1
|
QIN X, WANG C, XUE J, ZHANG J, LU X, DING S, GE L, WANG M. Efficacy of electroacupuncture on myocardial protection and postoperative rehabilitation in patients undergoing cardiac surgery with cardiopulmonary bypass: a systematic review and Meta-analysis. J TRADIT CHIN MED 2024; 44:1-15. [PMID: 38213234 PMCID: PMC10774734 DOI: 10.19852/j.cnki.jtcm.20230904.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/18/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To evaluate the efficacy of electroacupuncture (EA) intervention on myocardial protection and postoperative rehabilitation in patients undergoing cardiac surgery with cardiopulmonary bypass (CPB). METHODS Eight databases, including PubMed, Embase, the Cochrane Library, Web of Science, Chinese BioMedical Literature Database, China National Knowledge Infrastructure Database, Wanfang Data, China Science and Technology Journal Database, and two clinical trial registries, were searched. All randomized controlled trials (RCTs) related to EA intervention in cardiac surgery with CPB were collected. Based on the inclusion and exclusion criteria, two researchers independently screened articles and extracted data. After the quality evaluation, RevMan 5.3 software was used for analysis. RESULTS Fourteen RCTs involving 836 patients were included. Compared with the control treatment, EA significantly increased the incidence of cardiac automatic rebeat after aortic unclamping [relative risk (RR) = 1.15, 95% confidence interval (CI) (1.01, 1.31), P < 0.05; moderate]. Twenty-four hours after aortic unclamping, EA significantly increased the superoxide dismutase [standardized mean difference (SMD) = 0.96, 95% CI(0.32, 1.61), P < 0.05; low], and interleukin (IL)-2 [SMD = 1.33, 95% CI(0.19, 2.47), P < 0.05; very low] expression levels and decreased the malondialdehyde [SMD =-1.62, 95% CI(-2.15, -1.09), P < 0.05; moderate], tumour necrosis factor-α [SMD = -1.28, 95% CI(-2.37, -0.19), P < 0.05; moderate], and cardiac troponin I [SMD = -1.09, 95% CI(-1.85, -0.32), P < 0.05; low] expression levels as well as the inotrope scores [SMD = -0.77, 95% CI(-1.22, -0.31), P < 0.05; high]. There was no difference in IL-6 and IL-10 expression levels. The amount of intraoperative sedative [SMD = -0.31, 95% CI(-0.54, -0.09), P < 0.05; moderate] and opioid analgesic [SMD = -0.96, 95% CI(-1.53, -0.38), P < 0.05; low] medication was significantly lower in the EA group than in the control group. Moreover, the postoperative tracheal intubation time [SMD = -0.92, 95% CI(-1.40, -0.45), P < 0.05; low] and intensive care unit stay [SMD = -1.71, 95% CI(-3.06, -0.36), P < 0.05; low] were significantly shorter in the EA group than in the control group. There were no differences in the time to get out of bed for the first time, total days of antibiotic use after surgery, or postoperative hospital stay. No adverse reactions related to EA were reported in any of the included studies. CONCLUSIONS In cardiac surgery with CPB, EA may be a safe and effective strategy to reduce myocardial ischaemia-reperfusion injury and speed up the recovery of patients after surgery. These findings must be interpreted with caution, as most of the evidence was of low or moderate quality. More RCTs with larger sample sizes and higher quality are needed to provide more convincing evidence.
Collapse
Affiliation(s)
- Xiaoyu QIN
- 1 the First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Chunai WANG
- 2 Department of Anesthesiology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, China
| | - Jianjun XUE
- 2 Department of Anesthesiology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, China
| | - Jie ZHANG
- 3 the First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730030, China; Department of Anesthesiology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, China
| | - Xiaoting LU
- 1 the First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Shengshuang DING
- 1 the First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Long GE
- 4 Evidence-based Medicine Center, Lanzhou University, Lanzhou 730030, China
| | - Minzhen WANG
- 5 Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
2
|
Singh M, Kadhim MM, Turki Jalil A, Oudah SK, Aminov Z, Alsaikhan F, Jawhar ZH, Ramírez-Coronel AA, Farhood B. A systematic review of the protective effects of silymarin/silibinin against doxorubicin-induced cardiotoxicity. Cancer Cell Int 2023; 23:88. [PMID: 37165384 PMCID: PMC10173635 DOI: 10.1186/s12935-023-02936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
PURPOSE Although doxorubicin chemotherapy is commonly applied for treating different malignant tumors, cardiotoxicity induced by this chemotherapeutic agent restricts its clinical use. The use of silymarin/silibinin may mitigate the doxorubicin-induced cardiac adverse effects. For this aim, the potential cardioprotective effects of silymarin/silibinin against the doxorubicin-induced cardiotoxicity were systematically reviewed. METHODS In this study, we performed a systematic search in accordance with PRISMA guideline for identifying all relevant studies on "the role of silymarin/silibinin against doxorubicin-induced cardiotoxicity" in different electronic databases up to June 2022. Sixty-one articles were obtained and screened based on the predefined inclusion and exclusion criteria. Thirteen eligible papers were finally included in this review. RESULTS According to the echocardiographic and electrocardiographic findings, the doxorubicin-treated groups presented a significant reduction in ejection fraction, tissue Doppler peak mitral annulus systolic velocity, and fractional shortening as well as bradycardia, prolongation of QT and QRS interval. However, these echocardiographic abnormalities were obviously improved in the silymarin plus doxorubicin groups. As well, the doxorubicin administration led to induce histopathological and biochemical changes in the cardiac cells/tissue; in contrast, the silymarin/silibinin co-administration could mitigate these induced alterations (for most of the cases). CONCLUSION According to the findings, it was found that the co-administration of silymarin/silibinin alleviates the doxorubicin-induced cardiac adverse effects. Silymarin/silibinin exerts its cardioprotective effects via antioxidant, anti-inflammatory, anti-apoptotic activities, and other mechanisms.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Physical Education, University of Jammu, Srinagar, Jammu, India
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
- Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Arinno A, Maneechote C, Khuanjing T, Prathumsap N, Chunchai T, Arunsak B, Nawara W, Kerdphoo S, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. Melatonin and metformin ameliorated trastuzumab-induced cardiotoxicity through the modulation of mitochondrial function and dynamics without reducing its anticancer efficacy. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166618. [PMID: 36494039 DOI: 10.1016/j.bbadis.2022.166618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Trastuzumab has an impressive level of efficacy as regards antineoplasticity, however it can cause serious cardiotoxic side effects manifested by impaired cardiac contractile function. Although several pharmacological interventions, including melatonin and metformin, have been reported to protect against various cardiovascular diseases, their potential roles in trastuzumab-induced cardiotoxicity remain elusive. We hypothesized that either melatonin or metformin co-treatment effectively attenuates trastuzumab-mediated cardiotoxicity through attenuating the impaired mitochondrial function and mitochondrial dynamics. Male Wistar rats were divided into control (normal saline, n = 8) and trastuzumab group (4 mg/kg/day for 7 days, n = 24). Rats in the trastuzumab group were subdivided into 3 interventional groups (n = 8/group), and normal saline, or melatonin (10 mg/kg/day), or metformin (250 mg/kg/day) were orally administered for 7 consecutive days. Cardiac parameters were determined, and biochemical investigations were carried out on blood and heart tissues. Trastuzumab induced left ventricular (LV) dysfunction by increasing oxidative stress, inflammation, and apoptosis. It also impaired cardiac mitochondrial function, dynamics, and autophagy. Treatment with either melatonin or metformin equally attenuated trastuzumab-induced cardiac injury, indicated by a marked reduction in inflammation, oxidative damage, cardiac mitochondrial injury, mitochondrial dynamic imbalance, autophagy dysregulation, and apoptosis, leading to improved LV function, as demonstrated by increased LV ejection fraction. Melatonin and metformin conferred equal levels of cardioprotection against trastuzumab-induced cardiotoxicity, which may provide novel and promising approaches for management of cardiotoxicity induced by trastuzumab.
Collapse
Affiliation(s)
- Apiwan Arinno
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthip Prathumsap
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wichwara Nawara
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
4
|
Hanna M, Seddiek H, Aboulhoda BE, Morcos GNB, Akabawy AMA, Elbaset MA, Ibrahim AA, Khalifa MM, Khalifah IM, Fadel MS, Shoukry T. Synergistic cardioprotective effects of melatonin and deferoxamine through the improvement of ferritinophagy in doxorubicin-induced acute cardiotoxicity. Front Physiol 2022; 13:1050598. [PMID: 36531171 PMCID: PMC9748574 DOI: 10.3389/fphys.2022.1050598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/09/2022] [Indexed: 11/08/2023] Open
Abstract
Ferritinophagy is one of the most recent molecular mechanisms affecting cardiac function. In addition, it is one of the pathways by which doxorubicin, one of the anticancer drugs commonly used, negatively impacts the cardiac muscle, leading to cardiac function impairment. This side effect limits the use of doxorubicin. Iron chelators play an important role in hindering ferritinophagy. Antioxidants can also impact ferritinophagy by improving oxidative stress. In this study, it was assumed that the antioxidant function of melatonin could promote the action of deferoxamine, an iron chelator, at the level of ferritinophagy. A total of 42 male Wistar rats (150-200 g) were divided into seven groups (n = 6) which consisted of group I: control normal, group II: doxorubicin (Dox), group III: melatonin (Mel), group IV: deferoxamine (Des), group V: Mel + Dox, group VI: Des + Dox, and group VII: Mel + Des + Dox. Groups III, V and VII were orally pretreated with melatonin 20 mg/kg/day for 7 days. Groups IV, VI and VII were treated with deferoxamine at a 250 mg/kg/dose once on D4 before Dox was given. Doxorubicin was given at a 20 mg/kg ip single dose. On the 8th day, the rats were lightly anaesthetized for electrocardiography analysis and echocardiography. Serum samples were collected and then sacrificed for tissue sampling. The following biochemical assessments were carried out: PCR of NCOA4, IREB2, FTH1, SLC7A11, and GPX4; and ELISA for serum cTnI, serum transferrin, tissue GSH, and malondialdehyde. In addition, histopathological assessment of heart injury; immunostaining of caspase-3, Bax, and Bcl2; and physiological function assessment by ECG and ECHO were carried out. Doxorubicin-induced acute significant cardiac injury with increased ferritinophagy and apoptosis responded to single and combined prophylactic treatment, in which the combined treatment showed mostly the best results. In conclusion, using melatonin as an antioxidant with an iron chelator, deferoxamine, could hinder the hazardous cardiotoxic effect of doxorubicin. However, further studies are needed to detect the impact of higher doses of melatonin and deferoxamine with a prolonged treatment period.
Collapse
Affiliation(s)
- Mira Hanna
- Department of Human Physiology, Faculty of Medicine (Kasr Al-Ainy), Cairo University, Egypt
| | - Hanan Seddiek
- Department of Human Physiology, Faculty of Medicine (Kasr Al-Ainy), Cairo University, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - George N. B. Morcos
- Department of Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Basic Medical Science, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Ahmed M. A. Akabawy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | | | - Mohamed Mansour Khalifa
- Department of Human Physiology, Faculty of Medicine (Kasr Al-Ainy), Cairo University, Egypt
- Department of Human Physiology, College of Medicine, King Saud University, Kingdom of Saudi Arabia, Riyadh, Saudi Arabia
| | - Ibtesam Mahmoud Khalifah
- Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Clinical Sciences, Faculty of Medicine, Fakeeh College for Medical Sciences, Riyadh, Saudi Arabia
| | - Mostafa Said Fadel
- Department of Basic Medical Science, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Tarek Shoukry
- Department of Human Physiology, Faculty of Medicine (Kasr Al-Ainy), Cairo University, Egypt
| |
Collapse
|
5
|
Tobeiha M, Jafari A, Fadaei S, Mirazimi SMA, Dashti F, Amiri A, Khan H, Asemi Z, Reiter RJ, Hamblin MR, Mirzaei H. Evidence for the Benefits of Melatonin in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:888319. [PMID: 35795371 PMCID: PMC9251346 DOI: 10.3389/fcvm.2022.888319] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
The pineal gland is a neuroendocrine gland which produces melatonin, a neuroendocrine hormone with critical physiological roles in the circadian rhythm and sleep-wake cycle. Melatonin has been shown to possess anti-oxidant activity and neuroprotective properties. Numerous studies have shown that melatonin has significant functions in cardiovascular disease, and may have anti-aging properties. The ability of melatonin to decrease primary hypertension needs to be more extensively evaluated. Melatonin has shown significant benefits in reducing cardiac pathology, and preventing the death of cardiac muscle in response to ischemia-reperfusion in rodent species. Moreover, melatonin may also prevent the hypertrophy of the heart muscle under some circumstances, which in turn would lessen the development of heart failure. Several currently used conventional drugs show cardiotoxicity as an adverse effect. Recent rodent studies have shown that melatonin acts as an anti-oxidant and is effective in suppressing heart damage mediated by pharmacologic drugs. Therefore, melatonin has been shown to have cardioprotective activity in multiple animal and human studies. Herein, we summarize the most established benefits of melatonin in the cardiovascular system with a focus on the molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and Endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, United States
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Arinno A, Maneechote C, Khuanjing T, Ongnok B, Prathumsap N, Chunchai T, Arunsak B, Kerdphoo S, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. Cardioprotective effects of melatonin and metformin against doxorubicin-induced cardiotoxicity in rats are through preserving mitochondrial function and dynamics. Biochem Pharmacol 2021; 192:114743. [PMID: 34453902 DOI: 10.1016/j.bcp.2021.114743] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 01/23/2023]
Abstract
Doxorubicin (Dox) is widely used in chemotherapy regimens for several malignant conditions. Unfortunately, cumulative and irreversible cardiotoxicity of Dox is the most prominent adverse effect which limits its use. Several pharmacological interventions which exert antioxidant properties, including melatonin and metformin, have demonstrated beneficial effects against various cardiac pathological conditions. However, the exact molecular mechanisms underlying their cardioprotective effects are not completely understood. We hypothesized that treatment with either melatonin or metformin provides cardioprotection against Dox-induced cardiotoxicity through mitochondrial protection. Thirty-two male Wistar rats received 6 doses of either 0.9% normal saline solution (0.9% NSS, n = 8) or Dox (3 mg/kg, i.p., n = 24). The Dox-treated rats (n = 8/group) were co-treated with: 1) Vehicle (0.9% NSS), 2) Melatonin (10 mg/kg/day), and 3) Metformin (250 mg/kg/day) for 30 consecutive days via oral gavage. Following the treatment, left ventricular (LV) function, oxidative stress, inflammation, mitochondrial function, dynamics, biogenesis and bioenergetics, mitophagy, autophagy, and apoptosis were determined. Dox induced excessive oxidative stress, inflammation, autophagy, apoptosis, reduced mitochondrial function, dynamics balance, biogenesis, and bioenergetics leading to LV dysfunction. Treatment with either melatonin or metformin exerted equal measures of cardioprotection via reducing oxidative stress, inflammation, autophagy, apoptosis, and improved mitochondrial function, dynamics balance, biogenesis, and bioenergetics in the Dox-treated rats. Melatonin and metformin exerted both anti-cancer and cardioprotective properties, suggesting they have potential roles in concomitant therapy in cancer patients receiving Dox treatment.
Collapse
Affiliation(s)
- Apiwan Arinno
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamin Ongnok
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthip Prathumsap
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
7
|
Durdagi G, Pehlivan DY, Oyar EO, Bahceci SA, Ozbek M. Effects of Melatonin and Adrenomedullin in Reducing the Cardiotoxic Effects of Doxorubicin in Rats. Cardiovasc Toxicol 2021; 21:354-364. [PMID: 33389601 DOI: 10.1007/s12012-020-09625-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/07/2020] [Indexed: 11/25/2022]
Abstract
The main disadvantage of doxorubicin (DOX) is that it has cardiotoxic side effects. Our aim is to evaluate the cardioprotective effects of adrenomedullin (ADM) and to compare these effects with melatonin (MEL), it's cardioprotective effects are well known. Rats were divided into four groups: Control group (0.9% NaCl solution, intravenously), Doxorubicin group (45 mg/kg DOX, intravenously), Doxorubicin + Melatonin group (DOX + MEL, 10 mg/kg melatonin, intraperitoneally), Doxorubicin + Adrenomedullin group (DOX + ADM, 12 µg/kg adrenomedullin, intraperitoneally). A single dose of DOX was injected to the experimental groups on day 5, and a single dose of 0.9% NaCl solution was injected to the control group through the tail vein. The animals were anesthetized and ECG recordings were obtained on day 8. For the purpose of biochemical and histological analysis, cardiac tissue biopsy was obtained after ECG recordings. Compared to the control group, the DOX group had significantly increased duration of QRS complex, PR interval, QT interval and QTc interval. QRS complex, QT interval and QTc interval were prolonged with the administration of DOX and shortened with the administration of ADM. MEL weakened the toxic effects of DOX on the cardiac tissue and it is shown histologically. DOX increased interleukins (IL-1α, IL-6, IL-18), tumor necrosis factor-α (TNF-α), hypoxia-inducible factor 1-alpha (HIF-1α), malondialdehyde (MDA), nitric oxide (NO), creatine kinase myocardial band (CK-MB), and total oxidant status (TOS) levels in cardiac tissue, while reducing total antioxidant status (TAS), superoxide dismutase (SOD) and catalase (CAT) levels. MEL administration decreased the levels of CK-MB, MDA, IL-1α, IL-6, IL-18, NO, and TNF-α, whereas ADM only decreased IL-1α, IL-18, MDA and TNF-α levels. In summary, these results show that DOX has toxic effects on rat cardiac tissue which is documented histologically, electrocardiographically and biochemically. MEL alleviated histological damage and showed improvement on the several biochemical parameters of cardiac tissue. ADM brought several electrocardiographic and biochemical parameters closer to normal values.
Collapse
Affiliation(s)
- Gulcin Durdagi
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey.
| | - Deniz Yildiz Pehlivan
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey
| | - Eser Oz Oyar
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey
| | - Selen Akyol Bahceci
- Faculty of Medicine, Department of Histology and Embryology, Izmir Katip Celebi University, Izmir, Turkey
| | - Mustafa Ozbek
- Faculty of Medicine, Department of Physiology, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
8
|
Utilizing Melatonin to Alleviate Side Effects of Chemotherapy: A Potentially Good Partner for Treating Cancer with Ageing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6841581. [PMID: 32566095 PMCID: PMC7260648 DOI: 10.1155/2020/6841581] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
Abstract
Persistent senescence seems to exert detrimental effects fostering ageing and age-related disorders, such as cancer. Chemotherapy is one of the most valuable treatments for cancer, but its clinical application is limited due to adverse side effects. Melatonin is a potent antioxidant and antiageing molecule, is nontoxic, and enhances the efficacy and reduces the side effects of chemotherapy. In this review, we first summarize the mitochondrial protective role of melatonin in the context of chemotherapeutic drug-induced toxicity. Thereafter, we tabulate the protective actions of melatonin against ageing and the harmful roles induced by chemotherapy and chemotherapeutic agents, including anthracyclines, alkylating agents, platinum, antimetabolites, mitotic inhibitors, and molecular-targeted agents. Finally, we discuss several novel directions for future research in this area. The information compiled in this review will provide a comprehensive reference for the protective activities of melatonin in the context of chemotherapy drug-induced toxicity and will contribute to the design of future studies and increase the potential of melatonin as a therapeutic agent.
Collapse
|
9
|
Najafi M, Hooshangi Shayesteh MR, Mortezaee K, Farhood B, Haghi-Aminjan H. The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review. Life Sci 2019; 241:117173. [PMID: 31843530 DOI: 10.1016/j.lfs.2019.117173] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/30/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Doxorubicin, as an effective chemotherapeutic drug, is commonly used for combating various solid and hematological tumors. However, doxorubicin-induced cardiotoxicity is considered as a serious adverse effect, and it limits the clinical use of this chemotherapeutic drug. The use of melatonin can lead to a decrease in the cardiotoxic effect induced by doxorubicin. The aim of this review was to evaluate the potential role of melatonin in the prevention of doxorubicin-induced cardiotoxicity. METHODS This review was conducted by a full systematic search strategy based on PRISMA guidelines for the identification of relevant literature in the electronic databases of PubMed, Web of Science, Embase, and Scopus up to January 2019 using search terms in the titles and abstracts. 286 articles were screened in accordance with our inclusion and exclusion criteria. Finally, 28 articles were selected in this systematic review. RESULTS The findings demonstrated that doxorubicin-treated groups had increased mortality, decreased body weight and heart weight, and increased ascites compared to the control groups; the co-administration of melatonin revealed an opposite pattern compared to the doxorubicin-treated groups. Also, this chemotherapeutic agent can lead to biochemical and histopathological changes; as for most of the cases, these alterations were reversed near to normal levels (control groups) by melatonin co-administration. Melatonin exerts these protection effects through mechanisms of anti-oxidant, anti-apoptosis, anti-inflammatory, and mitochondrial function. CONCLUSION The results of this systematic review indicated that co-administration of melatonin ameliorates the doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
10
|
Shi W, Deng H, Zhang J, Zhang Y, Zhang X, Cui G. Mitochondria-Targeting Small Molecules Effectively Prevent Cardiotoxicity Induced by Doxorubicin. Molecules 2018; 23:E1486. [PMID: 29921817 PMCID: PMC6099719 DOI: 10.3390/molecules23061486] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
Doxorubicin (Dox) is a chemotherapeutic agent widely used for the treatment of numerous cancers. However, the clinical use of Dox is limited by its unwanted cardiotoxicity. Mitochondrial dysfunction has been associated with Dox-induced cardiotoxicity. To mitigate Dox-related cardiotoxicity, considerable successful examples of a variety of small molecules that target mitochondria to modulate Dox-induced cardiotoxicity have appeared in recent years. Here, we review the related literatures and discuss the evidence showing that mitochondria-targeting small molecules are promising cardioprotective agents against Dox-induced cardiac events.
Collapse
Affiliation(s)
- Wei Shi
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| | - Hongkuan Deng
- School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
| | - Jianyong Zhang
- Pharmacy School, Zunyi Medical University, Zunyi 563003, China.
| | - Ying Zhang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| | - Xiufang Zhang
- School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
| | - Guozhen Cui
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| |
Collapse
|
11
|
Lee CH, Park JH, Ahn JH, Won MH. Effects of melatonin on cognitive impairment and hippocampal neuronal damage in a rat model of chronic cerebral hypoperfusion. Exp Ther Med 2016; 11:2240-2246. [PMID: 27284307 PMCID: PMC4887947 DOI: 10.3892/etm.2016.3216] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 10/09/2015] [Indexed: 01/01/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH), which induces oxidative stress and inflammation in the brain, has previously been associated with cognitive impairment and neuronal cell damage. Melatonin is a well-known free radical scavenger and antioxidant; therefore, the present study investigated the protective effects of melatonin against CCH-induced cognitive impairment and neuronal cell death in a CCH rat model, which was generated via permanent bilateral common carotid artery occlusion (2VO). The rats in the 2VO group exhibited markedly increased escape latencies in a Morris water maze test, as compared with the rats in the sham group. In addition, increased neuronal cell damage was detected in the hippocampal CA1 region of the 2VO rats, as compared with the rats in the sham group. Treatment of the 2VO rats with melatonin significantly reduced the escape latency and neuronal cell damage, and was associated with reduced levels of malondialdehyde, microglial activation, and tumor necrosis factor-α and interleukin-1β in the ischemic hippocampus. The results of the present study suggest that melatonin may attenuate CCH-induced cognitive impairment and hippocampal neuronal cell damage by decreasing oxidative stress, microglial activation and the production of pro-inflammatory cytokines in the ischemic hippocampus.
Collapse
Affiliation(s)
- Choong Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam 330-714, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| |
Collapse
|
12
|
Lucius K, Trukova K. Integrative Therapies and Cardiovascular Disease in the Breast Cancer Population: A Review, Part 1. Integr Med (Encinitas) 2015; 14:22-29. [PMID: 26770154 PMCID: PMC4712857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The cardiovascular toxicities of breast cancer treatment are important health problems, with potential public health consequences. Integrative therapies may represent important tools for prevention in this population. This article reviews the cardiotoxicity of conventional breast cancer therapy, including chemotherapy, radiation, and hormonal therapy. Data are presented on the benefits of substances such as curcumin, melatonin, Ginkgo biloba, resveratrol, coenzyme Q10, and l-carnitine. Although clinical studies on many of these substances are limited both in size and number, preclinical studies are available for several, and this article summarizes the potential mechanisms of action. Areas for future research are also identified.
Collapse
Affiliation(s)
- Khara Lucius
- Corresponding author: Khara Lucius, nd, fabno E-mail address:
| | | |
Collapse
|
13
|
Yang Y, Sun Y, Yi W, Li Y, Fan C, Xin Z, Jiang S, Di S, Qu Y, Reiter RJ, Yi D. A review of melatonin as a suitable antioxidant against myocardial ischemia-reperfusion injury and clinical heart diseases. J Pineal Res 2014; 57:357-66. [PMID: 25230580 DOI: 10.1111/jpi.12175] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 09/12/2014] [Indexed: 12/16/2022]
Abstract
Cardiac tissue loss is one of the most important factors leading to the unsatisfactory recovery even after treatment of ischemic heart disease. Melatonin, a circadian molecule with marked antioxidant properties, protects against ischemia-reperfusion (IR) injury. In particular, the myocardial protection of melatonin is substantial. We initially focus on the cardioprotective effects of melatonin in myocardial IR. These studies showed how melatonin preserves the microstructure of the cardiomyocyte and reduces myocardial IR injury. Thereafter, downstream signaling pathways of melatonin were summarized including Janus kinase 2/signal transducers and activators of transcription 3, nitric oxide-synthase, and nuclear factor erythroid 2 related factor 2. Herein, we propose the clinical applications of melatonin in several ischemic heart diseases. Collectively, the information summarized in this review (based on in vitro, animal, and human studies) should serve as a comprehensive reference for the action of melatonin in cardioprotection and hopefully will contribute to the design of future experimental research.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China; Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jiao L, Zhang T, Wang H, Zhang W, Fan S, Huo X, Zheng B, Ma W. Implanting iodine-125 seeds into rat dorsal root ganglion for neuropathic pain: neuronal microdamage without impacting hind limb motion. Neural Regen Res 2014; 9:1204-9. [PMID: 25206783 PMCID: PMC4146295 DOI: 10.4103/1673-5374.135326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2014] [Indexed: 12/15/2022] Open
Abstract
The use of iodine-125 (125I) in cancer treatment has been shown to relieve patients’ pain. Considering dorsal root ganglia are critical for neural transmission between the peripheral and central nervous systems, we assumed that 125I could be implanted into rat dorsal root ganglia to provide relief for neuropathic pain. 125I seeds with different radioactivity (0, 14.8, 29.6 MBq) were implanted separately through L4–5 and L5–6 intervertebral foramen into the vicinity of the L5 dorsal root ganglion. von Frey hair results demonstrated the mechanical pain threshold was elevated after implanting 125I seeds from the high radioactivity group. Transmission electron microscopy revealed that nuclear membrane shrinkage, nucleolar margination, widespread mitochondrial swelling, partial vacuolization, lysosome increase, and partial endoplasmic reticulum dilation were visible at 1,440 hours in the low radioactivity group and at 336 hours in the high radioactivity group. Abundant nuclear membrane shrinkage, partial fuzzy nuclear membrane and endoplasmic reticulum necrosis were observed at 1,440 hours in the high radioactivity group. No significant difference in combined behavioral scores was detected between preoperation and postoperation in the low and high radioactivity groups. These results suggested that the mechanical pain threshold was elevated after implanting 125I seeds without influencing motor functions of the hind limb, although cell injury was present.
Collapse
Affiliation(s)
- Ling Jiao
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Tengda Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Huixing Wang
- Second Affiliated Hospital of Tianjin Medical University, Tianjin, China
| | - Wenyi Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Saijun Fan
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Xiaodong Huo
- Second Affiliated Hospital of Tianjin Medical University, Tianjin, China
| | - Baosen Zheng
- Second Affiliated Hospital of Tianjin Medical University, Tianjin, China
| | - Wenting Ma
- Second Affiliated Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|