1
|
Mshaik R, Simonet J, Georgievski A, Jamal L, Bechoua S, Ballerini P, Bellaye PS, Mlamla Z, Pais de Barros JP, Geissler A, Francin PJ, Girodon F, Garrido C, Quéré R. HSP90 inhibitor NVP-BEP800 affects stability of SRC kinases and growth of T-cell and B-cell acute lymphoblastic leukemias. Blood Cancer J 2021; 11:61. [PMID: 33737511 PMCID: PMC7973815 DOI: 10.1038/s41408-021-00450-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
T-cell and B-cell acute lymphoblastic leukemias (T-ALL, B-ALL) are aggressive hematological malignancies characterized by an accumulation of immature T- or B-cells. Although patient outcomes have improved, novel targeted therapies are needed to reduce the intensity of chemotherapy and improve the prognosis of high-risk patients. Using cell lines, primary cells and patient-derived xenograft (PDX) models, we demonstrate that ALL cells viability is sensitive to NVP-BEP800, an ATP-competitive inhibitor of Heat shock protein 90 (HSP90). Furthermore, we reveal that lymphocyte-specific SRC family kinases (SFK) are important clients of the HSP90 chaperone in ALL. When PDX mice are treated with NVP-BEP800, we found that there is a decrease in ALL progression. Together, these results demonstrate that the chaperoning of SFK by HSP90 is involved in the growth of ALL. These novel findings provide an alternative approach to target SRC kinases and could be used for the development of new treatment strategies for ALL.
Collapse
Affiliation(s)
- Rony Mshaik
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique de Bourgogne Franche-Comté, Dijon, France
| | - John Simonet
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
| | | | - Layla Jamal
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
| | - Shaliha Bechoua
- Centre de Ressources Biologiques Ferdinand Cabanne, Hôpital Universitaire François Mitterrand, Dijon, France
| | - Paola Ballerini
- Laboratoire d'Hématologie, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - Pierre-Simon Bellaye
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
- Centre Georges-François Leclerc, Dijon, France
| | - Zandile Mlamla
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
- Plateforme de Lipidomique, Université de Bourgogne Franche-Comté, Dijon, France
| | - Jean-Paul Pais de Barros
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique de Bourgogne Franche-Comté, Dijon, France
- Plateforme de Lipidomique, Université de Bourgogne Franche-Comté, Dijon, France
| | - Audrey Geissler
- Plateforme d'Imagerie Cellulaire, CellImaP, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pierre-Jean Francin
- Laboratoire de Génétique Chromosomique et Moléculaire, Plateau Technique de Biologie, Hôpital Universitaire François Mitterrand, Dijon, France
| | - François Girodon
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
- Service d'Hématologie Biologique, Hôpital Universitaire François Mitterrand, Dijon, France
| | - Carmen Garrido
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique de Bourgogne Franche-Comté, Dijon, France
- Centre Georges-François Leclerc, Dijon, France
| | - Ronan Quéré
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France.
- LipSTIC LabEx, Fondation de Coopération Scientifique de Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
2
|
Krawczyk MA, Pospieszynska A, Styczewska M, Bien E, Sawicki S, Marino Gammazza A, Fucarino A, Gorska-Ponikowska M. Extracellular Chaperones as Novel Biomarkers of Overall Cancer Progression and Efficacy of Anticancer Therapy. APPLIED SCIENCES 2020; 10:6009. [DOI: 10.3390/app10176009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Exosomal heat shock proteins (Hsps) are involved in intercellular communication both in physiological and pathological conditions. They play a role in key processes of carcinogenesis including immune system regulation, cell differentiation, vascular homeostasis and metastasis formation. Thus, exosomal Hsps are emerging biomarkers of malignancies and possible therapeutic targets. Adolescents and young adults (AYAs) are patients aged 15–39 years. This age group, placed between pediatric and adult oncology, pose a particular challenge for cancer management. New biomarkers of cancer growth and progression as well as prognostic factors are desperately needed in AYAs. In this review, we attempted to summarize the current knowledge on the role of exosomal Hsps in selected solid tumors characteristic for the AYA population and/or associated with poor prognosis in this age group. These included malignant melanoma, brain tumors, and breast, colorectal, thyroid, hepatocellular, lung and gynecological tract carcinomas. The studies on exosomal Hsps in these tumors are limited; however; some have provided promising results. Although further research is needed, there is potential for future clinical applications of exosomal Hsps in AYA cancers, both as novel biomarkers of disease presence, progression or relapse, or as therapeutic targets or tools for drug delivery.
Collapse
|
3
|
Hsp90β promotes aggressive vasculogenic mimicry via epithelial-mesenchymal transition in hepatocellular carcinoma. Oncogene 2018; 38:228-243. [PMID: 30087438 DOI: 10.1038/s41388-018-0428-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 01/20/2023]
Abstract
Hepatocellular carcinoma (HCC) is a typical hypervascular solid tumor. Vasculogenic mimicry (VM) formed by aggressive tumor cells to mimic vasculogenic networks plays an important role in the tumor malignancy of HCC. Hsp90β promotes endothelial cell-dependent angiogenesis in HCC. However, the relationship between Hsp90β and VM formation is unclear. In this study, we found that Hsp90β is positively correlated with VM and EMT marker proteins in HCC tissues and promotes tube formation, cell migration, and invasion in vitro. Hsp90β interacts with Twist1 and promotes its deubiquitination and stabilization to nuclear translocation and enhances the VE-cadherin promoter activity. Results of in vitro analysis indicate that Hsp90β enhances the tumor VM in tumor-burdened mice, and the Hsp90 inhibitor NVP-BEP800 suppresses VM formation by releasing Hsp90β and Twist1 interaction. This study provides a potential antitumor therapy for inhibiting VM by targeting Hsp90β in HCC.
Collapse
|
4
|
Rajesh Y, Biswas A, Mandal M. Glioma progression through the prism of heat shock protein mediated extracellular matrix remodeling and epithelial to mesenchymal transition. Exp Cell Res 2017; 359:299-311. [PMID: 28844885 DOI: 10.1016/j.yexcr.2017.08.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/09/2023]
Abstract
Glial tumor is one of the intrinsic brain tumors with high migratory and infiltrative potential. This essentially contributes to the overall poor prognosis by circumvention of conventional treatment regimen in glioma. The underlying mechanism in gliomagenesis is bestowed by two processes- Extracellular matrix (ECM) Remodeling and Epithelial to mesenchymal transition (EMT). Heat Shock Family of proteins (HSPs), commonly known as "molecular chaperons" are documented to be upregulated in glioma. A positive correlation also exists between elevated expression of HSPs and invasive capacity of glial tumor. HSPs overexpression leads to mutational changes in glioma, which ultimately drive cells towards EMT, ECM modification, malignancy and invasion. Differential expression of HSPs - a factor providing cytoprotection to glioma cells, also contributes towards its radioresistance /chemoresistance. Various evidences also display upregulation of EMT and ECM markers by various heat shock inducing proteins e.g. HSF-1. The aim of this review is to study in detail the role of HSPs in EMT and ECM leading to radioresistance/chemoresistance of glioma cells. The existing treatment regimen for glioma could be enhanced by targeting HSPs through immunotherapy, miRNA and exosome mediated strategies. This could be envisaged by better understanding of molecular mechanisms underlying glial tumorigenesis in relation to EMT and ECM remodeling under HSPs influence. Our review might showcase fresh potential for the development of next generation therapeutics for effective glioma management.
Collapse
Affiliation(s)
- Y Rajesh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Angana Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
5
|
Advances in HSP27 and HSP90-targeting strategies for glioblastoma. J Neurooncol 2016; 127:209-19. [PMID: 26842818 DOI: 10.1007/s11060-016-2070-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/26/2016] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. There is a critical need for novel strategies to abolish the molecular mechanisms that support GBM growth, invasion and treatment resistance. The heat shock proteins, HSP27 and HSP90, serve these pivotal roles in tumor cells and have been identified as effective targets for developing therapeutics. Natural and synthetic inhibitors have been evaluated in clinical trials for several forms of systemic cancer but none as yet for GBM. This topic review summarizes the current preclinical evidence and rationale to define the potential of HSP27 and HSP90 inhibitors in GBM management.
Collapse
|
6
|
O'Connell BC, O'Callaghan K, Tillotson B, Douglas M, Hafeez N, West KA, Stern H, Ali JA, Changelian P, Fritz CC, Palombella VJ, McGovern K, Kutok JL. HSP90 inhibition enhances antimitotic drug-induced mitotic arrest and cell death in preclinical models of non-small cell lung cancer. PLoS One 2014; 9:e115228. [PMID: 25542032 PMCID: PMC4277299 DOI: 10.1371/journal.pone.0115228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/20/2014] [Indexed: 11/18/2022] Open
Abstract
HSP90 inhibitors are currently undergoing clinical evaluation in combination with antimitotic drugs in non-small cell lung cancer (NSCLC), but little is known about the cellular effects of this novel drug combination. Therefore, we investigated the molecular mechanism of action of IPI-504 (retaspimycin HCl), a potent and selective inhibitor of HSP90, in combination with the microtubule targeting agent (MTA) docetaxel, in preclinical models of NSCLC. We identified a subset of NSCLC cell lines in which these drugs act in synergy to enhance cell death. Xenograft models of NSCLC demonstrated tumor growth inhibition, and in some cases, regression in response to combination treatment. Treatment with IPI-504 enhanced the antimitotic effects of docetaxel leading to the hypothesis that the mitotic checkpoint is required for the response to drug combination. Supporting this hypothesis, overriding the checkpoint with an Aurora kinase inhibitor diminished the cell death synergy of IPI-504 and docetaxel. To investigate the molecular basis of synergy, an unbiased stable isotope labeling by amino acids in cell culture (SILAC) proteomic approach was employed. Several mitotic regulators, including components of the ubiquitin ligase, anaphase promoting complex (APC/C), were specifically down-regulated in response to combination treatment. Loss of APC/C by RNAi sensitized cells to docetaxel and enhanced its antimitotic effects. Treatment with a PLK1 inhibitor (BI2536) also sensitized cells to IPI-504, indicating that combination effects may be broadly applicable to other classes of mitotic inhibitors. Our data provide a preclinical rationale for testing the combination of IPI-504 and docetaxel in NSCLC.
Collapse
Affiliation(s)
- Brenda C. O'Connell
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
- * E-mail:
| | - Katie O'Callaghan
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
| | - Bonnie Tillotson
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
| | - Mark Douglas
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
| | - Nafeeza Hafeez
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
| | - Kip A. West
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
| | - Howard Stern
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
| | - Janid A. Ali
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
| | - Paul Changelian
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
| | | | | | - Karen McGovern
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
| | - Jeffery L. Kutok
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
| |
Collapse
|