1
|
Shahin NN, Ahmed-Farid OA, Sakr EAE, Kamel EA, Mohamed MM. Oral Supplements of Combined Lactobacillus plantarum and Asparagus officinalis Modulate Gut Microbiota and Alleviate High-Fat Diet-Induced Cognitive Deficits and Neurodegeneration in Rats. Probiotics Antimicrob Proteins 2025:10.1007/s12602-024-10429-7. [PMID: 39777720 DOI: 10.1007/s12602-024-10429-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
High-fat diet (HFD) consumption disrupts the gut microbiome, instigating metabolic disturbance, brain pathology, and cognitive decline via the gut-brain axis. Probiotic and prebiotic supplementation have been found to improve gut microbiome health, suggesting they could be effective in managing neurodegenerative disorders. This study explored the potential benefits of the probiotic strain Lactobacillus plantarum 20174 (L. plantarum), prebiotic Asparagus officinalis (A. officinalis) extract, or their synbiotic combination against HFD-induced cognitive dysfunction and neurodegeneration in rats. Male Sprague-Dawley rats were fed either a normal diet or an HFD for 24 weeks. Starting from week 13, rats on either diet were divided into vehicle-, prebiotic-, probiotic-, and synbiotic-treated subgroups. Rats received their assigned intervention for 12 more weeks. Prebiotic, probiotic, or synbiotic treatment reverted HFD-instigated alterations in hippocampal amyloid beta, p-tau, α-synuclein, and BDNF levels, leading to restored cognitive function. The tested therapies also improved the HFD-disrupted lipid profile. Interestingly, probiotic and synbiotic therapies attenuated oxidative stress and inflammation, reinstated neurotransmitter balance, and mitigated the energy deficit in HFD-fed rats. Furthermore, L. plantarum and Asparagus administration modulated gut microbiota composition by raising Lactobacillus species and reducing Coliform and Staphylococci bacteria as well as fungi populations. These findings suggest that the oral consumption of A. officinalis prebiotics and/or L. plantarum probiotics alleviates HFD-induced cognitive deficit and neurodegeneration through modulation of the gut-brain axis with superior restorative effects being achieved by synbiotic treatment.
Collapse
Affiliation(s)
- Nancy N Shahin
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | | | - Ebtehag A E Sakr
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Enas A Kamel
- Biochemistry and Nutrition Department, Faculty of Women for Arts Science and Education, Ain Shams University, Cairo, Egypt
| | - Maha M Mohamed
- Home Economic Department, Faculty of Women for Arts Science and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Zahedi E, Sanaeierad A, Nikbakhtzadeh M, Roghani M, Zamani E. Simvastatin improves learning and memory impairment via gut-brain axis regulation in an ovariectomized/D-galactose Alzheimer's rat model. Behav Brain Res 2023; 453:114611. [PMID: 37541447 DOI: 10.1016/j.bbr.2023.114611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
AIM Alzheimer's disease (AD) is the most prevalent form of dementia with multiple etiology and no effective remedy. Statins are a group of medicines that are basically used to lower cholesterol. However, several studies have recently done to assess the potential relationship between statins use and dementia but presented controversial results. METHODS In this study, using ovariectomy and D-galactose injection, a model of AD was induced in female rats, and then the protective effects of oral administration of simvastatin were investigated. shuttle box and Y-maze tests were done to assess the animals' learning and memory performance. Using GC-MC, ELISA, Immunohistochemistry and tissue staining techniques, changes in the amount of short-chain fatty acids (SCFAs), plasma and hippocampus neuroinflammatory markers and histological changes in the intestine and hippocampus were assessed in sham, disease and treatment groups. KEY FINDINGS Oral administration of simvastatin improved the gut microbiome activity (increased the amount of SCFAs in fecal samples) and strengthened the tight junctions of intestinal cells. Moreover, simvastatin reduced the amount of TNF-α and IL-1β in plasma and hippocampus. Also, cell death and Amyloid plaques notably decreased in the simvastatin-treated hippocampal tissue. All these physiological changes led to better performance in behavioral tasks in the treatment group in comparison to the disease group. SIGNIFICANCE These findings provide evidence that simvastatin may improve gut-brain axis followed by improvement in learning and memory via an anti-inflammatory effect.
Collapse
Affiliation(s)
- Elham Zahedi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Sanaeierad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marjan Nikbakhtzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| | - Elham Zamani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
3
|
Ayakdaş G, Ağagündüz D. Microbiota-accessible carbohydrates (MACs) as novel gut microbiome modulators in noncommunicable diseases. Heliyon 2023; 9:e19888. [PMID: 37809641 PMCID: PMC10559293 DOI: 10.1016/j.heliyon.2023.e19888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The gut microbiota has a significant role in human health and is affected by many factors. Diet and dietary components have profound impacts on the composition of the gut microbiome and largely contribute to the change in bacterial flora. A high-fiber diet increased dietary fiber (DF) fermentation and the production of short-chain fatty acids (SCFAs), which increased the number of microorganisms. Microbiota-accessible carbohydrates (MACs), a subgroup of fermentable carbohydrates such as DF, are defined as indigestible carbohydrates metabolized by microbes. These carbohydrates are important components to sustain the microbial environment of the complicated digestive tract and avoid intestinal dysbiosis. Each MAC has a unique property and can therefore be used as a sensitive output microbiota modulator to support host homeostasis and modulate health. In addition to the overall health-developing effects, MACs are thought to have a promising effect on the prevention of non-communicable diseases (NCDs), which are major health problems worldwide. The aim of the manuscript was to describe microbiota-accessible carbohydrates and summarize their effects on gut modulation and NCDs.
Collapse
Affiliation(s)
- Gamze Ayakdaş
- Department of Nutrition and Dietetics, Acıbadem University, Kerem Aydınlar Campus, Ataşehir, İstanbul, 34755, Turkey
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, 06490, Turkey
| |
Collapse
|
4
|
Akhgarjand C, Vahabi Z, Shab-Bidar S, Etesam F, Djafarian K. Effects of probiotic supplements on cognition, anxiety, and physical activity in subjects with mild and moderate Alzheimer's disease: A randomized, double-blind, and placebo-controlled study. Front Aging Neurosci 2022; 14:1032494. [PMID: 36389063 PMCID: PMC9647197 DOI: 10.3389/fnagi.2022.1032494] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 09/21/2023] Open
Abstract
Probiotics have been suggested as an effective adjuvant treatment for Alzheimer's disease (AD) due to their modulating effect on the gut microbiota, which may affect the gut-brain axis. Therefore, we aimed to evaluate the effects of two different single-strain probiotics on cognition, physical activity, and anxiety in subjects with mild and moderate AD. Eligible patients (n = 90) with AD were randomly assigned to either of two interventions [Lactobacillus rhamnosus HA-114 (1015 CFU) or Bifidobacterium longum R0175 (1015 CFU)] or placebo group, receiving probiotic supplement twice daily for 12 weeks. The primary outcome of the study was cognitive function measured by using the two tests, namely, the Mini-Mental State Examination (MMSE) and the categorical verbal fluency test (CFT). Secondary outcomes included a performance in Activities of Daily Living (ADL), the Lawton Instrumental Activities of Daily Living (IADL) scale, and the Generalized Anxiety Disorder (GAD-7) scale. Linear mixed-effect models were used to investigate the independent effects of probiotics on clinical outcomes. After 12 weeks, MMSE significantly improved cognition (P Interaction < 0.0001), with post hoc comparisons identifying significantly more improvement in the B. longum intervention group (differences: 4.86, 95% CI: 3.91-5.81; P < 0.0001) compared with both the placebo and L. rhamnosus intervention groups (differences: 4.06, 95% CI: 3.11-5.01; P < 0.0001). There was no significant difference between the two intervention groups (differences: -0.8, 95% CI: -1.74 to 0.14; P = 0.09). In conclusion, this trial demonstrated that 12-week probiotic supplementation compared with placebo had beneficial effects on the cognition status of patients with AD.
Collapse
Affiliation(s)
- Camellia Akhgarjand
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Vahabi
- Cognitive Neurology and Neuropsychiatry Division, Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Geriatric, Ziaeeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Etesam
- Sina MS Research Center, Brain and Spinal Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Ağagündüz D, Kocaadam-Bozkurt B, Bozkurt O, Sharma H, Esposito R, Özoğul F, Capasso R. Microbiota alteration and modulation in Alzheimer's disease by gerobiotics: The gut-health axis for a good mind. Biomed Pharmacother 2022; 153:113430. [DOI: 10.1016/j.biopha.2022.113430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022] Open
|
6
|
Zhang DD, Li HJ, Zhang HR, Ye XC. Poria cocos water-soluble polysaccharide modulates anxiety-like behavior induced by sleep deprivation by regulating the gut dysbiosis, metabolic disorders and TNF-α/NF-κB signaling pathway. Food Funct 2022; 13:6648-6664. [PMID: 35642970 DOI: 10.1039/d2fo00811d] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poria cocos (P. cocos) has been traditionally used as folk medicine and functional food in China for more than 2000 years. The water-soluble polysaccharide is the main component of P. cocos decoction. The effects and mechanisms of the water-soluble polysaccharide from P. cocos (PCWP) were investigated in chronic sleep deprivation (CSD)-induced anxiety in rats. CSD induced anxiety, gut dysbiosis, and inflammatory responses, and reduced neurotransmitter levels, whereas PCWP intervention ameliorated anxiety-like behaviors, increased the levels of 5-hydroxytryptamine, dopamine, norepinephrine, and γ-aminobutyric acid in the hypothalamus, regulated gastrointestinal peptide levels, reduced inflammatory factors, and inhibited the tumor necrosis factor (TNF)-α/nuclear factor (NF)-κB signaling pathway in rats with CSD. The changes in the intestinal flora composition were determined using 16S rDNA sequencing, and indicated that PCWP significantly improved species richness and diversity in the intestinal flora of rats with anxiety, and adjusted the abundance of the following dysregulated bacteria closer to that of the normal group: Rikenellaceae_RC9_gut_group, Ruminococcus, Prevotellaceae_UCG-001, Prevotellaceae_NK3B31_group, Fusicatenibacter. Metabolomics was used to analyze fecal samples to identify significantly altered metabolites in the PCWP-treated groups. Thirty-eight PCWP-related metabolites and four metabolic pathways such as sphingolipid metabolism, taurine and hypotaurine metabolism, vitamin B6 metabolism, and glycerophospholipid metabolism were explored. The results of serum metabolomics showed that 26 biomarkers were significantly changed after PCWP intervention compared with the model group. The regulatory effects of metabolic pathway enrichment on sphingolipid, phenylalanine, and taurine and hypotaurine metabolism, and validation results showed that PCWP intervention regulated the activity of enzymes involved in the above metabolic pathways. A strong correlation between intestinal bacteria and potential biomarkers was found. Our findings present new evidence supporting the potential effect of PCWP in preventing the progression of anxiety by inhibiting the TNF-α/NF-κB signaling pathway, alleviating metabolic disorders, and ameliorating the gut microflora imbalance.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Hui-Jun Li
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Han-Rui Zhang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Xiao-Chuan Ye
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| |
Collapse
|
7
|
Kumar A, Joishy T, Das S, Kalita MC, Mukherjee AK, Khan MR. A Potential Probiotic Lactobacillus plantarum JBC5 Improves Longevity and Healthy Aging by Modulating Antioxidative, Innate Immunity and Serotonin-Signaling Pathways in Caenorhabditis elegans. Antioxidants (Basel) 2022; 11:268. [PMID: 35204151 PMCID: PMC8868178 DOI: 10.3390/antiox11020268] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Since the hypothesis of Dr. Elie Metchnikoff on lactobacilli-mediated healthy aging, several microbes have been reported to extend the lifespan with different features of healthy aging. However, a microbe affecting diverse features of healthy aging is of choice for broader acceptance and marketability as a next-generation probiotic. We employed Caenorhabditis elegans as a model to understand the potential of Lactobacillus plantarum JBC5 (LPJBC5), isolated from fermented food sample on longevity and healthy aging as well as their underlying mechanisms. Firstly, LPJBC5 enhanced the mean lifespan of C. elegans by 27.81% compared with control (untreated). LPBC5-induced longevity was accompanied with better aging-associated biomarkers, such as physical functions, fat, and lipofuscin accumulation. Lifespan assay on mutant worms and gene expression studies indicated that LPJBC5-mediated longevity was due to upregulation of the skinhead-1 (skn-1) gene activated through p38 MAPK signaling cascade. Secondly, the activated transcription factor SKN-1 upregulated the expression of antioxidative, thermo-tolerant, and anti-pathogenic genes. In support, LPJBC5 conferred resistance against abiotic and biotic stresses such as oxidative, heat, and pathogen. LPJBC5 upregulated the expression of intestinal tight junction protein ZOO-1 and improved gut integrity. Thirdly, LPJBC5 improved the learning and memory of worms trained on LPJBC5 compared with naive worms. The results showed upregulation of genes involved in serotonin signaling (ser-1, mod-1, and tph-1) in LPJBC5-fed worms compared with control, suggesting that serotonin-signaling was essential for LPJBC5-mediated improved cognitive function. Fourthly, LPJBC5 decreased the fat accumulation in worms by reducing the expression of genes encoding key substrates and enzymes of fat metabolism (i.e., fat-5 and fat-7). Lastly, LPJBC5 reduced the production of reactive oxygen species and improved mitochondrial function, thereby reducing apoptosis in worms. The capability of a single bacterium on pro-longevity and the features of healthy aging, including enhancement of gut integrity and cognitive functions, makes it an ideal candidate for promotion as a next-generation probiotic.
Collapse
Affiliation(s)
- Arun Kumar
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India; (A.K.); (T.J.); (S.D.); (A.K.M.)
| | - Tulsi Joishy
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India; (A.K.); (T.J.); (S.D.); (A.K.M.)
| | - Santanu Das
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India; (A.K.); (T.J.); (S.D.); (A.K.M.)
| | - Mohan C. Kalita
- Department of Biotechnology, Gauhati University, Guwahati 781014, Assam, India;
| | - Ashis K. Mukherjee
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India; (A.K.); (T.J.); (S.D.); (A.K.M.)
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Mojibur R. Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India; (A.K.); (T.J.); (S.D.); (A.K.M.)
| |
Collapse
|
8
|
Kramer P. Mitochondria-Microbiota Interaction in Neurodegeneration. Front Aging Neurosci 2022; 13:776936. [PMID: 35002678 PMCID: PMC8733591 DOI: 10.3389/fnagi.2021.776936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s and Parkinson’s are the two best-known neurodegenerative diseases. Each is associated with the excessive aggregation in the brain and elsewhere of its own characteristic amyloid proteins. Yet the two afflictions have much in common and often the same amyloids play a role in both. These amyloids need not be toxic and can help regulate bile secretion, synaptic plasticity, and immune defense. Moreover, when they do form toxic aggregates, amyloids typically harm not just patients but their pathogens too. A major port of entry for pathogens is the gut. Keeping the gut’s microbe community (microbiota) healthy and under control requires that our cells’ main energy producers (mitochondria) support the gut-blood barrier and immune system. As we age, these mitochondria eventually succumb to the corrosive byproducts they themselves release, our defenses break down, pathogens or their toxins break through, and the side effects of inflammation and amyloid aggregation become problematic. Although it gets most of the attention, local amyloid aggregation in the brain merely points to a bigger problem: the systemic breakdown of the entire human superorganism, exemplified by an interaction turning bad between mitochondria and microbiota.
Collapse
Affiliation(s)
- Peter Kramer
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
9
|
Shamsipour S, Sharifi G, Taghian F. Impact of interval training with probiotic (L. plantarum / Bifidobacterium bifidum) on passive avoidance test, ChAT and BDNF in the hippocampus of rats with Alzheimer's disease. Neurosci Lett 2021; 756:135949. [PMID: 33974953 DOI: 10.1016/j.neulet.2021.135949] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023]
Abstract
It has been suggested that gut microbiota dysbiosis can lead to Alzheimer's disease (AD), inducing the production of many AD-related pre-inflammatory cytokines. On the other hand, daily probiotic administration and regular exercise training are assumed to improve clinical AD-related symptoms. To take this line of research further, this study was aimed at investigating the impact of moderate-intensity interval training (MIIT) with a combined administration of Lactobacillus plantarum and Bifidobacterium bifidum (probiotic, BROB) on the passive avoidance test (Shuttle Box), choline acetyltransferase (ChAT) and the brain derived neurotrophic factor (BDNF) in the hippocampus of a rat model of AD. Forty male Wistar rats (280 ± 20 g) were divided into five groups (n = 8 in each) of control, amyloid beta peptide (Aβ), Aβ + MIIT (AD rats undergoing MIIT), Aβ + PROB (AD rats fed Lactobacillus plantarum and Bifidobacterium bifidum), and Aβ + MIIT + PROB (AD rats receiving both treatments). AD was induced by the intra-cerebroventricular injection of Aβ1-42 peptide. MIIT was performed on rodent treadmill for 8 weeks (5 days per week). The probiotic was also fed daily to the related groups for 8 weeks. BDNF and ChAT in the hippocampus were measured by real time PCR (RT-PCR) and immunohistochemistry (IHC), respectively. Cresyl violet staining of brain tissue was performed to evaluate the dead cells. Results of tissue staining showed that the induction of the Alzheimer's led to the destruction of hippocampal cells and induced neurodegeneration (p = 0.001). Results of the shuttle box test showed that short-term memory was improved in the Aβ + MIIT + PROB group compared to the Aβ group, while death cells (dark cells) were decreased in all the other three groups (MIIT, BROB, and Aβ + MIIT + PROB). Levels of ChAT as well as the BDNF mRNA in the Aβ + MIIT + PROB group showed a significant increase compared to the Aβ group. In conclusion, it seems that the use of the combined administration of Lactobacillus plantarum and Bifidobacterium bifidum with interval aerobic exercise can have neuroprotective effects on AD.
Collapse
Affiliation(s)
- Samaneh Shamsipour
- Department of Physical Education and Sport Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Gholamreza Sharifi
- Department of Physical Education and Sport Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Farzaneh Taghian
- Department of Physical Education and Sport Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
10
|
Beltagy DM, Nawar NF, Mohamed TM, Tousson E, El-Keey MM. Beneficial consequences of probiotic on mitochondrial hippocampus in Alzheimer's disease. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 18:761-767. [PMID: 33781011 DOI: 10.1515/jcim-2020-0156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/23/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Alzheimer's (AD) is one of the most common neurodegenerative diseases, causing dementia and brain cells death. OBJECTIVES This study aimed to assess the ameliorating effect of Acidophilus probiotic against AD induced in rats by d-galactose and AlCl3 injection via evaluating mitochondrial parameter changes in hippocampus. METHODS This study was carried out on rats were classified into five groups; G1 (control group), G2 (probiotic group), G3 (AD group), G4 (co-treated group) and G5 (post-treated group). By the end of the experiment, some different neurotransmitters, oxidative stress biomarkers, zinc, blood glucose, Na+K-ATPase subunit alpha 1 (ATP1A1), and gene expression of mitochondrial membrane potential (MMP) were measured. RESULTS Significant changes in neurotransmitters, antioxidants levels and decreased ATP1A1 activity and gene expression of MMP in the hippocampus in G3 were detected if compared to control. Best improvement in G5 than G4 group was observed. These results were confirmed by histological and immunohistochemical studies in hippocampus. CONCLUSIONS Acidophilus probiotic was able to alleviate learning and memory associated injuries in AD by reducing mitochondrial dysfunction induced by d-galactose and AlCl3. This may be associated with its antioxidant properties.
Collapse
Affiliation(s)
- Doha M Beltagy
- Biochemistry Division, Chemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Nagat F Nawar
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mai M El-Keey
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
11
|
Alleviation of Anxiety/Depressive-Like Behaviors and Improvement of Cognitive Functions by Lactobacillus plantarum WLPL04 in Chronically Stressed Mice. ACTA ACUST UNITED AC 2021; 2021:6613903. [PMID: 33603935 PMCID: PMC7868149 DOI: 10.1155/2021/6613903] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/18/2020] [Accepted: 01/17/2021] [Indexed: 12/15/2022]
Abstract
Background Intestinal microorganisms play an important role in regulating the neurodevelopment and the brain functions of the host through the gut-brain axis. Lactobacillus, one of the most representative intestinal probiotics, produces important effects on human physiological functions. Our previous studies reveal that the Lactobacillus plantarum WLPL04 has a series of beneficial actions, such as antiadhesion of pathogens, protection from the harmful effect of sodium dodecyl sulfate, and anti-inflammatory stress on Caco2 cells. However, its effects on brain functions remain unknown. The present study aims to evaluate the potential effect of L. plantarum WLPL04 on anxiety/depressive-like behaviors in chronically restrained mice. Methods Newly weaned mice were exposed to chronic restraint stress for four weeks and raised daily with or without L. plantarum WLPL04 water supplement. Animals were behaviorally assessed for anxiety/depression and cognitive functions. The 16S rRNA sequencing was performed to analyze the intestinal microbiota structure. The levels of the medial prefrontal cortical (mPFC) brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) and serum 5-hydroxytryptamine (5-HT) were examined using Western blot and enzyme-linked immunosorbent assay. Results The chronic stress-induced anxiety/depressive-like behaviors and cognitive deficits were significantly alleviated by the L. plantarum WLPL04 treatment. The 16S rRNA sequencing analysis showed that the chronic stress reduced the diversity and the richness of intestinal microbiota, which were rescued by the L. plantarum WLPL04 treatment. The levels of BDNF and TrkB in the mPFC and the concentration of 5-HT in the serum remained unchanged in chronically restrained mice treated with the L. plantarum WLPL04. Conclusions The L. plantarum WLPL04 can rescue anxiety/depressive-like behaviors and cognitive dysfunctions, reverse the abnormal change in intestinal microbiota, and alleviate the reduced levels of 5-HT, BDNF, and TrkB induced by chronic stress in mice, providing an experimental basis for the therapeutic application of L. plantarum on anxiety/depression.
Collapse
|
12
|
TSAI YC, CHENG LH, LIU YW, JENG OJ, LEE YK. Gerobiotics: probiotics targeting fundamental aging processes. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2020; 40:1-11. [PMID: 33520563 PMCID: PMC7817508 DOI: 10.12938/bmfh.2020-026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022]
Abstract
Aging is recognized as a common risk factor for many chronic diseases and functional decline. The newly emerging field of geroscience is an interdisciplinary field that aims to understand the molecular and cellular mechanisms of aging. Several fundamental biological processes have been proposed as hallmarks of aging. The proposition of the geroscience hypothesis is that targeting holistically these highly integrated hallmarks could be an effective approach to preventing the pathogenesis of age-related diseases jointly, thereby improving the health span of most individuals. There is a growing awareness concerning the benefits of the prophylactic use of probiotics in maintaining health and improving quality of life in the elderly population. In view of the rapid progress in geroscience research, a new emphasis on geroscience-based probiotics is in high demand, and such probiotics require extensive preclinical and clinical research to support their functional efficacy. Here we propose a new term, "gerobiotics", to define those probiotic strains and their derived postbiotics and para-probiotics that are able to beneficially attenuate the fundamental mechanisms of aging, reduce physiological aging processes, and thereby expand the health span of the host. We provide a thorough discussion of why the coining of a new term is warranted instead of just referring to these probiotics as anti-aging probiotics or with other similar terms. In this review, we highlight the needs and importance of the new field of gerobiotics, past and currently on-going research and development in the field, biomarkers for potential targets, and recommended steps for the development of gerobiotic products. Use of gerobiotics could be a promising intervention strategy to improve health span and longevity of humans in the future.
Collapse
Affiliation(s)
- Ying-Chieh TSAI
- Institute of Biochemistry and Molecular Biology, National
Yang-Ming University, Taipei 11221, Taiwan
| | - Li-Hao CHENG
- Bened Biomedical Co., Ltd., Taipei 10448, Taiwan
| | - Yen-Wenn LIU
- Institute of Biochemistry and Molecular Biology, National
Yang-Ming University, Taipei 11221, Taiwan
| | | | - Yuan-Kun LEE
- Department of Microbiology & Immunology, National
University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
13
|
Ansari F, Pourjafar H, Tabrizi A, Homayouni A. The Effects of Probiotics and Prebiotics on Mental Disorders: A Review on Depression, Anxiety, Alzheimer, and Autism Spectrum Disorders. Curr Pharm Biotechnol 2020; 21:555-565. [PMID: 31914909 DOI: 10.2174/1389201021666200107113812] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/05/2019] [Accepted: 11/22/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Probiotics and their nutrient sources (prebiotics) have been shown to have positive effects on different organs of the host. The idea of their potential benefits on Central Nervous Systems (CNS) and the incidence of Anxiety, Schizophrenia, Alzheimer, Depression, Autism, and other mental disorders has proposed a new category of medicines called "psychobiotic" which is hoped to be of low-side effect anti-inflammatory, antidepressant, and anti-anxiety constitutes. OBJECTIVE In the current review, we present valuable insights into the complicated interactions between the GI microbiota (especially in the colon), brain, immune and central nervous systems and provide a summary of the main findings of the effects of pro- and prebiotics on important mental disorders from the potential mechanisms of action to their application in clinical practice. METHODS Google Scholar, Pub Med, Scopus, and Science Direct databases were searched using following key words: "probiotics", "prebiotics", "mental disorders", "psychological disorders", "depression", "anxiety", "stress", "Alzheimer" and "autism spectrum". The full text of potentially eligible studies was retrieved and assessed in detail by the reviewers. Data were extracted and then summarized from the selected papers. RESULTS The results of the provided evidence suggest that probiotic and prebiotics might improve mental function via several mechanisms. The beneficial effects of their application in Depression, Anxiety, Alzheimer and autism spectrum diseases have also been supported in clinical studies. CONCLUSION Pro and prebiotics can improve mental health and psychological function and can be offered as new medicines for common mental disorders, however, more clinical studies are necessary to conduct regarding the clinical significance of the effects and their bioequivalence or superiority against current treatments.
Collapse
Affiliation(s)
- Fereshteh Ansari
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz, Iran.,Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Hadi Pourjafar
- Department of Food Sciences and Nutrition, Maragheh University of Medical Sciences, Maragheh, Iran.,Alborz University of Medical Sciences, Dietary supplements and Probiotic Research Center, Karaj, Iran
| | - Aydin Tabrizi
- Pediatrics Neurology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aziz Homayouni
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Sirin S, Aslim B. Characterization of lactic acid bacteria derived exopolysaccharides for use as a defined neuroprotective agent against amyloid beta 1-42-induced apoptosis in SH-SY5Y cells. Sci Rep 2020; 10:8124. [PMID: 32415207 PMCID: PMC7229009 DOI: 10.1038/s41598-020-65147-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 04/28/2020] [Indexed: 12/06/2022] Open
Abstract
Alzheimer's disease (AD) is a disease characterized by cerebral neuronal degeneration and loss in a progressive manner. Amyloid beta (Aβ) in the brain is toxic to neurons, being a main risk factor for initiation and continuation of cognitive deterioration in AD. Neurotoxicity of Aβ origin is also linked to oxidative stress characterized by excessive lipid peroxidation, protein oxidation, changes in antioxidant systems, and cerebral DNA damage in AD. Furthermore, Aβ can induce oxidative neuronal cell death by a mitochondrial dysfunction. Cellular injury caused by oxidative stress can be possibly prevented by boosting or promoting bodily oxidative defense system by supplying antioxidants in diet or as medications. However, most synthetic antioxidants are found to have cytotoxicity, which prevents their safe use, and limits their administration. For this reason, more attention has been paid to the natural non-toxic antioxidants. One of the most promising groups of non-toxic antioxidative compounds is thought to be polysaccharides. This study investigated the characterization and protective action exerted by exopolysaccharides (EPSs) originated from Lactobacillus delbrueckii ssp. bulgaricus B3 and Lactobacillus plantarum GD2 to protect from apoptotic activity exerted by Aβ1-42 among SH-SY5Y cells. We characterized EPSs by elemental analysis, FTIR, AFM, SEM, and XRD. The antioxidant effects of EPSs were determined by the DPPH free radical scavenging activity, hydroxyl radical scavenging activity, metal ion chelating activity, lipid peroxidation inhibitory activity, and superoxide anion scavenging activity method. The protective effects of EPSs were determined by flow cytometry and RT-PCR. Mannose ratio, molecular weight, functional groups, surface morphology, and amorphous character structure of EPSs are thought to play a role in the protective effect of EPSs. EPSs reduced apoptotic activity of Aβ1-42 in addition to their depolarizing effect on mitochondrial membrane potential in concentration-dependent manner. These observations contribute the inclusion of EPSs among the therapeutic options used to manage various neurological disorders in the traditional medicine in a scientific manner, indicating that EPSs may be promising natural chemical constituents that need advanced research and development for pharmacological therapy of AD.
Collapse
Affiliation(s)
- Seda Sirin
- Faculty of Science, Department of Biology, Gazi University, Ankara, Turkey.
| | - Belma Aslim
- Faculty of Science, Department of Biology, Gazi University, Ankara, Turkey
| |
Collapse
|
15
|
Sun J, Xu J, Yang B, Chen K, Kong Y, Fang N, Gong T, Wang F, Ling Z, Liu J. Effect of Clostridium butyricum against Microglia-Mediated Neuroinflammation in Alzheimer's Disease via Regulating Gut Microbiota and Metabolites Butyrate. Mol Nutr Food Res 2019; 64:e1900636. [PMID: 31835282 DOI: 10.1002/mnfr.201900636] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/05/2019] [Indexed: 12/21/2022]
Abstract
SCOPE Recent evidences demonstrate that abnormal gut microbiota (GM) might be involved in the pathogenesis of Alzheimer's disease (AD). However, the role of probiotics in preventing AD by regulating GM-gut-brain axis remains unclear. Here, the anti-neuroinflammatory effect and its mechanism of probiotic Clostridium butyricum (CB) against AD is investigated by regulating GM-gut-brain axis. METHODS AND RESULTS APPswe/PS1dE9 (APP/PS1) transgenic are treated intragastrically with CB for 4 weeks then cognitively tested. Amyloid-β (Aβ) burden, microglial activation, proinflammatory cytokines production, GM, and metabolites butyrate are analyzed. Moreover, Aβ-induced BV2 microglia are pretreated with butyrate, and the levels of cluster of differentiation 11b (CD11b), cyclooxygenase-2 (COX-2), and NF-κB p65 phosphorylation are determined. The results show that CB treatment prevents cognitive impairment, Aβ deposits, microglia activation, and production of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the brain of APP/PS1 mice. Meanwhile, abnormal GM and butyrate are reversed after CB treatment. Notably, butyrate treatment reduces the levels of CD11b and COX-2, and suppresses phosphorylation of NF-κB p65 in the Aβ-induced BV2 microglia. CONCLUSIONS These findings indicate that CB treatment could attenuate microglia-mediated neuroinflammation via regulating the GM-gut-brain axis, which is mediated by the metabolite butyrate.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jingxuan Xu
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Bo Yang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Keyang Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yu Kong
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Na Fang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tianyu Gong
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Fangyan Wang
- Departments of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.,Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
16
|
Rezaei Asl Z, Sepehri G, Salami M. Probiotic treatment improves the impaired spatial cognitive performance and restores synaptic plasticity in an animal model of Alzheimer's disease. Behav Brain Res 2019; 376:112183. [PMID: 31472194 DOI: 10.1016/j.bbr.2019.112183] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/19/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023]
Abstract
Studies demonstrate that damage to gut microbiota is associated with some brain disorders including neurodegenerative diseases such as Alzheimer's disease (AD). Accordingly, supporting gut microbiota has been considered as a possible strategy for AD treatment. We evaluated behavioral and electrophysiological aspects of the brain function in an animal model of AD made by intracerebroventricular injection of β-amyloid. Two groups of control rats recieved either water as vehicle (Con) or probitics (Pro + Con). Also two groups of Alzheimeric animals were treated by either vehicle (Alz) or probiotics (Pro + Alz). Sham group was only subjected to surgical procedure and received the vehicle. Spatial learning and memory was assessed in Morris water maze. Also, basic synaptic transmission and long-term potentiation (LTP) were assessed by recording field excitatory postsynaptic potentials (fEPSPs) in hippocampus. Change in anti-oxidant/oxidant factors was assessed via measuring plasma level of total anti-oxidant capacity (TAC) and malondealdehyde (MDA). Brain staining was done to confirm β-amyloid accumulation. Fecal bacteria quantification was accomplished to find how probiotic supplement affected gut microbiota. We found that while the Alz animals displayed a weak spatial performance, probiotic treatment improved the maze navigation in the Pro + Alz rats. Whereas basic synaptic transmission remained unchanged in the Alz rats, LTP was suppressed in this group. Probiotic treatment significantly restored LTP in the Pro + Alz group and further enhanced it in the Pro + Con rats. The intervention also showed a favorable effect on balance of the anti-oxidant/oxidant biomarkers in the Pro + Alz rats. This study provides the first proof on positive effect of probiotics on synaptic plasticity in an animal model of AD.
Collapse
Affiliation(s)
- Zahra Rezaei Asl
- Department of Physiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran
| | - Gholamreza Sepehri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, IR Iran.
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
17
|
Novik G, Savich V. Beneficial microbiota. Probiotics and pharmaceutical products in functional nutrition and medicine. Microbes Infect 2019; 22:8-18. [PMID: 31233819 DOI: 10.1016/j.micinf.2019.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022]
Abstract
The article is mainly devoted to such representatives of gut microbiota as lactic acid bacteria and bifidobacteria, with minor accent on less frequently used or new probiotic microorganisms. Positive effects in treatment and prevention of diseases by different microbial groups, their metabolites and mechanisms of action, management and market of probiotic products are considered.
Collapse
Affiliation(s)
- Galina Novik
- Belarusian Collection of Microorganisms, Institute of Microbiology, National Academy of Sciences of Belarus, 2 Academician V.F. Kuprevich Street, 220141 Minsk, the Republic of Belarus.
| | - Victoria Savich
- Belarusian Collection of Microorganisms, Institute of Microbiology, National Academy of Sciences of Belarus, 2 Academician V.F. Kuprevich Street, 220141 Minsk, the Republic of Belarus
| |
Collapse
|
18
|
Sarni AR, Baroni L. Milk and Parkinson disease: Could galactose be the missing link. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2019. [DOI: 10.3233/mnm-180234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Luciana Baroni
- Primary Care Unit, Northern District, Local Health Unit 2 Marca Trevigiana, Treviso, Italy
| |
Collapse
|
19
|
Noureen S, Riaz A, Arshad M, Arshad N. In vitro selection and in vivo confirmation of the antioxidant ability of Lactobacillus brevis MG000874. J Appl Microbiol 2019; 126:1221-1232. [PMID: 30597726 DOI: 10.1111/jam.14189] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 10/31/2018] [Accepted: 12/04/2018] [Indexed: 01/16/2023]
Abstract
AIMS This study aimed at isolating a probiotic strain from a collection of lactic acid bacteria (LAB) with the high antioxidant property and confirms its potential in d-gal-induced oxidative stress (OS) murine model. METHODS AND RESULTS The in vitro antioxidant ability of 16 LAB strains was determined in the cell-free supernatant of 3- to 5-day-old culture, intact cells and cell lysates using three different methods for determining the reactive oxygen species scavenging activity and inhibition of lipid peroxidation. The strain, An28, presented the best antioxidant activity and was identified as Lactobacillus brevis MG000874 on the basis of 16 sRNA gene sequencing. The antioxidant potential of L. brevis MG000874 was confirmed in an OS murine model. Albino mice were exposed to d-galactose at a dose of 150 mg kg-1 BW and fed with L. brevis MG000874 (0·2 ml of 1010 CFU per ml cell suspension per animal per day). Antioxidant enzymes were quantified spectrophotometrically in the liver, kidney and serum. Subcutaneous administration of d-gal resulted in decrease in superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) and increase in glutathione-S-transferase (GST) levels in animals. The L. brevis MG000874-treated animals displayed improvement in SOD, CAT and GST in all tissues and GSH in the liver and serum. The safety assessment of L. brevis MG000874 was performed by comparing liver and renal function tests. None of the selected indicators was significantly different from the negative control group. CONCLUSIONS The antioxidant potential of 16 strains was noticed to be strain specific and in vivo performance of L. brevis MG000874 was found satisfactory in a d-gal murine model. SIGNIFICANCE AND IMPACT OF THE STUDY Lactobacillus brevis MG000874 was identified for its admirable antioxidant property. This strain or/and its metabolites could be further investigated for possible applications in humans and veterinary fields.
Collapse
Affiliation(s)
- S Noureen
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - A Riaz
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - M Arshad
- Department of Zoology, University of the Education, Lahore, Pakistan
| | - N Arshad
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
20
|
Agahi A, Hamidi GA, Daneshvar R, Hamdieh M, Soheili M, Alinaghipour A, Esmaeili Taba SM, Salami M. Does Severity of Alzheimer's Disease Contribute to Its Responsiveness to Modifying Gut Microbiota? A Double Blind Clinical Trial. Front Neurol 2018; 9:662. [PMID: 30158897 PMCID: PMC6104449 DOI: 10.3389/fneur.2018.00662] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/24/2018] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is associated with cognitive dysfunction. Evidence indicates that gut microbiota is altered in the AD and, hence, modifying the gut flora may affect the disease. In the previous clinical research we evaluated the effect of a probiotic combination on the cognitive abilities of AD patients. Since, in addition to pathological disorders, the AD is associated with changes in oxidant/antioxidant and inflammatory/anti-inflammatory biomarkers, the present work was designed to evaluate responsiveness of the inflammatory and oxidative biomarkers to the probiotic treatment. The control (CON) and probiotic (PRO) AD patients were treated for 12 weeks by the placebo and probiotic supplementation, respectively. The patients were cognitively assessed by Test Your Memory (TYM = 50 scores). Also serum concentrations of nitric oxide (NO), glutathione (GSH), total antioxidant capacity (TAC), malondialdehyde (MDA), 8-hydroxy-2′ -deoxyguanosine (8-OHdG) and cytokines (TNF-a, IL-6, and IL-10) were measured. The cognitive test and the serum biomarkers were assessed pre- and post-treatment. According to TYM test 83.5% of the patients showed severe AD. The CON (12.86% ± 8.33) and PRO (−9.35% ± 16.83) groups not differently scored the cognitive test. Not pronounced change percent was found in the serum level of TNF-α (1.67% ± 1.33 vs. −0.15% ± 0.27), IL-6 (0.35% ± 0.17 vs. 2.18% ± 0.15), IL-10 (0.05% ± 0.10 vs. −0.70% ± 0.73), TAC (0.07% ± 0.07 and −0.06% ± 0.03), GSH (0.08% ± 0.05 and 0.04% ± 0.03) NO (0.11% ± 0.06 and 0.05% ± 0.09), MDA (−0.11% ± 0.03 and −0.17% ± 0.03), 8-OHdG (43.25% ± 3.01 and 42.70% ± 3.27) in the CON and PRO groups, respectively. We concluded that the cognitive and biochemical indications in the patients with severe AD are insensitive to the probiotic supplementation. Therefore, in addition to formulation and dosage of probiotic bacteria, severity of disease and time of administration deeply affects results of treatment.
Collapse
Affiliation(s)
- Azadeh Agahi
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Gholam Ali Hamidi
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Daneshvar
- Department of Neurology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mostafa Hamdieh
- Department of Psychology, School of Medicine, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soheili
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Azam Alinaghipour
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Mahmoud Salami
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
21
|
Nimgampalle M, Kuna Y. Anti-Alzheimer Properties of Probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer's Disease induced Albino Rats. J Clin Diagn Res 2017; 11:KC01-KC05. [PMID: 28969160 DOI: 10.7860/jcdr/2017/26106.10428] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Alzheimer's disease is a type of dementia, and till now there is no suitable drug available for the complete cure of this disease. Now-a-days Probiotics, Lactobacillus strains play a therapeutic role in cognitive disorders through Gut-Brain Axis communication. AIM The present study was aimed to evaluate the anti-Alzheimer properties of Lactobacillus plantarum MTCC1325 against D-Galactose-induced Alzheimer's disease in albino rats. MATERIALS AND METHODS Healthy rats (48) of wistar strain were divided into four groups viz., Group-I: control rats received saline, Group-II: rats received intraperitoneal injection of D-Galactose (120 mg/kg body weight) throughout experiment, Group-III: initially animals were subjected to D-Galactose injection for six weeks, then followed by simultaneously received both D-Galactose and L. plantarum MTCC1325 (12×108 CFU/ml; 10 ml/kg body weight) for 60 days and Group-IV: rats which were orally administered only with Lactobacillus plantarum MTCC1325 for 60 days. During the experimentation, both morphometric and behavioural aspects were studied. Later we have examined histopathological changes and estimated cholinergic levels in selected brain regions of all experimental groups of rats including control on selected days. RESULTS Morphometric, behavioural changes, ACh levels were significantly decreased and pathological hallmarks such as amyloid plaques and tangles were also observed in AD model group. Treatment of AD-group with L. plantarum MTCC1325 for 60 days, not only ameliorated cognition deficits but also restored ACh and the histopathological features to control group. However, no significant effects have been observed in the group treated with L. plantarum alone. CONCLUSION The study revealed that, L. plantarum MTCC1325 might have anti-Alzheimer properties against D-Galactose induced Alzheimer's disease.
Collapse
Affiliation(s)
- Mallikarjuna Nimgampalle
- Research Scholar, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Yellamma Kuna
- Professor, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| |
Collapse
|
22
|
Mallikarjuna N, Praveen K, Yellamma K. Role of Lactobacillus plantarum MTCC1325 in membrane-bound transport ATPases system in Alzheimer's disease-induced rat brain. ACTA ACUST UNITED AC 2016; 6:203-209. [PMID: 28265536 PMCID: PMC5326668 DOI: 10.15171/bi.2016.27] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022]
Abstract
![]()
Introduction: Alzheimer’s disease (AD) is a neurodegenerative disorder, clinically characterized by memory dysfunction and progressive loss of cognition. No curative therapeutic or drug is available for the complete cure of this disease. The present study was aimed to evaluate the efficacy of Lactobacillus plantarum MTCC1325 in ATPases activity in the selected brain regions of rats induced with Alzheimer’s.
Methods: For the study, 48 healthy Wistar rats were divided into four groups: group I as control group, group II as AD model (AD induced by intraperitoneal injection of D-Galactose, 120 mg/kg body weight for 6 weeks), group III as normal control rats which were orally administered only with L. plantarum MTCC1325 for 60 days, and group IV where the AD-induced rats simultaneously received oral treatment of L. plantarum MTCC1325 (10ml/kg body weight, 12×108 CFU/mL) for 60 days. The well known membrane bound transport enzymes including Na+, K+-ATPases, Ca2+-ATPases, and Mg2+-ATPases were assayed in the selected brain regions of hippocampus and cerebral cortex in all four groups of rats at selected time intervals.
Results: Chronic injection of D-Galactose caused lipid peroxidation, oxidative stress, and mitochondrial dysfunction leading to the damage of neurons in the brain, finally bringing a significant decrease (-20%) in the brain total membrane bound ATPases over the controls. Contrary to this, treatment of AD-induced rats with L. plantarum MTCC1325 reverted all the constituents of ATPase enzymes to near normal levels within 30 days.
Conclusion: Lactobacillus plantarum MTCC1325 exerted a beneficial action on the entire ATPases system in AD-induced rat brain by delaying neurodegeneration.
Collapse
Affiliation(s)
- Nimgampalle Mallikarjuna
- Division of Neurobiology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Kukkarasapalli Praveen
- Division of Neurobiology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Kuna Yellamma
- Division of Neurobiology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| |
Collapse
|
23
|
Hou B, Wang H, Yan T, Shan Y, Zhou W, Zhang L, Man C, Deng Y, Jiang Y. Production for High-vitality Starter Culture of Lactobacillus plantarum NDC 75017 by High Cell-density Cultivation and Low-temperature Vacuum Drying. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2016. [DOI: 10.3136/fstr.22.519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Baochao Hou
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University
- Bioengineering Institute, Wahaha R&D Center, Hangzhou Wahaha Group CO., LTD
| | - Hui Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University
| | - Tianwen Yan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University
| | - Yi Shan
- National Research Center of Dairy Engineering and Technology
| | - Wenqi Zhou
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University
| | - Lidong Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University
| | - Chaoxin Man
- National Research Center of Dairy Engineering and Technology
- Synergetic Innovation Center of Food Safety and Nutrition
| | - Yu Deng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University
- National Research Center of Dairy Engineering and Technology
- Synergetic Innovation Center of Food Safety and Nutrition
| |
Collapse
|
24
|
Induction of cytokines via NF-κB and p38 MAP kinase signalling pathways associated with the immunomodulation by Lactobacillus plantarum NDC 75017 in vitro and in vivo. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|