1
|
Santana W, de Oliveira SSC, Ramos MH, Santos ALS, Dolabella SS, Souto EB, Severino P, Jain S. Exploring Innovative Leishmaniasis Treatment: Drug Targets from Pre-Clinical to Clinical Findings. Chem Biodivers 2021; 18:e2100336. [PMID: 34369662 DOI: 10.1002/cbdv.202100336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022]
Abstract
Leishmaniasis is a group of tropical diseases caused by parasitic protozoa belonging to the genus Leishmania. The disease is categorized in cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), and visceral leishmaniasis (VL). The conventional treatment is complex and can present high toxicity and therapeutic failures. Thus, there is a continuing need to develop new treatments. In this review, we focus on the novel molecules described in the literature with potential leishmanicidal activity, categorizing them in pre-clinical (in vitro, in vivo), drug repurposing and clinical research.
Collapse
Affiliation(s)
- Wanessa Santana
- Post-Graduation Program in Industrial Biotechnology, University of Tiradentes, Aracaju, Sergipe, Brazil
| | - Simone S C de Oliveira
- Institute of Microbiology Paulo de Góes, Department of General Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana H Ramos
- Post-Graduation Program in Industrial Biotechnology, University of Tiradentes, Aracaju, Sergipe, Brazil
| | - André L S Santos
- Institute of Microbiology Paulo de Góes, Department of General Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvio S Dolabella
- Laboratory of Entomology and Tropical Parasitology, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, Portugal.,CEB - Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Patrícia Severino
- Post-Graduation Program in Industrial Biotechnology, University of Tiradentes, Aracaju, Sergipe, Brazil.,Institute of Technology and Research (ITP), University of Tiradentes, Aracaju, Sergipe, Brazil
| | - Sona Jain
- Post-Graduation Program in Industrial Biotechnology, University of Tiradentes, Aracaju, Sergipe, Brazil
| |
Collapse
|
2
|
Bemani E, Oryan A, Bahrami S. Effectiveness of amiodarone in treatment of cutaneous leishmaniasis caused by Leishmania major. Exp Parasitol 2019; 205:107747. [PMID: 31442454 DOI: 10.1016/j.exppara.2019.107747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 01/19/2023]
Abstract
Development of new chemotherapeutic agents is an essential issue in the treatment and control of a disease. This study aimed to evaluate the anti-leishmanial activity of amiodarone, an antiarrhythmic class III drug, against Leishmania major, the most prevalent etiological agent of cutaneous leishmaniasis in the old world. The proliferation of promastigotes and intracellular amastigotes in the absence or presence of amiodarone was estimated, in an in vitro study. For in vivo study, five weeks after infection of BALB/c mice with L. major, when the lesions appeared at the injection site, the mice were divided into four groups (n = 6 each); treatment was conducted for 28 consecutive days with vehicle, amiodarone at 40 mg/kg orally and glucantime at 60 mg/kg intraperitoneally. Therapy with amiodarone reduced the size of lesions compared to the untreated group after 12 days. Amiodarone decreased the parasite load and inflammatory responses, particularly the macrophages containing amastigotes, and enhanced granulation tissue formation in the dermis and subcutaneous area. The Tumor necrosis factor-α and Interleukin-6 levels were significantly lower in the cell culture supernatants of the inguinal lymph node in the amiodarone treated group compared to the vehicle and untreated groups. Amiodarone significantly increased the activity of glutathione peroxidase in comparison to the vehicle and untreated groups but did not affect the plasma levels of superoxide dismutase, malondialdehyde, adiponectin, and ferric reducing ability of plasma. Therefore, the anti- L. major activity and immunomodulatory effects of amiodarone reduced the parasitic load and enhanced wound healing in cutaneous leishmaniasis in BALB/c mice. Amiodarone reduced the lesion surface area, but it did not cure it completely.
Collapse
Affiliation(s)
- E Bemani
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - A Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - S Bahrami
- Department of Parasitology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
3
|
Oryan A, Bemani E, Bahrami S. Emerging role of amiodarone and dronedarone, as antiarrhythmic drugs, in treatment of leishmaniasis. Acta Trop 2018; 185:34-41. [PMID: 29689189 DOI: 10.1016/j.actatropica.2018.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/14/2022]
Abstract
Leishmaniasis is a group of human and animal diseases causing 20,000-40,000 annual deaths and its etiological agents belong to the Leishmania genus. The most current treatment against leishmaniasis is chemotherapy. Pentavalent antimonials such as glucantime and pentostam have been administrated as the first-line drugs in treatment of various forms of leishmaniasis. The second-line drugs such as amphotericin B, liposomal amphotericin B, miltefosine, pentamidine, azole drugs and paromomycin are used in resistant cases to pentavalent antimonials. Because of drawbacks of the first-line and second-line drugs including adverse side effects on different organs, increasing resistance, high cost, need to hospitalization and long-term treatment, it is necessary to find an alternative drug for leishmaniasis treatment. Several investigations have reported the effectiveness of amiodarone, the most commonly used antiarrhythmic drug, against fungi, Trypanosomes and Leishmania spp. in vitro, in vivo and clinical conditions. Moreover, the beneficial effects of dronedarone, amiodarone analogues, against Trypanosoma cruzi and Leishmania mexicana have recently been demonstrated and such treatment regimens resulted in lower side effects. The anti- leishmanial and anti- trypanosomal effectiveness of amiodarone and dronedarone has been attributed to destabilization of intracellular Ca2+ homeostasis, inhibition of sterol biosynthesis and collapse of mitochondrial membrane potential. Because of relative low cost, excellent pharmacokinetic properties, easy accessibility and beneficial effects of amiodarone and dronedarone on leishmaniasis, they are proper candidates to replace the current drugs used in leishmaniasis treatment.
Collapse
Affiliation(s)
- A Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - E Bemani
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - S Bahrami
- Department of Parasitology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
4
|
Rameshrad M, Razavi BM, Hosseinzadeh H. Protective effects of green tea and its main constituents against natural and chemical toxins: A comprehensive review. Food Chem Toxicol 2016; 100:115-137. [PMID: 27915048 DOI: 10.1016/j.fct.2016.11.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 01/26/2023]
Abstract
Toxins are natural or chemical poisonous substances with severe side effects on health. Humans are generally exposed by widespread toxic contaminations via air, soil, water, food, fruits and vegetables. Determining a critical antidote agent with extensive effects on different toxins is an ultimate goal for all toxicologists. Traditional medicine is currently perceived as a safe and natural approach against toxins. In this regard, we focused on the protective effects of green tea (Camellia sinensis) and its main components such as catechin, epicatechin, epicatechin gallate, gallocatechin, epigallocatechin and epigallocatechin gallate as a principal source of antioxidants against both natural and chemical toxins. This literate review demonstrates that protective effects of green tea and its constituents were mainly attributed to their anti-oxidative, radical scavenging, chelating, anti-apoptotic properties and modulating inflammatory responses. Although, some studies reveal they have protective effects by increasing toxin metabolism and neutralizing PLA2, proteases, hyaluronidase and l-amino acid oxidase enzymes.
Collapse
Affiliation(s)
- Maryam Rameshrad
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Zhang Y, Liu J, Liu Z, Wang M, Wang J, Lu S, Zhu L, Zeng X, Liang S. Effects of the venom of the spider Ornithoctonus hainana on neonatal rat ventricular myocytes cellular and ionic electrophysiology. Toxicon 2014; 87:104-12. [PMID: 24930961 DOI: 10.1016/j.toxicon.2014.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/22/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
Abstract
Cardiac ion channels are membrane-spanning proteins that allow the passive movement of ions across the cell membrane along its electrochemical gradient, which regulates the resting membrane potential as well as the shape and duration of the cardiac action potential. Additionally, they have been recognized as potential targets for the actions of neurotransmitters, hormones and drugs of cardiac diseases. Spider venoms contain high abundant of toxins that target diverse ion channels and have been considered as a potential resource of new constituents with specific pharmacological properties. However, few peptides from spider venoms were detected as cardiac channel antagonists. In order to explore the effects of the venom of Ornithoctonus hainana on the action potential and ionic currents of neonatal rat ventricular myocytes (NRVMs), whole cell patch clamp technique was used to record action potential duration (APD), sodium current (INa), L calcium current (ICaL), rapidly activating and inactivating transient outward currents (Ito1), rapid (IKr) and slow (IKs) components of the delayed rectifier currents and the inward rectifier currents (IK1). Our results showed that 100 μg/mL venom obviously prolonged APDs. Significantly, the venom could inhibit INa and ICaL effectively, while no evident inhibitory effects on cardiac K(+) channels (Ito1, Iks, Ikr and Ik1) were observed, suggesting that the venom represented a multifaceted pharmacological profile. The effect of venom on Na(+) and Ca(2+) currents of ventricular myocytes revealed that the hainan venom as a rich resource of cardiac channel antagonists might be valuable tools for the investigation of both channels and drug development.
Collapse
Affiliation(s)
- Yiya Zhang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Jinyan Liu
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Zhonghua Liu
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Meichi Wang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Jing Wang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Shanshan Lu
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Li Zhu
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Xiongzhi Zeng
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China.
| | - Songping Liang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|