1
|
Meng X, Wang H, Kuang Z, Wu Y, Su X, Wang J, Li L, Liu C, Jia M. Traditional use, phytochemistry and pharmacology of Viticis Fructus. Heliyon 2023; 9:e19144. [PMID: 37810114 PMCID: PMC10558315 DOI: 10.1016/j.heliyon.2023.e19144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 10/10/2023] Open
Abstract
Ethnopharmacological relevance Viticis Fructus (called Manjingzi in China) is the dried ripe fruits of the plant species Vitex trifolia subsp. litoralis Steenis and Vitex trifolia L. in the family Lamiaceae. Viticis Fructus has been used as a traditional Chinese medicine for thousands of years to treat illness such as colds, headache, vertigo, anesthesia, and hyperkinesias. More chemical constituents and medicinal effects have been discovered in Viticis Fructus with the development of modern technology.The aim of the review: This review aims to analyze the research progress of Viticis Fructus from the aspects of botany, ethnopharmacology, phytochemistry, and pharmacological activity, as well as to provide an outlook on the research and use prospects of Viticis Fructus. Material and methods A comprehensive literature search using online databases such Science Direct, CNKI, Wiley online library, Spring Link, Web of Science, PubMed, Wanfang Data and SCI-Finder. In addition, information was obtained from local and foreign books on ethnobotany and ethnomedicine. Results The application of Viticis Fructus as a medicine can be traced back to around 480 AD. So far, more than 190 compounds have been isolated from Viticis Fructus, including flavonoids, sterols, cyclic enol ether terpenoids, and diterpenoids. Modern pharmacological studies have shown that the extracts of Viticis Fructus have various pharmacological effects, such as anti-allergic, antioxidant, anti-inflammatory, anti-cancer, and anti-bacterial effects. Conclusion As a widely used traditional medicine, Viticis Fructus is rich in chemical compositions and has an obvious biological activity. However, the application and pharmacological activity of Viticis Fructus have not been scientifically evaluated or convincing due to poor methodology, unclear results and lack of clinical data. Systematic and comprehensive research evaluations are needed to verify its pharmaceutical activity, clinical therapeutic efficacy and safety. As an important herbal medicine, it should be further explored to facilitate the development of new medicines and treatments for a variety of diseases.
Collapse
Affiliation(s)
- Xiangqing Meng
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Zhixuan Kuang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Yujie Wu
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Xiaohui Su
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Jinyi Wang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Ling Li
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Chang Liu
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Min Jia
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| |
Collapse
|
2
|
Carbone K, Gervasi F, Kozhamzharova L, Altybaeva N, Sönmez Gürer E, Sharifi-Rad J, Hano C, Calina D. Casticin as potential anticancer agent: recent advancements in multi-mechanistic approaches. Front Mol Biosci 2023; 10:1157558. [PMID: 37304067 PMCID: PMC10250667 DOI: 10.3389/fmolb.2023.1157558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Plants, with their range of pharmacologically active molecules, represent the most promising source for the production of new anticancer drugs and for the formulation of adjuvants in chemotherapy treatments to reduce drug content and/or counteract the side effects of chemotherapy. Casticin is a major bioactive flavonoid isolated from several plants, mainly from the Vitex species. This compound is well known for its anti-inflammatory and antioxidant properties, which are mainly exploited in traditional medicine. Recently, the antineoplastic potential of casticin has attracted the attention of the scientific community for its ability to target multiple cancer pathways. The purpose of this review is, therefore, to present and critically analyze the antineoplastic potential of casticin, highlighting the molecular pathways underlying its antitumor effects. Bibliometric data were extracted from the Scopus database using the search strings "casticin" and "cancer" and analyzed using VOSviewer software to generate network maps to visualize the results. Overall, more than 50% of the articles were published since 2018 and even more recent studies have expanded the knowledge of casticin's antitumor activity by adding interesting new mechanisms of action as a topoisomerase IIα inhibitor, DNA methylase 1 inhibitor, and an upregulator of the onco-suppressive miR-338-3p. Casticin counteracts cancer progression through the induction of apoptosis, cell cycle arrest, and metastasis arrest, acting on several pathways that are generally dysregulated in different types of cancer. In addition, they highlight that casticin can be considered as a promising epigenetic drug candidate to target not only cancer cells but also cancer stem-like cells.
Collapse
Affiliation(s)
- Katya Carbone
- CREA—Research Centre for Olive, Fruit and Citrus Crops, Rome, Italy
| | - Fabio Gervasi
- CREA—Research Centre for Olive, Fruit and Citrus Crops, Rome, Italy
| | - Latipa Kozhamzharova
- Department of Scientific Works and International Relations, International Taraz Innovative Institute Named After Sherkhan Murtaza, Taraz, Kazakhstan
| | - Nazgul Altybaeva
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Al-frabi, Kazakhstan
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | | | - Christophe Hano
- Department of Biological Chemistry, Université ď Orléans, Orléans, France
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
3
|
Tung KL, Wu SZ, Yang CC, Chang HY, Chang CS, Wang YH, Huang BM, Lan YY. Cordycepin Induces Apoptosis through JNK-Mediated Caspase Activation in Human OEC-M1 Oral Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1842363. [PMID: 38023774 PMCID: PMC10667060 DOI: 10.1155/2022/1842363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2023]
Abstract
Cordycepin, a bioactive compound extracted from Cordyceps sinensis, can induce apoptosis in human OEC-M1 oral cancer cells. However, the exact mechanism is still unclear. The present study aimed to investigate the underlying mechanism of cordycepin-induced apoptosis in OEC-M1 cells. Following treatment with cordycepin, apoptosis was examined and quantified using a DNA laddering assay and a cytokeratin 18 fragment enzyme-linked immunosorbent assay, respectively. Expressions of mitogen-activated protein kinases (MAPKs) and apoptosis-related proteins were detected by the western blot analysis. Our results show that a pan-caspase inhibitor, Z-VAD-FMK, could significantly inhibit cordycepin-induced apoptosis in OEC-M1 cells. In addition, treatment with cordycepin not only activated caspase-8, caspase-9, and caspase-3 but also induced Bid and poly ADP-ribose polymerase cleavages. Furthermore, cordycepin also induced the activation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase, and p38 MAPKs. Among MAPKs, activation of JNK solely contributed to cordycepin-induced apoptosis with the activation of caspase-8, caspase-9, and caspase-3 and cleavage of PARP. Taken together, the present study demonstrated that cordycepin activated JNK and caspase pathways to induce apoptosis in OEC-M1 cells.
Collapse
Affiliation(s)
- Kuo-Lung Tung
- Department of Oral Hygiene, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Su-Zhen Wu
- Department of Anesthesia, Chi-Mei Medical Center, Liouying, Tainan 73657, Taiwan
- Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan 73658, Taiwan
| | - Chun-Chuan Yang
- Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan
| | - Hong-Yi Chang
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Chun-Sheng Chang
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Yan-Hsiung Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Bu-Miin Huang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Yan Lan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| |
Collapse
|
4
|
Casticin Impacts Key Signaling Pathways in Colorectal Cancer Cells Leading to Cell Death with Therapeutic Implications. Genes (Basel) 2022; 13:genes13050815. [PMID: 35627200 PMCID: PMC9141418 DOI: 10.3390/genes13050815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer is the third most frequently encountered cancer worldwide. While current chemotherapeutics help to manage the disease to some extent, they have eluded achieving complete remission and are limited by their severe side effects. This warrants exploration of novel agents that are efficacious with anticipation of minimal adverse effects. In the current study, casticin, a tetramethoxyflavone, was tested for its ability to inhibit the viability of three human colorectal cancer cells: adenocarcinoma (DLD-1, Caco-2 cell lines) and human colorectal carcinoma cells (HCT116 cell line). Casticin showed potent inhibition of viability of DLD-1 and HCT116 cells. Clonogenic assay performed in DLD-1 cells revealed that casticin impeded the colony-forming efficiency of the cells, suggesting its impact on the proliferation of these cells. Further, a sustained effect of the inhibitory action upon withdrawal of the treatment was observed. Elucidation of the mechanism of action revealed that casticin impacted the extrinsic programmed cell death pathway, leading to an increase in apoptotic cells. Further, Bcl-2, the key moiety of cell survival, was affected. Notably, a significant number of cells were arrested in the G2/M phase of the cell cycle in DLD-1 cells. Due to the multifaceted action of casticin, we envision that treatment with casticin could provide an efficacious treatment option for colorectal adenocarcinomas with minimal side effects.
Collapse
|
5
|
Lan YY, Chen YH, Liu C, Tung KL, Wu YT, Lin SC, Wu CH, Chang HY, Chen YC, Huang BM. Role of JNK activation in paclitaxel-induced apoptosis in human head and neck squamous cell carcinoma. Oncol Lett 2021; 22:705. [PMID: 34457060 PMCID: PMC8358625 DOI: 10.3892/ol.2021.12966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
It has been reported that paclitaxel activates cell cycle arrest and increases caspase protein expression to induce apoptosis in head and neck squamous cell carcinoma (HNSCC) cell lines. However, the potential signaling pathway regulating this apoptotic phenomenon remains unclear. The present study used OEC-M1 cells to investigate the underlying molecular mechanism of paclitaxel-induced apoptosis. Following treatment with paclitaxel, cell viability was assessed via the MTT assay. Necrosis, apoptosis, cell cycle and mitochondrial membrane potential (∆Ψm) were analyzed via flow cytometric analyses, respectively. Western blot analysis was performed to detect the expression levels of proteins associated with the MAPK and caspase signaling pathways. The results demonstrated that low-dose paclitaxel (50 nM) induced apoptosis but not necrosis in HNSCC cells. In addition, paclitaxel activated the c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase or p38 mitogen-activated protein kinase. The paclitaxel-activated JNK contributed to paclitaxel-induced apoptosis, activation of caspase-3, -6, -7, -8 and -9, and reduction of ∆Ψm. In addition, caspase-8 and -9 inhibitors, respectively, significantly decreased paclitaxel-induced apoptosis. Notably, Bid was truncated following treatment with paclitaxel. Taken together, the results of the present study suggest that paclitaxel-activated JNK is required for caspase activation and loss of ∆Ψm, which results in apoptosis of HNSCC cells. These results may provide mechanistic basis for designing more effective paclitaxel-combining regimens to treat HNSCC.
Collapse
Affiliation(s)
- Yu-Yan Lan
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Ying-Hui Chen
- Department of Anesthesia, Chi-Mei Medical Center, Liouying, Tainan 73657, Taiwan, R.O.C
| | - Cheng Liu
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C.,Department of Health and Beauty, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Kuo-Lung Tung
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Yen-Ting Wu
- Department of Pathology, Golden Hospital, Pingtung 90049, Taiwan, R.O.C
| | - Sheng-Chieh Lin
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Chin-Han Wu
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Hong-Yi Chang
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan, R.O.C
| | - Yung-Chia Chen
- Department of Anatomy, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Bu-Miin Huang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, R.O.C.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| |
Collapse
|
6
|
Han T, Gao J, Wang L, Qu Y, Sun A, Peng K, Zhu J, Liu H, Yang W, Shao G, Lin Q. ASK1 inhibits proliferation and migration of lung cancer cells via inactivating TAZ. Am J Cancer Res 2020; 10:2785-2799. [PMID: 33042617 PMCID: PMC7539782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023] Open
Abstract
ASK1 (Apoptosis Signal-regulating Kinase 1, also MEKK5) is known to mediate cellular stress signaling pathways through activating p38 kinase. We here observed that ectopically expression of ASK1, but not its kinase-dead mutant, impaired cell proliferation and migration in lung cancer A549 and NCI-H1975 cells. To our surprise, this inhibitory effect of ASK1 is independent on activation of p38 kinase. We further discovered that ASK1 interacts with the WW domain of YAP and TAZ (also WWTR1) that are transcriptional co-activators and the Hippo signaling effectors. Overexpression of wild type ASK1, but not the kinase-dead mutant, in the lung cancer cells down-regulated the expression of the YAP/TAZ target genes CYR61 and CTGF. It seems that ASK1 specifically inactivates TAZ, not YAP, as ASK1 blocked nuclear translocation of TAZ only, while had no effect on YAP. Furthermore, knockdown of TAZ in the lung cancer cells caused the same inhibitory effect on cell proliferation and migration as that of overexpression of ASK1. Thus, our studies have defined a new signaling pathway of ASK1 for regulation of lung cancer cell proliferation and migration via interacting with and inactivating TAZ.
Collapse
Affiliation(s)
- Tiantian Han
- School of Medicine, Jiangsu University301 Xuefu Road, Zhenjiang, Jiangsu, China
| | - Jinyi Gao
- School of Medicine, Jiangsu University301 Xuefu Road, Zhenjiang, Jiangsu, China
| | - Lincui Wang
- School of Medicine, Jiangsu University301 Xuefu Road, Zhenjiang, Jiangsu, China
| | - Yaping Qu
- School of Medicine, Jiangsu University301 Xuefu Road, Zhenjiang, Jiangsu, China
| | - Aiqin Sun
- School of Medicine, Jiangsu University301 Xuefu Road, Zhenjiang, Jiangsu, China
| | - Ke Peng
- School of Medicine, Jiangsu University301 Xuefu Road, Zhenjiang, Jiangsu, China
| | - Jun Zhu
- School of Medicine, Jiangsu University301 Xuefu Road, Zhenjiang, Jiangsu, China
| | - Hanqing Liu
- School of Pharmacology, Jiangsu University301 Xuefu Road, Zhenjiang, Jiangsu, China
| | - Wannian Yang
- School of Medicine, Jiangsu University301 Xuefu Road, Zhenjiang, Jiangsu, China
| | - Genbao Shao
- School of Medicine, Jiangsu University301 Xuefu Road, Zhenjiang, Jiangsu, China
| | - Qiong Lin
- School of Medicine, Jiangsu University301 Xuefu Road, Zhenjiang, Jiangsu, China
| |
Collapse
|
7
|
Mohebali N, Pandurangan AK, Mustafa MR, Anandasadagopan SK, Alagumuthu T. Vernodalin induces apoptosis through the activation of ROS/JNK pathway in human colon cancer cells. J Biochem Mol Toxicol 2020; 34:e22587. [PMID: 32726518 DOI: 10.1002/jbt.22587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/29/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
Colorectal cancer is one of the most leading death-causing cancers in the world. Vernodalin, a cytotoxic sesquiterpene, has been reported to possess anticancer properties against human breast cancer cells. We aimed to examine the anticancer mechanism of vernodalin on human colon cancer cells. Vernodalin was used on human colon cancer cells, HT-29 and HCT116. The cytotoxicity of vernodalin on human colon cancer cells was determined through in vitro 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay. Small interfering RNA was used to analyze the cascade activation of mitogen-activated protein kinase (MAPK) pathway, c-Jun N-terminal kinase (JNK) in HT-29, and HCT116 cells against vernodalin treatment. The protein expressions of caspase 3, Bcl-2, and Bax were examined through Western blot analysis. Immunoblot analysis on the JNK, ERK, and p38 MAPK pathways showed increased activation due to vernodalin treatment. It was proven from the JNK and p38 inhibition test that both pathways are significantly activated by vernodalin to induce apoptosis. Our results, collectively, showed the apoptosis-induced anticancer mechanism of vernodalin on human colon cancer cells that was mediated through the activation of JNK pathway and apoptotic regulator proteins. These results suggest that vernodalin could be developed as a potent chemotherapeutic agent for human colorectal cancer treatment.
Collapse
Affiliation(s)
- Nooshin Mohebali
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ashok Kumar Pandurangan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Pharmacology, Faculty of Medicine, Centre for Natural Products and Drug Discovery (CENAR), University of Malaya, Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
8
|
Mohan CD, Rangappa S, Preetham HD, Chandra Nayaka S, Gupta VK, Basappa S, Sethi G, Rangappa KS. Targeting STAT3 signaling pathway in cancer by agents derived from Mother Nature. Semin Cancer Biol 2020; 80:157-182. [DOI: 10.1016/j.semcancer.2020.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|
9
|
N-acetyl-cysteine blunts 6-hydroxydopamine- and l-buthionine-sulfoximine-induced apoptosis in human mesenchymal stromal cells. Mol Biol Rep 2019; 46:4423-4435. [DOI: 10.1007/s11033-019-04897-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
|
10
|
Lin CC, Chen KB, Tsai CH, Tsai FJ, Huang CY, Tang CH, Yang JS, Hsu YM, Peng SF, Chung JG. Casticin inhibits human prostate cancer DU 145 cell migration and invasion via Ras/Akt/NF-κB signaling pathways. J Food Biochem 2019; 43:e12902. [PMID: 31353708 DOI: 10.1111/jfbc.12902] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/13/2019] [Accepted: 05/04/2019] [Indexed: 12/29/2022]
Abstract
Casticin, a polymethoxyflavone derived from natural plants, has biological activities including induction of cell apoptosis. In this study, we showed the beneficial effects of casticin on the inhibition of prostate cancer cell metastasis. Casticin reduced total viable cell number, thus, we selected low doses of casticin for following experiments. Casticin decreased cell mobility, suppressed cell migration and invasion, and reduced cell gelatinolytic activities of MMP-2/-9. Furthermore, casticin inhibited the protein levels of AKT, GSK3 αβ, Snail, and MMPs (MMP-2, -9, -13, and -7) at 24 and 48 hr treatment. Casticin diminished the expressions of NF-κB p65, GRB2, SOS-1, MEK, p-ERK1/2, and p-JNK1/2 at 48 hr treatment only. However, casticin reduced the level of E-cadherin at 24 hr treatment but elevated at 48 hr. The novel findings suggest that casticin may represent a new and promising therapeutic agent for the metastatic prostate cancer. PRACTICAL APPLICATIONS: Casticin derived from natural plants had been used for Chinese medicine in Chinese population for thousands of years. In the present study, casticin attenuated metastatic effects, including decreasing viable cell number, inhibiting the migration, invasion, and adhesion, and reducing matrix metalloproteinases activity on human prostate DU 145 cancer cells. In addition, the results also provided possible pathways involved in casticin anti-metastasis mechanism. We conclude that casticin may be an aptitude anticancer agent or adjuvant for the metastatic prostate cancer in the future.
Collapse
Affiliation(s)
- Chia-Chang Lin
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Kuen-Bao Chen
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chang-Hai Tsai
- China Medical University Children's Hospital, China Medical University, Taichung, Taiwan.,Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- China Medical University Children's Hospital, China Medical University, Taichung, Taiwan.,School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
11
|
Casticin inhibits breast cancer cell migration and invasion by down-regulation of PI3K/Akt signaling pathway. Biosci Rep 2018; 38:BSR20180738. [PMID: 30401729 PMCID: PMC6265615 DOI: 10.1042/bsr20180738] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/23/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023] Open
Abstract
Casticin is one of the major active components isolated from Fructus viticis Increasing studies have revealed that casticin has potential anticancer activity in various cancer cells, but its effects on breast cancer cell migration and invasion are still not well known. Therefore, the ability of cell migration and invasion in the breast cancer MDA-MB-231 and 4T1 cells treated by casticin was investigated. The results indicated that casticin significantly inhibited cell migration and invasion in the cells exposed to 0.25 and 0.50 µM of casticin for 24 h. Casticin treatment reduced matrix metalloproteinase (MMP) 9 (MMP-9) activity and down-regulated MMP-9 mRNA and protein expression, but not MMP-2. Casticin treatment suppressed the nuclear translocation of transcription factors c-Jun and c-Fos, but not nuclear factor-κB (NF-κB), and decreased the phosphorylated level of Akt (p-Akt). Additionally, the transfection of Akt overexpression vector to MDA-MB-231 and 4T1 cells could up-regulate MMP-9 expression concomitantly with a marked increase in cell invasion, but casticin treatment reduced Akt, p-Akt, and MMP-9 protein levels and inhibited the ability of cell invasion in breast cancer cells. Additionally, casticin attenuated lung metastasis of mouse 4T1 breast cancer cells in the mice and down-regulated MMP-9 expression in the lung tissues of mice treated by casticin. These findings suggest that MMP-9 expression suppression by casticin may act through inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, which in turn results in the inhibitory effects of casticin on cell migration and invasion in breast cancer cells. Therefore, casticin may have potential for use in the treatment of breast cancer invasion and metastasis.
Collapse
|
12
|
Qiao Z, Cheng Y, Liu S, Ma Z, Li S, Zhang W. Casticin inhibits esophageal cancer cell proliferation and promotes apoptosis by regulating mitochondrial apoptotic and JNK signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 392:177-187. [PMID: 30448926 DOI: 10.1007/s00210-018-1574-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/19/2018] [Indexed: 11/29/2022]
Abstract
Casticin, a flavonoid isolated from Vitex species, has been found to have anti-tumor property in multiple human cancers. The present study aimed to investigate the effect of casticin on the proliferation and apoptosis of esophageal cancer (EC) cells, and further illustrate the underlying mechanisms. In in vitro studies, human EC cell lines TE-1 and ECA-109 were treated with various concentrations of casticin (low-, middle-, and high-dose groups). The results showed that casticin dose-dependently inhibited the proliferation and clonogenicity of EC cells and induced cell cycle arrest in sub-G1 and G2 phases. Furthermore, casticin markedly enhanced EC cell apoptosis as detected by flow cytometry and Hoechst 33342 staining. The level of anti-apoptotic Bcl-2 protein was decreased, while the levels of pro-apoptotic Bax, cleaved-caspase-3, cleaved-caspase-9, and cleaved-PARP were conversely increased in casticin-treated TE-1 and ECA-109 cells. Moreover, casticin decreased the mitochondrial membrane potential and increased the release of mitochondrial cytochrome C into cytoplasm. In addition, the JNK signaling pathway was involved in casticin-medicated anti-proliferation and pro-apoptosis. Cells pretreated with SP600125, a JNK pathway inhibitor, partially abolished the effect of casticin. Finally, the anti-tumor property of casticin was confirmed in in vivo xenograft models. Overall, we provided both in vitro and in vivo evidences that casticin inhibited the proliferation and induced apoptosis of EC cells, and the anti-tumor action of casticin was mediated, in part, by the mitochondrial-dependent apoptosis and the activation of JNK signaling pathway.
Collapse
Affiliation(s)
- Zhe Qiao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, People's Republic of China.
| | - Yao Cheng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, People's Republic of China
| | - Shiyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, People's Republic of China
| | - Zhenchuan Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, People's Republic of China
| | - Shaomin Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, People's Republic of China
| | - Wei Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, People's Republic of China
| |
Collapse
|
13
|
Chan EWC, Wong SK, Chan HT. Casticin from Vitex species: a short review on its anticancer and anti-inflammatory properties. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 16:147-152. [PMID: 29559215 DOI: 10.1016/j.joim.2018.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/18/2018] [Indexed: 01/04/2023]
Abstract
This short review provides an update of the anticancer and anti-inflammatory properties of casticin from Vitex species. Casticin is a polymethylflavone with three rings, an orthocatechol moiety, a double bond, two hydroxyl groups and four methoxyl groups. Casticin has been isolated from various tissues of plants in the Vitex genus: fruits and leaves of V. trifolia, aerial parts and seeds of V. agnus-castus and leaves of V. negundo. Studies have reported the antiproliferative and apoptotic activities of casticin from Vitex species. The compound is effective against many cancer cell lines via different molecular mechanisms. Studies have also affirmed the anti-inflammatory properties of casticin, with several molecular mechanisms identified. Other pharmacological properties include anti-asthmatic, tracheospasmolytic, analgesic, antihyperprolactinemia, immunomodulatory, opioidergic, oestrogenic, anti-angiogenic, antiglioma, lung injury protection, rheumatoid arthritis amelioration and liver fibrosis attenuation activities. Clinical trials and commercial use of the casticin-rich fruit extract of V. agnus-castus among women with premenstrual syndrome were briefly discussed.
Collapse
Affiliation(s)
- Eric Wei Chiang Chan
- Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia.
| | - Siu Kuin Wong
- School of Science, Monash University, Petaling Jaya, Selangor 46150, Malaysia
| | - Hung Tuck Chan
- Secretariat of International Society for Mangrove Ecosystems, Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0129, Japan
| |
Collapse
|
14
|
Chou GL, Peng SF, Liao CL, Ho HC, Lu KW, Lien JC, Fan MJ, La KC, Chung JG. Casticin impairs cell growth and induces cell apoptosis via cell cycle arrest in human oral cancer SCC-4 cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:127-141. [PMID: 29098808 DOI: 10.1002/tox.22497] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/26/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Casticin, a polymethoxyflavone, present in natural plants, has been shown to have biological activities including anti-cancer activities. Herein, we investigated the anti-oral cancer activity of casticin on SCC-4 cells in vitro. Viable cells, cell cycle distribution, apoptotic cell death, reactive oxygen species (ROS) production, and Ca2+ production, levels of ΔΨm and caspase activity were measured by flow cytometric assay. Cell apoptosis associated protein expressions were examined by Western blotting and confocal laser microscopy. Results indicated that casticin induced cell morphological changes, DNA condensation and damage, decreased the total viable cells, induced G2 /M phase arrest in SCC-4 cells. Casticin promoted ROS and Ca2+ productions, decreases the levels of ΔΨm , promoted caspase-3, -8, and -9 activities in SCC-4 cells. Western blotting assay demonstrated that casticin affect protein level associated with G2/M phase arrest and apoptosis. Confocal laser microscopy also confirmed that casticin increased the translocation of AIF and cytochrome c in SCC-4 cells. In conclusion, casticin decreased cell number through G2 /M phase arrest and the induction of cell apoptosis through caspase- and mitochondria-dependent pathways in SCC-4 cells.
Collapse
Affiliation(s)
- Guan-Ling Chou
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Ching-Lung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Heng-Chien Ho
- School of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Kung-Wen Lu
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Ming-Jen Fan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Kuang-Chi La
- Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
15
|
Song HM, Park GH, Park SB, Kim HS, Son HJ, Um Y, Jeong JB. Vitex rotundifolia Fruit Suppresses the Proliferation of Human Colorectal Cancer Cells through Down-regulation of Cyclin D1 and CDK4 via Proteasomal-Dependent Degradation and Transcriptional Inhibition. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:191-207. [PMID: 29298515 DOI: 10.1142/s0192415x18500118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Viticis Fructus (VF) as the dried fruit from Vitex rotundifolia L. used as a traditional medicine for treating inflammation, headache, migraine, chronic bronchitis, eye pain, and gastrointestinal infections has been reported to have antiproliferative effects against various cancer cells, including breast, lung and colorectal cancer cells. However, the molecular mechanisms by which VF mediates the inhibitory effect of the proliferation of cancer cells have not been elucidated in detail. In this study, we investigated the molecular mechanism of VF on the down-regulation of cyclin D1 and CDK4 level associated with cancer cell proliferation. VF suppressed the proliferation of human colorectal cancer cell lines such as HCT116 and SW480. VF induced decrease in cyclin D1 and CDK4 in both protein and mRNA levels. However, the protein levels of cyclin D1 and CDK4 were decreased by VF at an earlier time than the change of mRNA levels; rather it suppressed the expression of cyclin D1 and CDK4 via the proteasomal degradation. In cyclin D1 and CDK4 degradation, we found that Thr286 phosphorylation of cyclin D1 plays a pivotal role in VF-mediated cyclin D1 degradation. Subsequent experiments with several kinase inhibitors suggest that VF-mediated degradation of cyclin D1 may be dependent on GSK3[Formula: see text] and VF-mediated degradation of CDK4 is dependent on ERK1/2, p38 and GSK3[Formula: see text]. In the transcriptional regulation of cyclin D1 and CDK4, we found that VF inhibited Wnt activation associated with cyclin D1 transcriptional regulation through TCF4 down-regulation. In addition, VF treatment down-regulated c-myc expression associated CDK4 transcriptional regulation. Our results suggest that VF has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.
Collapse
Affiliation(s)
- Hun Min Song
- * Department of Medicinal Plant Resources, Andong National University, Andong 36729, Republic of Korea
| | - Gwang Hun Park
- ‡ Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040, Republic of Korea
| | - Su Bin Park
- * Department of Medicinal Plant Resources, Andong National University, Andong 36729, Republic of Korea
| | - Hyun-Seok Kim
- § Department of Food Science & Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| | - Ho-Jun Son
- ‡ Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040, Republic of Korea
| | - Yurry Um
- ‡ Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040, Republic of Korea
| | - Jin Boo Jeong
- * Department of Medicinal Plant Resources, Andong National University, Andong 36729, Republic of Korea.,† Insititute of Agricultural Science and Technology, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
16
|
Casticin inhibits interleukin-1β-induced ICAM-1 and MUC5AC expression by blocking NF-κB, PI3K-Akt, and MAPK signaling in human lung epithelial cells. Oncotarget 2017; 8:101175-101188. [PMID: 29254155 PMCID: PMC5731865 DOI: 10.18632/oncotarget.20933] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/27/2017] [Indexed: 01/31/2023] Open
Abstract
The compound casticin, isolated from Vitex rotundifolia, exerts anti-inflammatory effects and causes apoptosis of cancer cells. In this study, we explored the anti-inflammatory effects of casticin and modulation of cyclooxygenase (COX)-2, intercellular adhesion molecule 1 (ICAM-1), and mucin 5AC (MUC5AC) expression in interleukin-1β (IL-1β)-activated A549 human pulmonary epithelial cells. A549 cells were treated with various concentrations of casticin (5-20 μM), and an inflammatory response was triggered with interleukin (IL)-1β cytokines. Casticin decreased levels of IL-6, tumor necrosis factor α, and IL-8 and suppressed COX-2 expression and prostaglandin E2 production. It also reduced MUC5AC, proinflammatory cytokine, and chemokine gene expression and inhibited ICAM-1 expression for monocyte adhesion in IL-1β-stimulated A549 cells. In addition, casticin inhibited phosphorylation of Akt, phosphatidylinositol 3-kinase (PI3K), and mitogen-activated protein kinase (MAPK) and blocked nuclear transcription factor kappa-B (NF-κB) subunit p65 protein translocation into the nucleus. Co-culture of NF-κB, MAPK, and PI3K inhibitors with casticin also led to more significantly suppressed ICAM-1 expression in inflammatory A549 cells. These results provide evidence that casticin has an anti-inflammatory effect by blocking proinflammatory cytokine, chemokine, and ICAM-1 expression via suppression of the PI3K/Akt, NF-κB, and MAPK signaling pathways in IL-1β-stimulated inflammatory pulmonary epithelial cells.
Collapse
|
17
|
Shang HS, Liu JY, Lu HF, Chiang HS, Lin CH, Chen A, Lin YF, Chung JG. Casticin induced apoptotic cell death and altered associated gene expression in human colon cancer colo 205 cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:2041-2052. [PMID: 27862857 DOI: 10.1002/tox.22381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Casticin, a polymethoxyflavone, derived from natural plant Fructus Viticis exhibits biological activities including anti-cancer characteristics. The anti-cancer and alter gene expression of casticin on human colon cancer cells and the underlying mechanisms were investigated. Flow cytometric assay was used to measure viable cell, cell cycle and sub-G1 phase, reactive oxygen species (ROS) and Ca2+ productions, level of mitochondria membrane potential (ΔΨm ) and caspase activity. Western blotting assay was used to detect expression of protein level associated with cell death. Casticin induced cell morphological changes, decreased cell viability and induced G2/M phase arrest in colo 205 cells. Casticin increased ROS production but decreased the levels of ΔΨm , and Ca2+ , increased caspase-3, -8, and -9 activities. The cDNA microarray indicated that some of the cell cycle associated genes were down-regulated such as cyclin-dependent kinase inhibitor 1A (CDKN1A) (p21, Cip1) and p21 protein (Cdc42/Rac)-activated kinase 3 (PAK3). TNF receptor-associated protein 1 (TRAP1), CREB1 (cAMP responsive element binding protein 1) and cyclin-dependent kinase inhibitor 1B (CDKN1B) (p27, Kip1) genes were increased but matrix metallopeptidase 2 (MMP-2), toll-like receptor 4 (TLR4), PRKAR2B (protein kinase, cAMP-dependent, regulatory, type II, bet), and CaMK4 (calcium/calmodulin-dependent protein kinase IV) genes were inhibited. Results suggest that casticin induced cell apoptosis via the activation of the caspase- and/or mitochondria-dependent signaling cascade, the accumulation of ROS and altered associated gene expressions in colo 205 human colon cancer cells.
Collapse
Affiliation(s)
- Hung-Sheng Shang
- Graduate Institute of Clinical of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jia-You Liu
- Department of Clinical Pathology, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng-Hsin General Hospital, Taipei, Taiwan
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei city, Taiwan
| | - Han-Sun Chiang
- Graduate Institute of Basic Medicine, Fu-Jen Catholic University, New Taipei city, Taiwan
| | - Chia-Hain Lin
- Department of Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Ann Chen
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Clinical of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
18
|
Khan I, Kang SC. Apoptotic Activity of Lactobacillus plantarum DGK-17-Fermented Soybean Seed Extract in Human Colon Cancer Cells via ROS-JNK Signaling Pathway. J Food Sci 2017; 82:1475-1483. [PMID: 28488794 DOI: 10.1111/1750-3841.13732] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022]
Abstract
Fermented food has been always possesses upper hand compared to normal food due to its antibacterial, antioxidant, and anticancer properties. Soybeans, which have high nutritional value, are widely consumed in Korea. In this study, soybean seed powder fermented with Lactobacillus plantarum DGK-17, which was previously isolated from kimchi, showed anticancer potential. Fermented soybean extract (FSE) resulted in morphological changes, reduction of cancer cell colony formation and apoptotic cell death of HCT-116 colon cancer cells in a dose-dependent manner, and IC50 value of 111 μg. FSE treatment caused reduction of cell growth in a dose-dependent manner via release of lactate dehydrogenase. FSE treatment induced HCT-116 apoptotic cell death as confirmed by the presence of fragmented nuclei, oxidative burst, and reduced mitochondrial membrane potential (ΔΨm ). Further, FSE treatment sensitized cells to ER stress via IRE1-α induction. FSE treatment also resulted in JNK activation, subsequently causing activation of Bax and downregulation of BCl2. Weakened mitochondrial membrane potential (ΔΨm ) also caused release of Cyto C, further activating caspase-mediated cell death. Therefore, this study reveals the apoptotic role of DGK-17-fermented soybean seed extract in human colon cancer HCT-116 cells.
Collapse
Affiliation(s)
- Imran Khan
- Dept. of Biotechnology, Daegu Univ., Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Sun Chul Kang
- Dept. of Biotechnology, Daegu Univ., Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| |
Collapse
|
19
|
Song HM, Park GH, Koo JS, Jeong HJ, Jeong JB. Vitex rotundifolia Fruit Extract Induces Apoptosis Through the Downregulation of ATF3-Mediated Bcl-2 Expression in Human Colorectal Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:901-915. [DOI: 10.1142/s0192415x17500483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fruit from Vitex rotundifolia L. (VF) has been reported to initiate apoptosis in human colorectal cancer cells through the accumulation of reactive oxygen species. Since various regulatory factors are involved in the apoptotic pathway, further study of the potential mechanisms of VF associated with the induction of apoptosis may be important despite the fact that the molecular target of VF for apoptosis has already been elucidated. In this study, we showed a new potential mechanism for the relationship between VF-mediated ATF3 expression and apoptosis to better understand the apoptotic mechanism of VF in human colorectal cancer cells. VF reduced the cell viability and induced apoptosis in human colorectal cancer cells. VF treatment increased both the protein and mRNA level of ATF3 and upregulated ATF3 promoter activity. The cis-element responsible for ATF3 transcriptional activation by VF was CREB which is located between [Formula: see text]147 to [Formula: see text]85 of ATF3 promoter. Inhibitions of ERK1/2, p38, JNK and GSK3[Formula: see text] blocked VF-mediated ATF3 expression. ATF3 knockdown by ATF3 siRNA attenuated the cleavage of PARP by VF, while ATF3 overexpression increased VF-mediated cleaved PARP. ATF3 knockdown also attenuated VF-mediated cell viability and cell death. In addition, VF downregulated Bcl-2 expression at both protein and mRNA level. ATF3 knockdown by ATF3 siRNA blocked VF-mediated downregulation of Bcl-2. In conclusion, VF may activate ATF3 expression through transcriptional regulation and subsequently suppress Bcl-2 expression as an anti-apoptotic protein, which may result in the induction of apoptosis in human colorectal cancer cells.
Collapse
Affiliation(s)
- Hun Min Song
- Department of Medicinal Plant Resources, Andong National University, Andong 36729, Republic of Korea
| | - Gwang Hun Park
- Department of Medicinal Plant Resources, Andong National University, Andong 36729, Republic of Korea
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040, Republic of Korea
| | - Jin Suk Koo
- Department of Medicinal Plant Resources, Andong National University, Andong 36729, Republic of Korea
- Insititute of Agricultural Science and Technology, Andong National University, Andong 36729, Republic of Korea
| | - Hyung Jin Jeong
- Department of Medicinal Plant Resources, Andong National University, Andong 36729, Republic of Korea
- Insititute of Agricultural Science and Technology, Andong National University, Andong 36729, Republic of Korea
| | - Jin Boo Jeong
- Department of Medicinal Plant Resources, Andong National University, Andong 36729, Republic of Korea
- Insititute of Agricultural Science and Technology, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
20
|
Shih YL, Chou J, Yeh MY, Chou HM, Chou HC, Lu HF, Shang HS, Chueh FS, Chu YL, Hsueh SC, Chung JG. Casticin induces DNA damage and inhibits DNA repair-associated protein expression in B16F10 mouse melanoma cancer cells. Oncol Rep 2016; 36:2094-100. [DOI: 10.3892/or.2016.5027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/09/2016] [Indexed: 11/06/2022] Open
|
21
|
Sharma N, Kumar C, Dutt P, Gupta S, Satti NK, Chandra S, Kitchlu S, Paul S, Vishwakarma RA, Verma MK. Isolation, Chemical Fingerprinting and Simultaneous Quantification of Four Compounds from Tanacetum gracile Using a Validated HPLC-ESI-QTOF-Mass Spectrometry Method. J Chromatogr Sci 2016; 54:796-804. [PMID: 26951542 PMCID: PMC4890456 DOI: 10.1093/chromsci/bmw013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 12/31/2015] [Indexed: 11/14/2022]
Abstract
The present study was conducted to carry out the phytochemical investigation of Tanacetum gracile Hook. f. & Thomson and to develop a method for the simultaneous quantification of the isolated compounds in the extracts ofT. gracile growing in different locations. Cluster analysis rectangular similarity matrix was performed to understand the chemical fingerprinting variations in the extracts. High-performance liquid chromatography-electrospray ionization-quadrupole-time-of-flight-mass spectrometry (HPLC-ESI-QTOF-MS) was used to quantify four bioactive compounds, and separation of the compounds was achieved on a reverse-phase C8 column using a mobile phase of acetonitrile: 0.1% formic acid in water with a gradient elution by maintaining the flow rate of 300 μL/min. The QTOF-MS was operated using the electro-spray ionization technique with the positive ion polarity mode. The calibration curves of four marker compounds were linear over the concentration range of 3.12-100 ng/µL (R(2)> 0.996). A specific, accurate and precise HPLC-ESI-QTOF-MS method was optimized for the determination of kaempferol, ketoplenolide, tetramethoxyflavone and artemetin both individually and simultaneously. Quantification of these chemical markers in different extracts was carried out using this validated method. Kaempferol was isolated for the first time from T. gracile.
Collapse
Affiliation(s)
- Neha Sharma
- Analytical Chemistry Division (Instrumentation), CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Chetan Kumar
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Prabhu Dutt
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Suphla Gupta
- Plant Biotechnology Department, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Naresh K Satti
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Suresh Chandra
- Genetic Resource & Agrotech. Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Surinder Kitchlu
- Plant Biotechnology Department, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Satya Paul
- Department of Chemistry, University of Jammu, Jammu 180006, India
| | | | - Mahendra K Verma
- Analytical Chemistry Division (Instrumentation), CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
22
|
Cui Z, Li C, Li X, Zhang Q, Zhang Y, Shao J, Zhou K. Sodium selenite (Na2SeO3) induces apoptosis through the mitochondrial pathway in CNE-2 nasopharyngeal carcinoma cells. Int J Oncol 2015; 46:2506-14. [PMID: 25891011 DOI: 10.3892/ijo.2015.2968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/05/2015] [Indexed: 11/06/2022] Open
Abstract
This study investigated the effect of sodium selenite (Na2SeO3) on proliferation, cell cycle, apoptosis as well as the underlying mechanism in CNE-2 nasopharyngeal carcinoma (NPC) cells. The CNE-2 cell line was treated with different concentrations of Na2SeO3, and the effects of Na2SeO3 on cell viability and proliferation were evaluated using Cell Counting kit-8 (CCK-8) assay. Cellular apoptosis and cell cycle were evaluated by flow cytometry following Annexin V‑FITC/PI double staining and PI single staining respectively; nuclei morphology stained with DAPI and Hoechst 333258 was observed under a fluorescence microscope, while DNA fragmentation was detected by agarose gel electrophoresis. The mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were analyzed using fluorescent staining assays. Expression of Bcl-XL, Bax, Bak, and caspase-3 activation were examined by western blotting. The results showed that Na2SeO3 inhibited proliferation and induced apoptosis of CNE-2 cells in a dose- and time-dependent manner. Na2SeO3 at low concentrations induced cell cycle arrest at S phase, while high concentrations of Na2SeO3 induced cell cycle arrest at G0/G1 phase. Furthermore, Na2SeO3 increased ROS level and decreased MMP, upregulated caspase-3 activity and the expression of Bak and Bax but simultaneously downregulated Bcl-XL. In conclusion, our studies demonstrated that Na2SeO3 had significant anti-proliferative and apoptosis-inducing effects via arresting cell cycle and regulating mitochondria-mediated intrinsic caspase pathway in CNE-2 NPC cells, suggesting that Na2SeO3 might have therapeutic potentials in the treatment of NPC.
Collapse
Affiliation(s)
- Zhongyi Cui
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Caihong Li
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Xiangyong Li
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Qunzhou Zhang
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Yuefei Zhang
- Department of Otolaryngology, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Jingjing Shao
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Keyuan Zhou
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| |
Collapse
|