1
|
Ulger O, Eş I, Proctor CM, Algin O. Stroke studies in large animals: Prospects of mitochondrial transplantation and enhancing efficiency using hydrogels and nanoparticle-assisted delivery. Ageing Res Rev 2024; 100:102469. [PMID: 39191353 DOI: 10.1016/j.arr.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
One of the most frequent reasons for mortality and disability today is acute ischemic stroke, which occurs by an abrupt disruption of cerebral circulation. The intricate damage mechanism involves several factors, such as inflammatory response, disturbance of ion balance, loss of energy production, excessive reactive oxygen species and glutamate release, and finally, neuronal death. Stroke research is now carried out using several experimental models and potential therapeutics. Furthermore, studies are being conducted to address the shortcomings of clinical care. A great deal of research is being done on novel pharmacological drugs, mitochondria targeting compounds, and different approaches including brain cooling and new technologies. Still, there are many unanswered questions about disease modeling and treatment strategies. Before these new approaches may be used in therapeutic settings, they must first be tested on large animals, as most of them have been done on rodents. However, there are several limitations to large animal stroke models used for research. In this review, the damage mechanisms in acute ischemic stroke and experimental acute ischemic stroke models are addressed. The current treatment approaches and promising experimental methods such as mitochondrial transplantation, hydrogel-based interventions, and strategies like mitochondria encapsulation and chemical modification, are also examined in this work.
Collapse
Affiliation(s)
- Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara 06010, Turkiye; Gulhane Training and Research Hospital, University of Health Sciences, Ankara 06010, Turkiye.
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Oktay Algin
- Interventional MR Clinical R&D Institute, Ankara University, Ankara 06100, Turkiye; Department of Radiology, Medical Faculty, Ankara University, Ankara 06100, Turkiye; National MR Research Center (UMRAM), Bilkent University, Ankara 06800, Turkiye
| |
Collapse
|
2
|
Narayan SK, Grace Cherian S, Babu Phaniti P, Babu Chidambaram S, Rachel Vasanthi AH, Arumugam M. Preclinical animal studies in ischemic stroke: Challenges and some solutions. Animal Model Exp Med 2021; 4:104-115. [PMID: 34179718 PMCID: PMC8212819 DOI: 10.1002/ame2.12166] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/28/2021] [Indexed: 01/01/2023] Open
Abstract
Despite the impressive efficacies demonstrated in preclinical research, hundreds of potentially neuroprotective drugs have failed to provide effective neuroprotection for ischemic stroke in human clinical trials. Lack of a powerful animal model for human ischemic stroke could be a major reason for the failure to develop successful neuroprotective drugs for ischemic stroke. This review recapitulates the available cerebral ischemia animal models, provides an anatomical comparison of the circle of Willis of each species, and describes the functional assessment tests used in these ischemic stroke models. The distinct differences between human ischemic stroke and experimental stroke in available animal models is explored. Innovative animal models more closely resembling human strokes, better techniques in functional outcome assessment and better experimental designs generating clearer and stronger evidence may help realise the development of truly neuroprotective drugs that will benefit human ischemic stroke patients. This may involve use of newer molecules or revisiting earlier studies with new experimental designs. Translation of any resultant successes may then be tested in human clinical trials with greater confidence and optimism.
Collapse
Affiliation(s)
- Sunil K. Narayan
- Comprehensive Stroke Care and Neurobiology Centre, Department of NeurologyJawaharlal Institute of Postgraduate Medical Education and ResearchPuducherryIndia
| | - Simy Grace Cherian
- Comprehensive Stroke Care and Neurobiology Centre, Department of NeurologyJawaharlal Institute of Postgraduate Medical Education and ResearchPuducherryIndia
| | - Prakash Babu Phaniti
- Department of Biotechnology & School of Medical SciencesUniversity of HyderabadHyderabadIndia
| | | | | | - Murugesan Arumugam
- Comprehensive Stroke Care and Neurobiology Centre, Department of NeurologyJawaharlal Institute of Postgraduate Medical Education and ResearchPuducherryIndia
| |
Collapse
|
3
|
Hao CH, Ding WX, Sun Q, Li XX, Wang WT, Zhao ZY, Tang LD. Thrombolysis with rhPro-UK 3 to 6 hours after embolic stroke in rat. Neurol Res 2019; 41:1034-1042. [PMID: 31584350 DOI: 10.1080/01616412.2019.1672388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objectives: To investigate the thrombolysis with recombinant human prourokinase (rhPro-UK) on thromboembolic stroke in rats at different therapeutic time windows (TTW). Methods: Rats were subjected to embolic middle cerebral artery occlusion. RhPro-UK and positive control drugs rt-PA,UK were administered 3 h, 4.5 h, 6 h after inducing thromboem-bolic stroke. Neurological deficit scoring (NDS) was evaluated at 6 h and 24 h after the treatment. The lesion volume in cerebral hemispheres was measured by MRI scanning machine after 6 h of thrombolysis, and the infarct volume was measured by TTC stain, together with hemorrhagic volume quantified by a spectrophotometric assay after 24 h of thrombolysis. Results: RhPro-UK 10, 20 × 104 U/kg significantly improved the NDS after cerebral thromboembolism in rats at 3 h, 4.5 h TTW, and at the 6 h TTW, the NDS was improved by 28.0% (P = 0.0690) and 29.2% (P = 0.0927) at 6 h and 24 h after rhPro-UK 20 ×104 U/kg administration, respectively. RhPro-UK 10, 20 × 104 U/kg significantly reduced the brain lesions measured by MRI at 3 h and 4.5 h TTW. RhPro-UK 10, 20 × 104 U/kg significantly reduced the cerebral infarction measured by TTC at 3 h, 4.5 h TTW. There was no increase in cerebral hemorrhage compared with untreated group after rhPro-UK administration. Conclusions: RhPro-UK had an obvious therapeutic effect on ischemic stroke caused by thrombosis, and could be started within 4.5 h TTW with less side effects of cerebral hemorrhage than that of UK.
Collapse
Affiliation(s)
- Chun-Hua Hao
- Center for Pharmacodynamic Research, Tianjin Institute of Pharmaceutical Reseach , Tianjin , China
| | - Wen-Xia Ding
- Research Institute and Center for Pharmacological Toxicology, Tasly Pharmaceutical Group Co.Ltd , Tianjn , China
| | - Qian Sun
- Research Institute and Center for Pharmacological Toxicology, Tasly Pharmaceutical Group Co.Ltd , Tianjn , China
| | - Xin-Xin Li
- Research Institute and Center for Pharmacological Toxicology, Tasly Pharmaceutical Group Co.Ltd , Tianjn , China
| | - Wei-Ting Wang
- Center for Pharmacodynamic Research, Tianjin Institute of Pharmaceutical Reseach , Tianjin , China
| | - Zhuan-You Zhao
- Center for Pharmacodynamic Research, Tianjin Institute of Pharmaceutical Reseach , Tianjin , China
| | - Li-Da Tang
- Center for Pharmacodynamic Research, Tianjin Institute of Pharmaceutical Reseach , Tianjin , China
| |
Collapse
|
4
|
Herrmann AM, Meckel S, Gounis MJ, Kringe L, Motschall E, Mülling C, Boltze J. Large animals in neurointerventional research: A systematic review on models, techniques and their application in endovascular procedures for stroke, aneurysms and vascular malformations. J Cereb Blood Flow Metab 2019; 39:375-394. [PMID: 30732549 PMCID: PMC6421248 DOI: 10.1177/0271678x19827446] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuroendovascular procedures have led to breakthroughs in the treatment of ischemic stroke, intracranial aneurysms, and intracranial arteriovenous malformations. Due to these substantial successes, there is continuous development of novel and refined therapeutic approaches. Large animal models feature various conceptual advantages in translational research, which makes them appealing for the development of novel endovascular treatments. However, the availability and role of large animal models have not been systematically described so far. Based on comprehensive research in two databases, this systematic review describes current large animal models in neuroendovascular research including their primary use. It may therefore serve as a compact compendium for researchers entering the field or looking for opportunities to refine study concepts. It also describes particular applications for ischemic stroke and aneurysm therapy, as well as for the treatment of arteriovenous malformations. It focuses on most promising study designs and readout parameters, as well as on important pitfalls in endovascular translational research including ways to circumvent them.
Collapse
Affiliation(s)
- Andrea M Herrmann
- 1 Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,2 Faculty of Veterinary Medicine, Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany
| | - Stephan Meckel
- 1 Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthew J Gounis
- 3 Department of Radiology, New England Center for Stroke Research, University of Massachusetts Medical School, Worcester, MA, USA
| | - Leona Kringe
- 1 Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,2 Faculty of Veterinary Medicine, Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany
| | - Edith Motschall
- 4 Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Christoph Mülling
- 2 Faculty of Veterinary Medicine, Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany
| | - Johannes Boltze
- 5 School of Life Sciences, University of Warwick, UK.,6 Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology and Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Bhatti MS, Tang TB, Chen HC. Ocular Blood Flow in Rabbits under Deep Anesthesia: A Real-Time Measurement Technique and Its Application in Characterizing Retinal Ischemia. Sci Rep 2018; 8:5713. [PMID: 29632320 PMCID: PMC5890247 DOI: 10.1038/s41598-018-24141-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/28/2018] [Indexed: 12/28/2022] Open
Abstract
In this study, we reported a new technique based on laser speckle flowgraphy to record the ocular blood flow in rabbits under deep anesthesia, and proposed parameters to characterize retinal ischemia. We applied the proposed technique to study the correlation of blood flow between the eyes of normal non-anesthetized animals, and to characterize the occlusion of the internal carotid artery (ICA) and external carotid artery (ECA). We established a correlation in blood flow between the eyes of non-anesthetized animals, and derived two new parameters, namely, the laterality index and vascular perfusion estimate (VPE). Our experimental results from 16 eyes (of 13 New Zealand white rabbits) showed a reduction in ocular blood flow with a significant decrease in the VPE after the occlusion of the ECA (p < 0.001). A low/minimal effect on blood flow was observed with the occlusion of the ICA. In conclusion, we demonstrated a means for the real-time measurement of the ocular blood flow in rabbits under deep anesthesia by using laser speckle flowgraphy and the VPE as an indicator of successful occlusion. The proposed technique might be applicable in quantifying the efficacy of new drugs and interventions for the treatment of retinal ischemia.
Collapse
Affiliation(s)
- Mehwish Saba Bhatti
- Centre for Intelligent Signal and Imaging Research (CISIR), Department of Electrical & Electronic Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia
| | - Tong Boon Tang
- Centre for Intelligent Signal and Imaging Research (CISIR), Department of Electrical & Electronic Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia.
| | - Hui Cheng Chen
- Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia
| |
Collapse
|
6
|
Chen PC, Shoa KH, Jao JC, Hsiao CC. Dynamic magnetic resonance imaging of carbogen challenge on awake rabbit brain at 1.5T. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2018; 26:997-1009. [PMID: 30223421 DOI: 10.3233/xst-180395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND Anesthesia may alter the cellular components contributing to the magnetic resonance imaging (MRI) signal intensities. Developing awake animal models to evaluate cerebral function has grown in importance. OBJECTIVE To investigate a noninvasive strategy for dynamic MRI (dMRI) of awake rabbits during carbogen challenge. METHODS A nonmetallic assistive device with a self-adhering wrap secure procedure was developed for the head fixation of awake rabbits. Multi-shot gradient echo echo-planar imaging sequence was applied for the dMRI on a 1.5 T clinical MRI scanner with a quadrature head coil. The carbogen challenge pattern was applied in a sequence of air - carbogen - air - carbogen - air. Twelve scans were performed for each block of carbogen challenge. T2-weighted fast-spin echo and T1-weighted gradient echo sequences were performed before and after dMRI to evaluate the head position shifts. The whole dMRI scan time was about 30 minutes. RESULTS The position shift of 8 rabbits in the x-and y-direction was less than 3%. The average MRI signal intensities (SI) from the 8 rabbits during carbogen challenge was fitted well using exponential growth and decay functions. The average MRI SI increase due to carbogen inhaling was 1.51%. CONCLUSIONS The proposed strategy for head dMRI on an awake rabbit during carbogen challenge is feasible.
Collapse
Affiliation(s)
- Po-Chou Chen
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan, ROC
| | - Kuan-Hsiung Shoa
- Department of Radiology, Jhong Jheng Orthopedic Hospital, Kaohsiung City, Taiwan, ROC
| | - Jo-Chi Jao
- Department of Medical Imaging and Radiological Sciences, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City, Taiwan, ROC
| | - Chia-Chi Hsiao
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan, ROC
| |
Collapse
|
7
|
Hao CH, Ding WX, Sun Q, Li XX, Wang WT, Zhao ZY, Tang LD. Effect of human recombinant prourokinase(rhpro-UK) on thromboembolic stroke in rats. Eur J Pharmacol 2017; 818:429-434. [PMID: 29154937 DOI: 10.1016/j.ejphar.2017.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 11/24/2022]
Abstract
We evaluated the efficacy and safety of human recombinant prourokinase ( rhpro-UK) on thromboembolic stroke in rats. 60 rats with thromboembolic stroke were divided into 6 groups (n = 10). The model group was given saline, the reagent groups were given rhpro-UK (5, 10, 20 × 104U/kg), and positive control groups were given urokinase (UK) 10 × 104U/kg and recombinant tissue plasminogen activator (rt-PA) 9mg/kg through intravenous infusion at 1.5h after embolism. And other 10 rats without occluded by autologous blood clots as the sham group were given saline. At 6h after treatment, neurological deficit score and Magnetic Resonance Imaging(MRI) including T1WI and T2WI sequence scanning were measured. At 24h after treatment, the brain was cut for 2,3,5-triphenyltetrazolium chloride (TTC) staining and aspectrophotometric assay to measure the infarct area and intracerebral hemorrhage after neurological deficit detection. rhpro-UK (5, 10, 20 × 104 U/kg) improved neurological disorder by 39.1 ± 19.7% (n = 10, P > 0.05), 65.2 ± 14.2% (n = 10, P < 0.01) and 65.2 ± 14.2% (n = 10, P < 0.01) maximally; decreased brain lesion volume by 36.7 ± 34.8% (n = 10, P < 0.05), 77.6 ± 7.7% (n = 10, P < 0.01) and 80.5 ± 6.9% (n = 10, P < 0.01); decreased infarction area by 38.2 ± 24.0% (n = 10, P < 0.01), 73.9 ± 5.2% (n = 10, P < 0.001) and 79.7 ± 4.0% (n = 10, P < 0.001) respectively, and there were no statistics difference between rhpro-UK (5, 10, 20 × 104 U/kg) and each positive groups at intracerebral hemorrhage (P > 0.05). Rhpro-UK improved the damaged neural function, decreased the extent of the disease and did not raise bleeding, had protective effects for cerebral ischemia in rats.
Collapse
Affiliation(s)
- Chun-Hua Hao
- Tianjin Institute of Pharmaceutical Research, 300301, China
| | - Wen-Xia Ding
- Tasly Pharmaceutical Group Co. Ltd, 300410, China
| | - Qian Sun
- Tasly Pharmaceutical Group Co. Ltd, 300410, China
| | - Xin-Xin Li
- Tasly Pharmaceutical Group Co. Ltd, 300410, China
| | - Wei-Ting Wang
- Tianjin Institute of Pharmaceutical Research, 300301, China.
| | - Zhuan-You Zhao
- Tianjin Institute of Pharmaceutical Research, 300301, China
| | - Li-da Tang
- Tianjin Institute of Pharmaceutical Research, 300301, China.
| |
Collapse
|
8
|
Hao C, Ding W, Xu X, Sun Q, Li X, Wang W, Zhao Z, Tang L. Effect of recombinant human prourokinase on thrombolysis in a rabbit model of thromboembolic stroke. Biomed Rep 2017; 8:77-84. [PMID: 29387392 DOI: 10.3892/br.2017.1013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/10/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the efficacy of recombinant human prourokinase (rhPro-UK) on thromboembolic stroke in rabbits. A total of 210 rabbits were used in experiments. The 180 thromboembolic stroke rabbits were divided into three therapeutic time windows with six groups in each time window (n=10). The model group was administered saline, the reagent groups were administered rhPro-UK (2.5×, 5× and 10×104 U/kg), and the positive control groups were administered 5×104 urokinase (UK) U/kg and 4.5 mg/kg recombinant human tissue plasminogen activator via intravenous infusion at 3, 4.5 and 6 h after embolism. The remaining 30 rats (that had not undergone occlusion by autologous blood clots) served as a sham group and were administered saline. The radioactive intensity was detected using a medical gamma counter before and after the administration of the drug for 15, 30, 45, 60, 75, 90, 105 and 120 min. At 24 h after treatment, the brain samples were coronally sliced into 5 mm sections and hemorrhage was estimated used a semiquantitative method by counting the number of section faces with hemorrhaging. The plasma was collected for prothrombin time, activated partial thromboplastin time, fibrinogen and thrombin time tests using a solidification method with a blood coagulation factor analyzer. In addition, α2-antiplasmin (α2-AP) was evaluated using ELISA methods using a RT-6100 microplate reader. At the 3 h time point, the thrombolysis rate of rhPro-UK(2.5×, 5× and 10×104 U/kg) was 21.5% (P<0.05), 36.8% (P<0.001) and 55.0% (P<0.001), respectively together with patency rates of 10% (P>0.05), 40% (P<0.05) and 70% (P<0.001). Furthermore, α2-AP levels were reduced by 5.3% (P>0.05), 5.3% (P>0.05) and 18.1% (P<0.05). At the 4.5 h time point, the thrombolysis rate was 18.8% (P<0.05), 29.9% (P<0.01) and 49.0% (P<0.001) together with patency rates of 10% (P>0.05), 30% (P<0.05) and 50% (P<0.01), and α2-AP levels were reduced by 2.4% (P>0.05), 6.5% (P>0.05) and 17.8% (P<0.05). At the 6 h time point, the thrombolysis rate was 14.7% (P<0.05), 24.1%(P<0.01) and 35.7% (P<0.001) together with patency rates of 20% (P>0.05), 30% (P<0.05) and 40% (P<0.01), and α2-AP levels were reduced by 5.7% (P>0.05), 12.7% (P>0.05) and 22.2% (P<0.01). No significant differences (P>0.05) were identified between rhPro-UK (2.5×, 5× and 10×104 U/kg) and the model group regarding hemorrhage type, size and blood coagulation factors at the different time points. Thus, rhPro-UK promoted thrombolysis and recanalization (patency rate), with reduced risk of cerebral hemorrhage, and thus exerted protective effects on cerebral ischemia rabbits.
Collapse
Affiliation(s)
- Chunhua Hao
- State Key Laboratory of Pharmacokinetics and Pharmacodynamics, Tianjin Institute of Pharmaceutical Research, Tianjin 300010, P.R. China
| | - Wenxia Ding
- Institute of Pharmacology and Toxicology, Tasly Pharmaceutical Co., Ltd., Tianjin 300412, P.R. China
| | - Xiangwei Xu
- State Key Laboratory of Pharmacokinetics and Pharmacodynamics, Tianjin Institute of Pharmaceutical Research, Tianjin 300010, P.R. China
| | - Qian Sun
- Institute of Pharmacology and Toxicology, Tasly Pharmaceutical Co., Ltd., Tianjin 300412, P.R. China
| | - Xinxin Li
- Institute of Pharmacology and Toxicology, Tasly Pharmaceutical Co., Ltd., Tianjin 300412, P.R. China
| | - Weiting Wang
- State Key Laboratory of Pharmacokinetics and Pharmacodynamics, Tianjin Institute of Pharmaceutical Research, Tianjin 300010, P.R. China
| | - Zhuanyou Zhao
- State Key Laboratory of Pharmacokinetics and Pharmacodynamics, Tianjin Institute of Pharmaceutical Research, Tianjin 300010, P.R. China
| | - Lida Tang
- State Key Laboratory of Pharmacokinetics and Pharmacodynamics, Tianjin Institute of Pharmaceutical Research, Tianjin 300010, P.R. China
| |
Collapse
|
9
|
Zhang Y, Jin M, Du B, Lin H, Xu C, Jiang W, Jia J. A Novel Canine Model of Acute Vertebral Artery Occlusion. PLoS One 2015; 10:e0142251. [PMID: 26545253 PMCID: PMC4636284 DOI: 10.1371/journal.pone.0142251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/20/2015] [Indexed: 11/24/2022] Open
Abstract
Background The extended time window and theoretic reduction in hemorrhage make mechanical strategies an attractive approach for the treatment of patients with ischemic stroke. However, a limited availability of suitable animal models of cerebrovascular thrombosis has hampered the study of novel endovascular interventions. The aim of the present study was to develop a new technique for site-specific placement of a thrombus in a canine model that would allow for the evaluation of mechanical thrombectomy and clot retrieval methods and the visualization of thrombus dislocation or fragmentation during angiographic manipulation. Methods Angiography and embolization with a preformed thrombus were performed in 12 canines. Under fluoroscopic guidance, an embolism protection device (EPD) was anchored to the middle segment of the left vertebral artery (VA) via the left femoral arterial sheath. A preformed radiopaque clot was injected through the guide catheter into the left VA, via the contralateral femoral artery, proximal to the EPD. After 15 min of occlusion, the EPD was removed and persistent occlusion of the VA was documented angiographically. Results Angiography performed during the observation period confirmed the persistence of VA occlusion in each case, and displacement of the radiopaque clots did not occur during the 3-hour observation period. The technique allowed selective embolization of targeted vessels without thrombus fragmentation. Conclusion This study demonstrates, for the first time, a canine model of post-circulation embolism induced by autologous blood clot placement. This model can be rapidly formed and easily operated, and the site of thrombosis can be readily controlled.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Min Jin
- The Second Artillery General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Bin Du
- The Second Artillery General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Hao Lin
- The Second Artillery General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Chengyong Xu
- The Second Artillery General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Weijian Jiang
- The Second Artillery General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Jianping Jia
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
10
|
Müllhaupt D, Augsburger H, Schwarz A, Fischer G, Kircher P, Hatt JM, Ohlerth S. Magnetic resonance imaging anatomy of the rabbit brain at 3 T. Acta Vet Scand 2015; 57:47. [PMID: 26310323 PMCID: PMC4551377 DOI: 10.1186/s13028-015-0139-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 08/18/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Rabbits are widely accepted as an animal model in neuroscience research. They also represent very popular pet animals, and, in selected clinical cases with neurological signs, magnetic resonance imaging (MRI) may be indicated for imaging the rabbit brain. Literature on the normal MRI anatomy of the rabbit brain and associated structures as well as related reference values is sparse. Therefore, it was the purpose of this study to generate an MRI atlas of the normal rabbit brain including the pituitary gland, the cranial nerves and major vessels by the use of a 3 T magnet. RESULTS Based on transverse, dorsal and sagittal T2-weighted (T2w) and pre- and post-contrast 3D T1-weighted (T1w) sequences, 60 intracranial structures were identified and labeled. Typical features of a lissencephalic brain type were described. In the 5 investigated rabbits, on T1w images a crescent-shaped hyperintense area caudodorsally in the pituitary gland most likely corresponded to a part of the neurohypophysis. The optic, trigeminal, and in part, the facial, vestibulocochlear and trochlear nerves were identified. Mild contrast enhancement of the trigeminal nerve was present in all rabbits. Absolute and relative size of the pituitary gland, midline area of the cranial and caudal cranial fossa and height of the tel- and diencephalon, 3rd and 4th ventricles were also determined. CONCLUSIONS These data established normal MRI appearance and measurements of the rabbit brain. Results provide reference for research studies in rabbits and, in rare instances, clinical cases in veterinary medicine.
Collapse
|