1
|
Arefnezhad R, Nejabat A, Behjati F, Torkamanche M, Zarei H, Yekkehbash M, Afsharmanesh F, Niknam Z, Jamialahmadi T, Sahebkar A. Tanshinone IIA Against Cerebral Ischemic Stroke and Ischemia- Reperfusion Injury: A Review of the Current Documents. Mini Rev Med Chem 2024; 24:1701-1709. [PMID: 38482618 DOI: 10.2174/0113895575299721240227070032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 08/28/2024]
Abstract
Stroke is a well-known neurological disorder that carries significant morbidity and mortality rates worldwide. Cerebral Ischemic Stroke (CIS), the most common subtype of stroke, occurs when thrombosis or emboli form elsewhere in the body and travel to the brain, leading to reduced blood perfusion. Cerebral Ischemia/Reperfusion Injury (CIRI) is a common complication of CIS and arises when blood flow is rapidly restored to the brain tissue after a period of ischemia. The therapeutic approaches currently recognized for CIS, such as thrombolysis and thrombectomy, have notable side effects that limit their clinical application. Recently, there has been growing interest among researchers in exploring the potential of herbal agents for treating various disorders and malignancies. One such herbal agent with medicinal applications is tanshinone IIA, an active diterpene quinone extracted from Salvia miltiorrhiza Bunge. Tanshinone IIA has shown several pharmacological benefits, including anti-inflammatory, antioxidant, anti-apoptotic, and neuroprotective properties. Multiple studies have indicated the protective role of tanshinone IIA in CIS and CIRI. This literature review aims to summarize the current findings regarding the molecular mechanisms through which this herbal compound improves CIS and CIRI.
Collapse
Affiliation(s)
- Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | - Hooman Zarei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Xu Z, Shen M, Li L. Exploring the active components and mechanism of modified bazhen decoction in treatment of chronic cerebral circulation insufficiency based on network pharmacology and molecular docking. Medicine (Baltimore) 2023; 102:e34341. [PMID: 37478218 PMCID: PMC10662881 DOI: 10.1097/md.0000000000034341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/23/2023] [Indexed: 07/23/2023] Open
Abstract
Modified bazhen decoction (MBZD) is a classical Chinese medicine formula with potential efficacy in the treatment of chronic cerebral circulation insufficiency (CCCI), and its main components and potential mechanisms are still unclear. The study aimed to investigate the active ingredients and mechanism of action of MBZD in treating CCCI through network pharmacology combined with molecular docking. The chemical composition and targets of 11 Chinese herbs in MBZD were retrieved utilizing the traditional Chinese medicine systems pharmacology database and analysis platform platform, and the targets for CCCI were screened by Genecards, online mendelian inheritance in man, therapeutic target database, and comparative toxicogenomics database databases. The targets were genetically annotated with the Uniprot database. We created a compound-target network employing Cytoscape software and screened the core targets for the treatment of CCCI by CytoNCA clustering analysis; the AutoDock Vina program performed molecular docking study of crucial targets. One thousand one hundred ninety-one active compounds were obtained, 2210 corresponding targets were predicted, 4971 CCCI-related targets were obtained, and 136 intersecting genes were identified between them. The central core targets were IL6, MAPK14, signal transducer and activator of transcription 3, RELA, VEGFA, CCND1, CASP3, AR, FOS, JUN, EGFR, MAPK1, AKT1, MYC, and ESR1; gene ontology functional enrichment analysis yielded 911 gene ontology items (P < .01), while Kyoto Encyclopedia of Genes and Genomes pathway enrichment yielded 138 signal pathways (P < .01), primarily including oxidative reactions, vascular regulation, apoptosis, and PI3K-Akt signaling pathway. The molecular docking results showed that the core active component of MBZD had good binding with the main target. This research initially uncovered the mechanism of action of MBZD via multi-component-multi-target-multi-pathway for the treatment of CCCI, providing the theoretical basis for the clinical application of MBZD.
Collapse
Affiliation(s)
- Zhongbo Xu
- Emergency Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Manyang Shen
- Graduate College, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Lin Li
- Emergency Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Zhu X, He L, Gao W, Zhao Z. Neuroprotective investigation of tanshinone in the cerebral infarction model in the Keap1-Nrf2/ARE pathway. Cell Cycle 2023; 22:390-402. [PMID: 36066030 PMCID: PMC9879188 DOI: 10.1080/15384101.2022.2119687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/09/2022] [Accepted: 08/11/2022] [Indexed: 01/29/2023] Open
Abstract
It was to investigate the neuroprotective mechanism of tanshinone after cerebral infarction via the Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant reaction element (ARE) signaling pathway. Forty specific pathogen-free (SPF) Sprague Dawley (SD) rats were selected, all of which were male, approximately seven weeks old, weighing 250 ± 25 g. They were randomly divided into a model group, a non-model operation group, a positive control group, and an experimental group with ten SD rats in each group. The model of cerebral infarction in rats was established by the wire occlusion method. The model group and non-model operation group (control group) were injected with normal saline daily, the negative control group was injected with Keap1 gene inhibitor daily, and the experimental group was injected with tanshinone IIA (10 mg·kg-1·d-1) daily. Animal behavior analysis was performed on the 7th day after the operation, and pathology and the neuroprotective effects of tanshinone IIA on cells were assessed, including cell proliferation, autophagy, oxidative damage, and mitochondrial membrane permeability. The neuroprotective mechanism based on the Keap1-Nrf2/ARE pathway was explored and analyzed. Compared with the model group, the number of Keap1 proteins in the experimental group and the control group was substantially reduced (P < 0.05), and the experimental group was substantially different from the model group (P < 0.01). The protein expression of Nrf2, HO-1, and NQO1 increased substantially (P < 0.05), and the experimental group was substantially different from the model group (P < 0.01). In summary, tanshinone IIA promoted the proliferation of nerve cells, inhibited the production of cellular reactive oxygen species, inhibited the change in mitochondrial membrane potential, and activated the Keap1-Nrf2/ARE signaling pathway. It also induced and regulated the upregulation of downstream NQO1, HO-1, etc. and protected cells from cerebral infarction.
Collapse
Affiliation(s)
- Xiaochen Zhu
- Department of Neurology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lijuan He
- Department of Neurology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Gao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zhonghui Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Molecular Mechanism of Salvia miltiorrhiza Bunge in Treating Cerebral Infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5992394. [PMID: 35392650 PMCID: PMC8983215 DOI: 10.1155/2022/5992394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022]
Abstract
Background Cerebral infarction (CI) is a common brain disease in clinical practice, which is mainly due to the pathological environment of ischemia and hypoxia caused by difficult cerebral circulation perfusion function, resulting in ischemic necrosis of local brain tissue and neurological impairment. In traditional Chinese medicine (TCM) theory, CI is mainly due to blood stasis in the brain. Therefore, blood-activating and stasis-dissipating drugs are often used to treat CI in clinical practice. Salvia miltiorrhiza Bunge (SMB) is a kind of traditional Chinese medicine with good efficacy in promoting blood circulation and removing blood stasis, and treatment of CI with it is a feasible strategy. Based on the above analysis, we chose network pharmacology to investigate the feasibility of SMB in the treatment of CI and to study the possible molecular mechanisms by providing some reference for the treatment of CI with TCM. Methods The active ingredients and related targets of SMB were obtained through the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and CI-related targets were obtained from the GeneCards and DisGeNET databases. The target of SMB for the treatment of CI was obtained using Cytoscape software and visualized. GO and KEGG enrichment analysis was performed based on “clusterProfiler” within R, and the prediction results were validated by molecular docking technique. Results By constructing a compound-target (C-T) network, it was found that the active components in SMB mainly treated CI by regulating key proteins such as AKT1, IL-6, and EGFR. These key proteins mainly involve in pathways such as immune regulation, cancer and lipid metabolism, such as lipid and atherosclerosis, chemical carcinogenesis-receptor activation pathways, and IL-17 signaling pathway. In the GO term, it mainly regulates the response to steroid hormones, membrane rafts, and G protein-amine receptor coupled activity. Eventually, we verified that the luteolin and tanshinone IIA components in SMB have a good possibility of action with AKT1 and IL-6 by in silico techniques, indicating that SMB has some scientificity in the treatment of CI. Conclusion SMB mainly treats CI by regulating 94 proteins involved in lipid and atherosclerosis, chemical carcinogenesis-receptor activation, and IL-17 signaling pathway. Our research strategy provided a template for the drug development of TCM for the treatment of CI.
Collapse
|
5
|
Chou SL, Ramesh S, Kuo CH, Ali A, Ho TJ, Chang KP, Hsieh DJY, Kumar VB, Weng YS, Kuo WW, Huang CY. Tanshinone IIA inhibits Leu27IGF-II-induced insulin-like growth factor receptor II signaling and myocardial apoptosis via estrogen receptor-mediated Akt activation. ENVIRONMENTAL TOXICOLOGY 2022; 37:142-150. [PMID: 34655285 DOI: 10.1002/tox.23385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/10/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Different stress condition stimulates the expression level of insulin-like growth factor receptor II (IGF-IIR) in cardiomyoblasts that lead to apoptosis. Tanshinone IIA (TSN), a pharmacologically active component from Danshen, has been shown cardioprotective effects against cardiac apoptosis induced by several stress conditions. Therefore, this study was conducted to assess the cardioprotective effects of TSN IIA mediated through the estrogen receptor (ER) in order to inhibit the Leu27IGF-II-enhanced IGF-IIR-mediated cardiac apoptosis. The estrogenic activity of TSN IIA was examined after myocardial cells were pretreated with the ER antagonist, and inhibited the phospho-inositide-3 kinase (PI3K). Here, we found that TSN IIA significantly induced ER that phosphorylated Akt. Further, Akt activation considerably suppressed the Leu27IGF-II induced IGF-IIR expression level and the downstream effectors, including Gαq and calcineurin as well as mitochondrial dependent apoptosis proteins including Bad, cytochrome c, and active caspase-3 that result in cardiac apoptosis resistance. However, the western blot analysis, JC-1 staining, and terminal deoxynucleotide transferase-mediated dUTP nick end labeling assay revealed that TSN IIA attenuated Leu27IGF-II-induced IGF-IIR mediated cardiac apoptosis was reversed by an ER antagonist such as ICI 182780, and PI3K inhibition. All these findings demonstrate that TSN IIA exerts estrogenic activity, which can activate PI3K-Akt pathway, and thereby inhibits Leu27IGFII induced IGF-IIR mediated cardiac apoptosis. Thus, TSN IIA can be considered as an effective therapeutic strategy against IGF-IIR signaling cascade to suppress cardiac apoptosis.
Collapse
Affiliation(s)
- Shui Lian Chou
- Department of Family Medicine, Jen-Ai Hospital, Taichung, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Microbiology, PRIST Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Ayaz Ali
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Tsung-Jung Ho
- Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Ko Peng Chang
- Department of Family Medicine, Jen-Ai Hospital, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - V Bharath Kumar
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Yueh-Shan Weng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichuang, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
6
|
Subedi L, Gaire BP. Tanshinone IIA: A phytochemical as a promising drug candidate for neurodegenerative diseases. Pharmacol Res 2021; 169:105661. [PMID: 33971269 DOI: 10.1016/j.phrs.2021.105661] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Tanshinones, lipophilic diterpenes isolated from the rhizome of Salvia miltiorrhiza, have diverse pharmacological activities against human ailments including neurological diseases. In fact, tanshinones have been used to treat heart diseases, stroke, and vascular diseases in traditional Chinese medicine. During the last decade, tanshinones have been the most widely studied phytochemicals for their neuroprotective effects against experimental models of cerebral ischemia and Alzheimer's diseases. Importantly, tanshinone IIA, mostly studied tanshinone for biological activities, is recently reported to attenuate blood-brain barrier permeability among stroke patients, suggesting tanshinone IIA as an appealing therapeutic candidate for neurological diseases. Tanshinone I and IIA are also effective in experimental models of Parkinson's disease, Multiple sclerosis, and other neuroinflammatory diseases. In addition, several experimental studies suggested the pleiotropic neuroprotective effects of tanshinones such as anti-inflammatory, antioxidant, anti-apoptotic, and BBB protectant further value aiding to tanshinone as an appealing therapeutic strategy in neurological diseases. Therefore, in this review, we aimed to compile the recent updates and cellular and molecular mechanisms of neuroprotection of tanshinone IIA in diverse neurological diseases.
Collapse
Affiliation(s)
- Lalita Subedi
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Bhakta Prasad Gaire
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Intracisternal administration of tanshinone IIA-loaded nanoparticles leads to reduced tissue injury and functional deficits in a porcine model of ischemic stroke. IBRO Neurosci Rep 2021; 10:18-30. [PMID: 33842909 PMCID: PMC8019951 DOI: 10.1016/j.ibneur.2020.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/27/2020] [Indexed: 11/23/2022] Open
Abstract
Background The absolute number of new stroke patients is annually increasing and there still remains only a few Food and Drug Administration (FDA) approved treatments with significant limitations available to patients. Tanshinone IIA (Tan IIA) is a promising potential therapeutic for ischemic stroke that has shown success in pre-clinical rodent studies but lead to inconsistent efficacy results in human patients. The physical properties of Tan-IIA, including short half-life and low solubility, suggests that Poly (lactic-co-glycolic acid) (PLGA) nanoparticle-assisted delivery may lead to improve bioavailability and therapeutic efficacy. The objective of this study was to develop Tan IIA-loaded nanoparticles (Tan IIA-NPs) and to evaluate their therapeutic effects on cerebral pathological changes and consequent motor function deficits in a pig ischemic stroke model. Results Tan IIA-NP treated neural stem cells showed a reduction in SOD activity in in vitro assays demonstrating antioxidative effects. Ischemic stroke pigs treated with Tan IIA-NPs showed reduced hemispheric swelling when compared to vehicle only treated pigs (7.85 ± 1.41 vs. 16.83 ± 0.62%), consequent midline shift (MLS) (1.72 ± 0.07 vs. 2.91 ± 0.36 mm), and ischemic lesion volumes (9.54 ± 5.06 vs. 12.01 ± 0.17 cm3) when compared to vehicle-only treated pigs. Treatment also lead to lower reductions in diffusivity (-37.30 ± 3.67 vs. -46.33 ± 0.73%) and white matter integrity (-19.66 ± 5.58 vs. -30.11 ± 1.19%) as well as reduced hemorrhage (0.85 ± 0.15 vs 2.91 ± 0.84 cm3) 24 h post-ischemic stroke. In addition, Tan IIA-NPs led to a reduced percentage of circulating band neutrophils at 12 (7.75 ± 1.93 vs. 14.00 ± 1.73%) and 24 (4.25 ± 0.48 vs 5.75 ± 0.85%) hours post-stroke suggesting a mitigated inflammatory response. Moreover, spatiotemporal gait deficits including cadence, cycle time, step time, swing percent of cycle, stride length, and changes in relative mean pressure were less severe post-stroke in Tan IIA-NP treated pigs relative to control pigs. Conclusion The findings of this proof of concept study strongly suggest that administration of Tan IIA-NPs in the acute phase post-stroke mitigates neural injury likely through limiting free radical formation, thus leading to less severe gait deficits in a translational pig ischemic stroke model. With stroke as one of the leading causes of functional disability in the United States, and gait deficits being a major component, these promising results suggest that acute Tan IIA-NP administration may improve functional outcomes and the quality of life of many future stroke patients.
Collapse
Key Words
- ADC, Apparent Diffusion Coefficient
- ANOVA, analysis of variance
- AU, arbitrary units
- BBB, blood brain barrier
- Baic, Baicalin
- CNS, central nervous system
- CSF, cerebral spinal fluid
- DAMPS, damaged-associated molecular patterns
- DLS, dynamic light scattering
- DTI, Diffusion Tensor Imaging
- DWI, Diffusion-Weighted Imaging
- Edar, Edaravone
- FA, fractional anisotropy
- FDA, Food and Drug Administration
- GABA, γ-aminobutyric acid
- GM, gray matter
- IC, inhibitory concentration
- ICH, intracerebral hemorrhage
- IL-6, interleukin 6
- IM, intramuscular
- Ischemic stroke
- LPS, lipopolysaccharide
- MCA, middle cerebral artery
- MCAO, middle cerebral artery occlusion
- MLS, midline shift
- NP, nanoparticle
- NSCs, neural stem cells
- Nanomedicine
- PBS, phosphate buffered saline
- PEG–PLGA, polyethyleneglycol–polylactic-co-glycolic acid
- PLGA nanoparticle
- PLGA, Poly (lactic-co-glycolic acid)
- PLGA-b-PEG-OH, poly (lactide-co-glycolide)-b-poly (ethylene glycol)-maleimide
- Pig stroke model
- Piog, Pioglitazone
- Puer, Puerarin
- ROS, reactive oxygen species
- Resv, Resveratrol
- SOD, superoxide dismutase
- STAIR, Stroke Therapy Academic and Industry Roundtable
- T2*, T2Star
- T2FLAIR, T2 Fluid Attenuated Inversion Recovery
- T2W, T2Weighted
- TD, transdermal
- TEM, transmission electron microscopy
- TNF-α, tumor necrosis factor α
- Tan IIA, Tanshinone IIA
- Tan IIA-NPs, Tan IIA PLGA NPs
- Tan IIA-NPs, Tan IIA-loaded nanoparticles
- Tanshinone IIA
- UGA, University of Georgia
- WM, white matter
- ddH2O, double-distilled water
- tPA, Tissue plasminogen activator
Collapse
|
8
|
Shi J, Lai J, Lin Y, Xu X, Guo S, Wang H, Wang F, Mai Y. Tanshinone IIA down-regulated p-Smad3 signaling to inhibit TGF-β1-mediated fibroblast proliferation via lncRNA-HSRL/SNX9. Int J Biochem Cell Biol 2020; 129:105863. [PMID: 33049375 DOI: 10.1016/j.biocel.2020.105863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Tanshinone IIA (TSIIA), an active component of Salvia miltiorrhiza (Danshen), is reported to inhibit cell proliferation in hypertrophic scars (HS). In our previous study, we observed that lncRNA human-specific regulatory loci (HSRL) was up-regulated in HS tissues. However, whether TSIIA serves as an effective treatment for HS through affecting HSRL is still unexplored. METHODS TGF-β1-stimulated fibroblast were used as the in vitro HS model. The effects of TSIIA on cell proliferation were evaluated using CCK-8, Edu staining and colony formation assays. By performing loss-of-function and rescue experiments, we explored the role of HSRL and Sorting nexin 9 (SNX9) in TGF-β1-stimulated fibroblast. Employing RNA-protein pull-down assay and Co-immunoprecipitation, we further investigated the mechanisms through which TSIIA attenuated TGF-β1-stimulated fibroblast. RESULTS Our data demonstrated that TSIIA could effectively attenuate TGF-β1-mediated fibroblast proliferation in a dose-dependent manner. Meanwhile, TSIIA could down-regulate the expression of α-SMA, VEGFA, Collagen 1, HSRL, SNX9 and p-Smad2/3 in TGF-β1-stimulated HSF. In addition, we found that SNX9 overexpression reversed the effects of HSRL knockdown on TGF-β1-stimulated HSF. Furthermore, we confirmed that TSIIA treatment weakens the interaction between p-Smad3 and SNX9 in HS models. CONCLUSIONS Tanshinone IIA down-regulated p-Smad3 signaling to inhibit TGF-β1-mediated fibroblast proliferation via lncRNA-HSRL/SNX9.
Collapse
Affiliation(s)
- Jun Shi
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University of China, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China; Guangdong Engineering & Technology Research of Topical Precise Drug Delivery System, Guangzhou, 510006, Guangdong, China.
| | - Jianhui Lai
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University of China, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| | - Yujian Lin
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University of China, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| | - Xiaoqi Xu
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University of China, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| | - Siyi Guo
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University of China, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| | - Hui Wang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University of China, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China; Guangdong Engineering & Technology Research of Topical Precise Drug Delivery System, Guangzhou, 510006, Guangdong, China
| | - Fang Wang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University of China, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| | - Yuyi Mai
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University of China, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
9
|
Long Y, Yang Q, Xiang Y, Zhang Y, Wan J, Liu S, Li N, Peng W. Nose to brain drug delivery - A promising strategy for active components from herbal medicine for treating cerebral ischemia reperfusion. Pharmacol Res 2020; 159:104795. [PMID: 32278035 DOI: 10.1016/j.phrs.2020.104795] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 01/08/2023]
Abstract
Cerebral ischemia reperfusion injury (CIRI), one of the major causes of death from stroke in the world, not only causes tremendous damage to human health, but also brings heavy economic burden to society. Current available treatments for CIRI, including mechanical therapies and drug therapies, are often accompanied by significant side-effects. Therefore, it is necessary to discovery new strategies for treating CIRI. Many studies have confirmed that the herbal medicine has the advantages of abundant resources, good curative effect and little side effects, which can be used as potential drug for treatment of CIRI through multiple targets. It's known that oral administration commonly has low bioavailability, and injection administration is inconvenient and unsafe. Many drugs can't delivery to brain through routine pathways due to the blood-brain-barrier (BBB). Interestingly, increasing evidences have suggested the nasal administration is a potential direct route to transport drug into brain avoiding the BBB and has the characteristics of high bioavailability for treating brain diseases. Therefore, intranasal administration can be treated as an alternative way to treat brain diseases. In the present review, effective methods to treat CIRI by using active ingredients derived from herbal medicine through nose to brain drug delivery (NBDD) are updated and discussed, and some related pharmacological mechanisms have also been emphasized. Our present study would be beneficial for the further drug development of natural agents from herbal medicines via NBDD.
Collapse
Affiliation(s)
- Yu Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Qiyue Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, PR China
| | - Yan Xiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Yulu Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Jinyan Wan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Songyu Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Nan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China.
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China.
| |
Collapse
|
10
|
Feng Y, Feng F, Zheng C, Zhou Z, Jiang M, Liu Z, Xie F, Sun X, Wu Z. Tanshinone IIA attenuates demyelination and promotes remyelination in A. cantonensis-infected BALB/c mice. Int J Biol Sci 2019; 15:2211-2223. [PMID: 31592236 PMCID: PMC6775289 DOI: 10.7150/ijbs.35266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Angiostrongylus cantonensis infection can cause demyelination in the central nervous system, and there is no effective treatment. METHODS We used dexamethasone, Tanshinone IIA (TSIIA) and Cryptotanshinone(Two traditional Chinese medicine monomers) in combination with albendazole (AB, a standard anti-helminthic compound) to observe their therapeutic effect on demyelination in A. cantonensis-infected mice. Luxol fast blue staining and electron microscope of myelin sheath, Oligodendrocyte (OL) number and myelin basic protein (MBP) expression in brain was detected in above groups. RESULTS TSIIA+AB facilitated OL proliferation and significantly increased both myelin sheath thickness and the population of small-diameter axons. In addition, TSIIA treatment inhibited the expression of inflammation-related factors (interleukin [IL]-6, IL-1β, tumor necrosis factor [TNF]-α, inducible nitric oxide synthase [iNOS]) rather than inhibiting eosinophil infiltration in brain. TSIIA also decreased microglial activation and shifted their phenotype from M1 to M2. CONCLUSIONS Taken together, these results provide evidence that TSIIA combined with AB may be an effective treatment for demyelination caused by A. cantonensis infection and other demyelinating diseases.
Collapse
Affiliation(s)
- Ying Feng
- Medical School of South China University of Technology, Guangzhou, China
| | - Feng Feng
- The Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Cunjing Zheng
- Histology and Embryology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zongpu Zhou
- Medical School of South China University of Technology, Guangzhou, China
| | - Meihua Jiang
- Anatomy Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhen Liu
- Guangzhou First People's Hospital, Guangzhou, China
| | - Fukang Xie
- Histology and Embryology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xi Sun
- Parasitology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China
| | - Zhongdao Wu
- Parasitology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China
| |
Collapse
|
11
|
Tanshinone IIA protects hypoxia-induced injury by preventing microRNA-28 up-regulation in PC-12 cells. Eur J Pharmacol 2019; 854:265-271. [DOI: 10.1016/j.ejphar.2019.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023]
|
12
|
Peng T, Jiang Y, Farhan M, Lazarovici P, Chen L, Zheng W. Anti-inflammatory Effects of Traditional Chinese Medicines on Preclinical in vivo Models of Brain Ischemia-Reperfusion-Injury: Prospects for Neuroprotective Drug Discovery and Therapy. Front Pharmacol 2019; 10:204. [PMID: 30930774 PMCID: PMC6423897 DOI: 10.3389/fphar.2019.00204] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/18/2019] [Indexed: 12/28/2022] Open
Abstract
Acquired brain ischemia-and reperfusion-injury (IRI), including both Ischemic stroke (IS) and Traumatic Brain injury (TBI), is one of the most common causes of disability and death in adults and represents a major burden in both western and developing countries worldwide. China’s clinical neurological therapeutic experience in the use of traditional Chinese medicines (TCMs), including TCM-derived active compounds, Chinese herbs, TCM formulations and decoction, in brain IRI diseases indicated a trend of significant improvement in patients’ neurological deficits, calling for blind, placebo-controlled and randomized clinical trials with careful meta-analysis evaluation. There are many TCMs in use for brain IRI therapy in China with significant therapeutic effects in preclinical studies using different brain IRI-animal. The basic hypothesis in this field claims that in order to avoid the toxicity and side effects of the complex TCM formulas, individual isolated and identified compounds that exhibited neuroprotective properties could be used as lead compounds for the development of novel drugs. China’s efforts in promoting TCMs have contributed to an explosive growth of the preclinical research dedicated to the isolation and identification of TCM-derived neuroprotective lead compounds. Tanshinone, is a typical example of TCM-derived lead compounds conferring neuroprotection toward IRI in animals with brain middle cerebral artery occlusion (MCAO) or TBI models. Recent reports show the significance of the inflammatory response accompanying brain IRI. This response appears to contribute to both primary and secondary ischemic pathology, and therefore anti-inflammatory strategies have become popular by targeting pro-inflammatory and anti-inflammatory cytokines, other inflammatory mediators, reactive oxygen species, nitric oxide, and several transcriptional factors. Here, we review recent selected studies and discuss further considerations for critical reevaluation of the neuroprotection hypothesis of TCMs in IRI therapy. Moreover, we will emphasize several TCM’s mechanisms of action and attempt to address the most promising compounds and the obstacles to be overcome before they will enter the clinic for IRI therapy. We hope that this review will further help in investigations of neuroprotective effects of novel molecular entities isolated from Chinese herbal medicines and will stimulate performance of clinical trials of Chinese herbal medicine-derived drugs in IRI patients.
Collapse
Affiliation(s)
- Tangming Peng
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Yizhou Jiang
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Mohd Farhan
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Philip Lazarovici
- Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Wenhua Zheng
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
13
|
Tanshinone IIA decreases the levels of inflammation induced by Aβ1-42 in brain tissues of Alzheimer's disease model rats. Neuroreport 2018; 27:883-93. [PMID: 27348015 DOI: 10.1097/wnr.0000000000000618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To study the pathogenesis of Alzheimer's disease (AD) and explore the possible anti-inflammatory mechanism of tanshinone IIA (TanIIA), we evaluated the quantity of neurons and the expression levels of interleukin-1β (IL-1β), IL-6, glial fibrillary acidic protein, CD11b, C1q, C3c, and C3d in brain tissues of AD rats treated with TanIIA. Thirty male Sprague-Dawley rats were randomized into three groups: sham group, TanIIA treatment group, and Aβ1-42 group. Aβ1-42 treatment was performed by injecting Aβ into the hippocampus of rats and then tagged position. Brain tissue morphological structure has been observed with HE staining and the staining of exogenously injected Aβ1-42 was observed by immunohistochemistry, which confirms the success of the Aβ1-42 group. After TanIIA treatment, levels of IL-1β, IL-6, glial fibrillary acidic protein, CD11b, C1q, C3c, and C3d were measured in paraffinized brain tissue sections from all groups by immunohistochemistry staining. The results showed that no 6E10 was detected in the control group, and the difference in the expression levels of 6E10 between the Aβ1-42 group and the TanIIA treatment group was not significant (P>0.05), suggesting that both the Aβ1-42 group and the TanIIA treatment group received the same amount of Aβ. The Aβ1-42 group showed a significant increase in the expression levels of inflammatory markers compared with the sham group (P<0.05) and the TanIIA treatment group showed a partial improvement in reducing inflammation. Therefore, Aβ triggered brain inflammation and activated the complement system. TanIIA treatment reduced the number of astrocytes and microglial cells, and induced a partial decrease in complement molecules in the brain of AD rats. These findings suggested that TanIIA may represent a potential therapeutic treatment in neurodegenerative diseases such as AD to support the survival of neurons by reducing expression levels of inflammatory factors.
Collapse
|
14
|
Cai M, Guo Y, Wang S, Wei H, Sun S, Zhao G, Dong H. Tanshinone IIA Elicits Neuroprotective Effect Through Activating the Nuclear Factor Erythroid 2-Related Factor-Dependent Antioxidant Response. Rejuvenation Res 2017; 20:286-297. [PMID: 28162056 DOI: 10.1089/rej.2016.1912] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Min Cai
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yongxin Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Haidong Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sisi Sun
- The Medical Department of the Emergence Center of Xi'an, Xi'an, China
| | - Guangchao Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
15
|
Upregulation effects of Tanshinone IIA on the expressions of NeuN, Nissl body, and IκB and downregulation effects on the expressions of GFAP and NF-κB in the brain tissues of rat models of Alzheimer's disease. Neuroreport 2016; 26:758-66. [PMID: 26164608 DOI: 10.1097/wnr.0000000000000419] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study aimed to observe the effects of Tanshinone IIA(Tan IIA) treatment on the expression levels of brain tissue NeuN, Nissl body, IκB, GFAP and NF-κB in Alzheimer's disease (AD) rats to explore the possible anti-inflammatory and neuroprotective mechanisms of Tan IIA. Thirty healthy male Sprague-Dawley rats were randomized into three groups: Sham group, AD+vehicle control group, and AD+Tan IIA group. The models of AD were established by injecting Aβ1-42 into the hippocampus of rats. Tagged position and the expression levels of Aβ1-42 were observed by immunohistochemistry staining to prove the success of the model of AD. Brain tissues of all groups were collected after Tan IIA treatment and paraffin sections were prepared to assess pathological changes and expression levels of GFAP, IκB and NF-κB by both immunohistochemistry and western blotting. After Aβ1-42 injection, the expression levels of GFAP and NF-κB were significantly stronger in the AD+vehicle control group than those in the AD+Tan IIA group and the sham group (P<0.05), the IκB expression level and the number of neurons and Nissl bodies of AD+vehicle control group was reduced compared with the sham or the AD+Tan IIA group (P<0.05). In conclusion, Aβ induces a cerebral tissue inflammation reaction. Tan IIA treatment can suppress the proliferation of astrocytes in an AD model, lower the level of NF-κB, and increase the level of NeuN, Nissl body, IκB, thus exerting anti-inflammatory and neuroprotective effects.
Collapse
|
16
|
Feng F, Feng Y, Liu Z, Li WH, Wang WC, Wu ZD, Lv Z. Effects of albendazole combined with TSII-A (a Chinese herb compound) on optic neuritis caused by Angiostrongylus cantonensis in BALB/c mice. Parasit Vectors 2015; 8:606. [PMID: 26608105 PMCID: PMC4660773 DOI: 10.1186/s13071-015-1214-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/13/2015] [Indexed: 12/17/2022] Open
Abstract
Background Angiostrongylus cantonensis (A. cantonensis) infection can lead to optic neuritis, retinal inflammation, damage to ganglion cells, demyelination of optic nerve and visual impairment. Combined therapy of albendazole and dexamethasone is a common treatment for the disease in the clinic, but it plays no role in vision recovery. Therefore, it has been necessary to explore alternative therapies to treat this disease. Previous studies reported the neuro-productive effects of two constituents of Danshen (a Chinese herb)-tanshinone II-A (TSII-A) and cryptotanshinone (CPT), and this study aims to evaluate the impacts of TSII-A or CPT combined with albendazole on optic neuritis caused by A. cantonensis infection in a murine model. Methods To assess the effects of TSII-A or CPT combined with albendazole on optic neuritis due to the infection, mice were divided into six groups, including the normal control group, infection group and four treatment groups (albendazole group, albendazole combined with dexamethasone group, albendazole combined with CPT group and albendazole combined with TSII-A group). The infection group and treatment groups were infected with A. cantonensisand the treatment groups received interventions from 14 dpi (days post infection), respectively. At 21 dpi, the visual acuity of mice in each group was examined by visual evoked potential (VEP). The pathologic alteration of the retina and optic nerve were observed by hematoxylin and eosin (H&E) staining and transmission electronic microscopy (TEM). Results Infection of A. cantonensis caused prolonged VEP latency, obvious inflammatory cell infiltration in the retina, damaged retinal ganglions and retinal swelling, followed by optic nerve fibre demyelination and a decreasing number of axons at 21 dpi. In treatment groups, albendazole could not alleviate the above symptoms; albendazole combined with dexamethasone lessened the inflammation of the retina, but was futile for the other changes; however, albendazole combined with CPT and albendazole combined with TSII-A showed obvious effects on the recovery of prolonged VEP latency, destruction and reduction of ganglion cells, optic nerve demyelination and axon loss. Compared with albendazole-CPT compound, albendazole combined with TSII-A was more effective. Conclusions The current study demonstrates that albendazole combined with TSII-A plays a more effective role in treating optic neuritis caused by A. cantonensis in mice than with dexamethasone, as applied in conventional treatment, indicating that albendazole combined with TSII-A might be an alternate therapy for this parasitic disease in the clinic.
Collapse
Affiliation(s)
- Feng Feng
- Parasitology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, China.
| | - Ying Feng
- Histology and Embryology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Zhen Liu
- Parasitology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, China.
| | - Wei-Hua Li
- Zhongshan Ophthalmic Center, SunYat-sen University, Guangzhou, 510080, China.
| | - Wen-Cong Wang
- Zhongshan Ophthalmic Center, SunYat-sen University, Guangzhou, 510080, China.
| | - Zhong-Dao Wu
- Parasitology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, China.
| | - Zhiyue Lv
- Parasitology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, China.
| |
Collapse
|