrial dysfunction by regulating the MMP, as well as promoting the mitochondrial ATP synthesis. FOAPs-a and FOAPs-b played neuroprotective roles against Aβ25-35-induced cytotoxicity in PC12 cells through suppressing the mitochondria-mediated apoptotic pathway.
Collapse
Affiliation(s)
- Ayijiang Habaike
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Mirensha Yakufu
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Yuanyuan Cong
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Yimin Gahafu
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Zhen Li
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Palida Abulizi
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
8
|
Gründemann C, Reinhardt JK, Lindequist U. European medicinal mushrooms: Do they have potential for modern medicine? - An update. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 66:153131. [PMID: 31790898 DOI: 10.1016/j.phymed.2019.153131] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/22/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The application of mushrooms for health purposes has a long tradition and is very common in Asian countries. This trend is also becoming increasingly popular in the western hemisphere. However, mushrooms from European tradition are being treated in a restrained manner despite having significant potential as drugs or as sources of pure bioactive substances. AIM The present review provides an overview of the most important mushrooms used in European ethnomedical traditions and explores their pharmacological potential and the challenges for the development of new drugs from these sources of natural products. METHOD Mushroom species were selected based on information in old herbal books and dispensaries, uninterrupted use and scientific literature in the PubMed database up to June 2019. RESULTS Traditional experiences and modern studies have demonstrated that medical mushrooms used in European traditions have promising distinct pharmacological potential mediated through defined mechanisms (anti-tumour, anti-inflammatory, anti-oxidative and anti-bacterial). However, the number of modern chemical, biological and pharmacological studies remains relatively small, and some mushroom species have not been studied at all. Unfortunately, no valid clinical studies can be found. Unlike the case with herbal and fungal drugs from traditional Chinese medicine, we are far from comprehensively exploring this potential. CONCLUSIONS Mushrooms from traditional European medicine have the potential to be used in modern medicine. Considerable research, interdisciplinary collaboration, involvement of the pharmaceutical industry, time and money are necessary to explore this potential not only in the form of dietary supplements but also in the form of approved drugs.
Collapse
Affiliation(s)
- Carsten Gründemann
- Center for Complementary Medicine, Institute for Environmental Health Sciences and Hospital Infection Control, University Medical Center Freiburg, Breisacher Str. 115B, 79111 Freiburg, Germany.
| | - Jakob K Reinhardt
- Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Ulrike Lindequist
- Institute of Pharmacy, Ernst-Moritz-Arndt-University Greifswald, F.-l.-Jahn-Str. 17, 17487 Greifswald, Germany
| |
Collapse
|
9
|
Chen SJ, Li JY, Zhang JM. Extraction of yellow pear residue polysaccharides and effects on immune function and antioxidant activity of immunosuppressed mice. Int J Biol Macromol 2019; 126:1273-1281. [DOI: 10.1016/j.ijbiomac.2018.12.248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/28/2018] [Accepted: 12/26/2018] [Indexed: 01/15/2023]
|
10
|
Hepatoprotective Effect of Aqueous Extract of Persian Gulf brown Algae Sargassum swartzii Against Acetaminophen-Induced Hepatotoxicity in Mice. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.77168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Liu P, Xu Y, Yan H, Chen J, Shang EX, Qian DW, Jiang S, Duan JA. Characterization of molecular signature of the roots of Paeonia lactiflora during growth. Chin J Nat Med 2018; 15:785-793. [PMID: 29103464 DOI: 10.1016/s1875-5364(17)30110-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Indexed: 12/21/2022]
Abstract
The roots of Paeoniae lactiflora Pall. are widely consumed as crude drugs in Asian countries due to their remarkable beneficial health effects. The present research was undertaken to illuminate the dynamic changes in metabolites and enzymes and facilitate selection of the harvesting time when the herb can provide optimum health benefits. P. lactiflora roots were analyzed at 12 stages of growth for monoterpenoid glycosides, phenols, nucleosides, nucleobases, amino acids, and polysaccharides by high-performance liquid chromatography with photodiode array detector, ultra-high pressure liquid chromatography coupled with tandem mass spectrometry, and UV spectrophotometry. The enzyme activities of plant β-glucosidases and esterases were determined by UV methods. The total content of monoterpenoid glycosides and phenols peaked in December. For nucleosides and nucleobases, the highest content appeared in April. The maximum phasic accumulation of the total amino acids took place in March, and the content of total polysaccharides reached a peak value in September. December, April, and March were selected as the appropriate harvesting times for producing natural medicinal or health food products. Plant β-glucosidases and esterases showed the highest activity in December and May, respectively. When the activity of β-glucosidase increased, esterase activity decreased, while the contents of oxypaeoniflora and paeoniflorin increased. When esterase activity increased, the contents of benzoylpaeoniflorin, paeoniflorin, and gallic acid decreased. In conclusion, the results from the present study would be useful in determination of the suitable time for harvesting P. lactiflora roots for medicinal purposes.
Collapse
Affiliation(s)
- Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuan Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Chen
- Institute of Bioengineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
12
|
Liu JX, Sun YH, Li CP. Volatile oils of Chinese crude medicines exhibit antiparasitic activity against human Demodex with no adverse effects in vivo. Exp Ther Med 2015; 9:1304-1308. [PMID: 25780426 PMCID: PMC4353771 DOI: 10.3892/etm.2015.2272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 12/18/2014] [Indexed: 11/05/2022] Open
Abstract
Demodex is a type of permanent obligatory parasite, which can be found on the human body surface. Currently, drugs targeting Demodex usually result in adverse effects and have a poor therapeutic effect. Thus, the aim of the present study was to investigate the use of Chinese crude medicine volatile oils for targeting and inhibiting Demodex in vitro. The volatile oils of six Chinese crude medicines were investigated, including clove, orange fruit, Manchurian wildginger, cinnamon bark, Rhizome Alpiniae Officinarum and pricklyash peel, which were extracted using a distillation method. The exercise status of Demodex folliculorum and Demodex brevis and the antiparasitic effects of the volatile oils against the two species were observed using microscopy. A skin irritation test was used to examine the irritation intensity of the volatile oils. In addition, an acute toxicity test was utilized to observe the toxicity effects of the volatile oils on the skin. Xin Fumanling ointment was employed as a positive control to identify the therapeutic effects of the volatile oils. The results indicated that all six volatile oils were able to kill Demodex efficiently. In particular, the clove volatile oil was effective in inducing optimized anti-Demodex activity. The lethal times of the volatile oils were significantly decreased compared with the Xin Fumanling ointment (P<0.05). Furthermore, the skin irritation test results indicated that the clove volatile oil did not trigger any irritation (0.2 and 0.3 points for intact and scratched skin, respectively), and had a safety equal to that of distilled water. There were not any adverse effects observed following application of the clove volatile oil on the intact or scratched skin. In conclusion, the volatile oils of Chinese crude medicines, particularly that of clove, demonstrated an evident anti-Demodex activity and were able to kill Demodex effectively and safely in vivo.
Collapse
Affiliation(s)
- Ji-Xin Liu
- Department of Clinical Pathogen Biology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yan-Hong Sun
- Department of Clinical Pathogen Biology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Chao-Pin Li
- Department of Medical Parasitology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|