1
|
Liu Y, Yang H, Zeng R, He L, Xiao T, Peng X, Kuang Z, Wu L. NEDD4-2 and the CLC-2 channel regulate neuronal excitability in the pathogenesis of mesial temporal lobe epilepsy. Sci Rep 2024; 14:4835. [PMID: 38418461 PMCID: PMC10902323 DOI: 10.1038/s41598-024-52399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/18/2024] [Indexed: 03/01/2024] Open
Abstract
An increasing number of studies have focused on the role of NEDD4-2 in regulating neuronal excitability and the mechanism of epilepsy. However, the exact mechanism has not yet been elucidated. Here, we explored the roles of NEDD4-2 and the CLC-2 channel in regulating neuronal excitability and mesial temporal lobe epilepsy (MTLE) pathogenesis. First, chronic MTLE models were induced by lithium-pilocarpine in developmental rats. Coimmunoprecipitation analysis revealed that the interaction between CLC-2 and NEDD4-2. Western blot analyses indicated that NEDD4-2 expression was downregulated, while phosphorylated (P-) NEDD4-2 and CLC-2 expression was upregulated in adult MTLE rats. Then, the primary hippocampal neuronal cells were isolated and cultured, and the NEDD4-2 was knocked down by shRNA vector, resulting in decreased protein levels of CLC-2. While CLC-2 absence caused increased NEDD4-2 in cells. Next, in an epileptic cell model induced by a Mg2+-free culture, whole-cell current-clamp recording demonstrated that NEDD4-2 deficiency inhibited the spontaneous action potentials of cells, and CLC-2 absence caused more significant decrease in the spontaneous action potentials of cells. In conclusion, we herein revealed that NEDD4-2 regulates the expression of CLC-2, which is involved in neuronal excitability, and participates in the pathogenesis of MTLE.
Collapse
Affiliation(s)
- Yuting Liu
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
| | - Haiyan Yang
- Department of Neurology, Hunan Children's Hospital, Changsha, 410008, Hunan, China
| | - Rongrong Zeng
- Department of Neurology, Hunan Children's Hospital, Changsha, 410008, Hunan, China
| | - Lu He
- Department of Neurology, Hunan Children's Hospital, Changsha, 410008, Hunan, China
| | - Ting Xiao
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaomei Peng
- Department of Neurology, Hunan Children's Hospital, Changsha, 410008, Hunan, China
| | - Zhuo Kuang
- Department of Neurology, Hunan Children's Hospital, Changsha, 410008, Hunan, China
| | - Liwen Wu
- Department of Neurology, Hunan Children's Hospital, Changsha, 410008, Hunan, China.
| |
Collapse
|
2
|
Geng J, Zhao H, Liu X, Geng J, Gao Y, He B. MiR-101a-3p Attenuated Pilocarpine-Induced Epilepsy by Downregulating c-FOS. Neurochem Res 2021; 46:1119-1128. [PMID: 33559830 DOI: 10.1007/s11064-021-03245-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 01/07/2023]
Abstract
This study aimed to explore the effects and function of microRNA-101a-3p (miR-101a-3p) in epilepsy. Rat model of pilocarpine-induced epilepsy was established and the seizure frequency was recorded. Expression of miR-101a-3p and c-Fos in hippocampus tissues of Rat models were detected by qRT-PCR and western blot. Besides, we established a hippocampal neuronal culture model of acquired epilepsy using Mg2+ free medium to evaluate the effects of miR-101a-3p and c-Fos in vitro. Cells were transfected with miR-101a-3p mimic, si-c-FOS, miR-101a-3p + c-FOS and its corresponding controls. MTT assay was used to detect cell viability upon transfection. Flow cytometry was performed to determine the apoptosis rate. Western blot was performed to measure the protein expression of apoptosis-related proteins (Bcl-2, Bax, and cleaved caspase 3), autophagy-related proteins (LC3 and Beclin1) and c-FOS. The targeting relationship between miR-101a-3p and c-FOS was predicted and verified by TargetScan software and dual-luciferase reporter assay. The role of miR-101a-3p was validated using epilepsy rat models in vivo. Another Rat models of pilocarpine-induced epilepsy with miR-NC or miR-101a-3p injection were established to evaluate the effect of miR-101a-3p overexpression on epilepsy in vivo. MiR-101a-3p was downregulated while c-FOS was increased in hippocampus tissues of Rat model of pilocarpine-induced epilepsy. Overexpression of miR-101a-3p or c-FOS depletion promoted cell viability, inhibited cell apoptosis and autophagy. C-FOS was a target of miR-101a-3p and miR-101a-3p negatively regulated c-FOS expression to function in epilepsy. Overexpression of miR-101a-3p attenuated pilocarpine-induced epilepsy in Rats in vivo. This study indicated that miR-101a-3p could attenuate pilocarpine-induced epilepsy by repressing c-Fos expression.
Collapse
Affiliation(s)
- Jiefeng Geng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Rd, Zhengzhou, 450052, Henan, China.
| | - Haibiao Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Rd, Zhengzhou, 450052, Henan, China
| | - Xing Liu
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junjie Geng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Rd, Zhengzhou, 450052, Henan, China
| | - Yuyuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Rd, Zhengzhou, 450052, Henan, China
| | - Bingzheng He
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Rd, Zhengzhou, 450052, Henan, China
| |
Collapse
|
3
|
Xiao Z, Peng J, Wu L, Arafat A, Yin F. The effect of IL-1β on synaptophysin expression and electrophysiology of hippocampal neurons through the PI3K/Akt/mTOR signaling pathway in a rat model of mesial temporal lobe epilepsy. Neurol Res 2017; 39:640-648. [PMID: 28372486 DOI: 10.1080/01616412.2017.1312070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhaohua Xiao
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center of Children, Changsha, China
| | - Liwen Wu
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Ahmed Arafat
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center of Children, Changsha, China
| |
Collapse
|
4
|
Tao H, Shi KH, Yang JJ, Huang C, Zhan HY, Li J. Histone deacetylases in cardiac fibrosis: current perspectives for therapy. Cell Signal 2013; 26:521-7. [PMID: 24321371 DOI: 10.1016/j.cellsig.2013.11.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 11/30/2013] [Accepted: 11/30/2013] [Indexed: 12/17/2022]
Abstract
Cardiac fibrosis is an important pathological feature of cardiac remodeling in heart diseases. The molecular mechanisms of cardiac fibrosis are unknown. Histone deacetylases (HDACs) are enzymes that balance the acetylation activities of histone acetyltransferases on chromatin remodeling and play essential roles in regulating gene transcription. In recent years, the role of HDACs in cardiac fibrosis initiation and progression, as well as the therapeutic effects of HDAC inhibitors, has been well studied. Moreover, numerous studies indicated that HDAC activity is associated with the development and progression of cardiac fibrosis. In this review, the innovative aspects of HDACs are discussed, with respect to biogenesis, their role in cardiac fibrosis. Furthermore, the potential applications of HDAC inhibitors in the treatment of cardiac fibrosis associated with fibroblast activation and proliferation.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China; Cardiovascular Research Center, Anhui Medical University, Hefei 230601, China
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China; Cardiovascular Research Center, Anhui Medical University, Hefei 230601, China.
| | - Jing-Jing Yang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hong-Ying Zhan
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China; Cardiovascular Research Center, Anhui Medical University, Hefei 230601, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|