1
|
Lu Y, Tang W, Zhang H, Liu J, Zhong S. Effect of hepatocyte damage in hepatic fibrogenesis of patients infected with Schistosoma japonicum. Infect Immun 2024; 92:e0002624. [PMID: 38767360 PMCID: PMC11237810 DOI: 10.1128/iai.00026-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Schistosomiasis is a serious public health problem, and previous studies found that liver function and hepatic cells are damaged. To evaluate the serum parameters of liver function and fibrosis in schistosomiasis patients infected with Schistosoma japonicum (Schistosoma J.) and analyze the correlations between liver function and serum fibrosis markers in patients infected with Schistosoma J., this retrospective study enrolled 133 patients. The study population was divided into four groups: healthy people control group (n = 20), chronic schistosomiasis without liver cirrhosis (CS) group (n = 21), schistosomiasis cirrhosis without hypoalbuminemia (SC-HA) group (n = 68), and schistosomiasis cirrhosis with hypoalbuminemia (SC +HA) group (n = 24). Clinical and laboratory data were collected for analysis. In the multiple comparison of abnormal rates of aspartate aminotransferase (AST) and total bilirubin (TBIL), the abnormal rate of the SC +HA group was significantly higher than that of the other three groups (P < 0.05), and the abnormal rate of γ-GT in the SC +HA group was significantly higher than that in the control group (P < 0.05). Multiple comparison results of serum levels of fibrosis markers showed that the SC group had a significantly higher level of indexes than other groups (P < 0.05). The levels of TGF-β1 in the CS group, SC-HA group and SC +HA group were significantly higher than those in the control group (P < 0.001). Our study demonstrated that the liver function and hepatic cells were damaged with the progression of liver disease in patients infected with Schistosoma J., and they played an important role in the occurrence and development of liver fibrosis.
Collapse
Affiliation(s)
- Yaqi Lu
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wangxian Tang
- Institute of Liver Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Heng Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Liu
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shan Zhong
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, China
| |
Collapse
|
2
|
Lu W, Qu J, Yan L, Tang X, Wang X, Ye A, Zou Z, Li L, Ye J, Zhou L. Efficacy and safety of mesenchymal stem cell therapy in liver cirrhosis: a systematic review and meta-analysis. Stem Cell Res Ther 2023; 14:301. [PMID: 37864199 PMCID: PMC10590028 DOI: 10.1186/s13287-023-03518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/22/2023] [Indexed: 10/22/2023] Open
Abstract
AIM Although the efficacy and safety of mesenchymal stem cell therapy for liver cirrhosis have been demonstrated in several studies. Clinical cases of mesenchymal stem cell therapy for patients with liver cirrhosis are limited and these studies lack the consistency of treatment effects. This article aimed to systematically investigate the efficacy and safety of mesenchymal stem cells in the treatment of liver cirrhosis. METHOD The data source included PubMed/Medline, Web of Science, EMBASE, and Cochrane Library, from inception to May 2023. Literature was screened by the PICOS principle, followed by literature quality evaluation to assess the risk of bias. Finally, the data from each study's outcome indicators were extracted for a combined analysis. Outcome indicators of the assessment included liver functions and adverse events. Statistical analysis was performed using Review Manager 5.4. RESULTS A total of 11 clinical trials met the selection criteria. The pooled analysis' findings demonstrated that both primary and secondary indicators had improved. Compared to the control group, infusion of mesenchymal stem cells significantly increased ALB levels in 2 weeks, 1 month, 3 months, and 6 months, and significantly decreased MELD score in 1 month, 2 months, and 6 months, according to a subgroup analysis using a random-effects model. Additionally, the hepatic arterial injection favored improvements in MELD score and ALB levels. Importantly, none of the included studies indicated any severe adverse effects. CONCLUSION The results showed that mesenchymal stem cell was effective and safe in the treatment of liver cirrhosis, improving liver function (such as a decrease in MELD score and an increase in ALB levels) in patients with liver cirrhosis and exerting protective effects on complications of liver cirrhosis and the incidence of hepatocellular carcinoma. Although the results of the subgroup analysis were informative for the selection of mesenchymal stem cells for clinical treatment, a large number of high-quality randomized controlled trials validations are still needed.
Collapse
Affiliation(s)
- Wenming Lu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- The First Clinical College of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Jiayang Qu
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- The First Clinical College of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Longxiang Yan
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- The First Clinical College of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xingkun Tang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Anqi Ye
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
| | - Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
| |
Collapse
|
3
|
Liu P, Qian Y, Liu X, Zhu X, Zhang X, Lv Y, Xiang J. Immunomodulatory role of mesenchymal stem cell therapy in liver fibrosis. Front Immunol 2023; 13:1096402. [PMID: 36685534 PMCID: PMC9848585 DOI: 10.3389/fimmu.2022.1096402] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Liver fibrosis is a fibrogenic and inflammatory process that results from hepatocyte injury and is characterized by hepatic architectural distortion and resultant loss of liver function. There is no effective treatment for advanced fibrosis other than liver transplantation, but it is limited by expensive costs, immune rejection, and postoperative complications. With the development of regenerative medicine in recent years, mesenchymal stem cell (MSCs) transplantation has become the most promising treatment for liver fibrosis. The underlying mechanisms of MSC anti-fibrotic effects include hepatocyte differentiation, paracrine, and immunomodulation, with immunomodulation playing a central role. This review discusses the immune cells involved in liver fibrosis, the immunomodulatory properties of MSCs, and the immunomodulation mechanisms of MSC-based strategies to attenuate liver fibrosis. Meanwhile, we discuss the current challenges and future directions as well.
Collapse
Affiliation(s)
- Peng Liu
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yerong Qian
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xin Liu
- Department of Radiotherapy, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Xulong Zhu
- Department of Surgical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Xufeng Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yi Lv
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Junxi Xiang, ; Yi Lv,
| | - Junxi Xiang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Junxi Xiang, ; Yi Lv,
| |
Collapse
|
4
|
Feng X, Cheng Q, Fang L, Liu W, Liu L, Sun C, Lu Z, Li G, Gu R. Corn oligopeptides inhibit Akt/
NF‐κB
signaling pathway and inflammatory factors to ameliorate
CCl
4
‐induced hepatic fibrosis in mice. J Food Biochem 2022; 46:e14162. [DOI: 10.1111/jfbc.14162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 01/17/2023]
Affiliation(s)
- Xiao‐Wen Feng
- Beijing Engineering Research Center of Protein and Functional Peptides China National Research Institute of Food and Fermentation Industries Beijing People’s Republic of China
| | - Qing‐Li Cheng
- Beijing Engineering Research Center of Protein and Functional Peptides China National Research Institute of Food and Fermentation Industries Beijing People’s Republic of China
| | - Lei Fang
- Beijing Engineering Research Center of Protein and Functional Peptides China National Research Institute of Food and Fermentation Industries Beijing People’s Republic of China
| | - Wen‐Ying Liu
- Beijing Engineering Research Center of Protein and Functional Peptides China National Research Institute of Food and Fermentation Industries Beijing People’s Republic of China
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering China Agricultural University Beijing People’s Republic of China
| | - Liang‐Wei Liu
- Beijing Engineering Research Center of Protein and Functional Peptides China National Research Institute of Food and Fermentation Industries Beijing People’s Republic of China
- College of Food Science Northeast Agricultural University Harbin People’s Republic of China
| | - Chuan‐Qiang Sun
- Beijing Engineering Research Center of Protein and Functional Peptides China National Research Institute of Food and Fermentation Industries Beijing People’s Republic of China
- College of Food Science Northeast Agricultural University Harbin People’s Republic of China
| | - Zhi‐Hao Lu
- Beijing Engineering Research Center of Protein and Functional Peptides China National Research Institute of Food and Fermentation Industries Beijing People’s Republic of China
| | - Guo‐Ming Li
- Beijing Engineering Research Center of Protein and Functional Peptides China National Research Institute of Food and Fermentation Industries Beijing People’s Republic of China
| | - Rui‐Zeng Gu
- Beijing Engineering Research Center of Protein and Functional Peptides China National Research Institute of Food and Fermentation Industries Beijing People’s Republic of China
| |
Collapse
|
5
|
Bie Jia Jian pill enhances the amelioration of bone mesenchymal stem cells on hepatocellular carcinoma progression. J Nat Med 2021; 76:49-58. [PMID: 34297271 PMCID: PMC8732910 DOI: 10.1007/s11418-021-01548-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Background The therapeutic efficiency of Traditional Chinese Medicine (TCM) in suppressing the recurrence and metastasis of hepatocellular carcinoma (HCC) has been well proved. Objective The aim of this study is to investigate the role of Bie Jia Jian pill (BJJP) combined with bone mesenchymal stem cells (BMSCs) in HCC progression. Methods Flow cytometry was used to identify BMSCs isolated from BALB/c mice. The expressions of biomarkers and apoptosis rate of cancer stem cells (CSCs) enriched from Huh7 cells were also measured. The osteogenic differentiation and adipogenic differentiation ability of isolated BMSCs was determined by oil red O staining and Alizarin Red Staining. CSCs were used to establish the orthotopic HCC model. Histological changes in the liver tissues were examined by hematoxylin–eosin (H&E) staining and Van Gieson (VG) staining. The cell apoptotic rate in the cancer tissues was detected by TUNEL staining. The cell proliferation antigen Ki67 in the cancer tissues were detected by immunofluorescence assay and PCR, respectively. The levels of CSCs cellular surface markers (CD24, CD133 and EpCAM) and Wnt/β-catenin signal pathway related proteins were detected by PCR and western blot. Results Treatment of BJJP or BMSCs both improved the morphology induced by HCC and suppressed the differentiation ability of CSCs, as evidenced by down-regulated expressions of CD24, CD133, EpCAM and Ki67. The protective effect of BJJP or BMSCs in cancer tissues can be enhanced by the combination of BJJP and BMSCs. In addition to that, BJJP or BMSCs alone was found to increase the expression of miR-140 and promote cell apoptosis in CSCs, while down-regulation of miR-140 partially reversed the protective effect of BMSCs or BJJP + BMSCs on cancer tissues. BJJP + BMSCs treatment together also can down-regulate the expressions of Wnt3a and β-catenin. Conclusions These results proved the inhibitory role of BJJP + BMSCs in HCC development through regulating miR-140 and Wnt/β-catenin signal pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s11418-021-01548-4.
Collapse
|
6
|
Kim K, Shin IS, Bang HJ, An S, Ha G, Kim HS, Bae KS. Can bone marrow-derived mesenchymal stem cells change liver volume?: A case report. JGH OPEN 2020; 5:320-323. [PMID: 33553676 PMCID: PMC7857290 DOI: 10.1002/jgh3.12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/02/2022]
Abstract
Several studies have described the effectiveness of mesenchymal stem cell (MSC) transplantation in patients with liver cirrhosis (LC). However, in the majority, biochemical tests, clinical features, and pathologic results were used rather than radiologic tests to compare treatment outcomes. A 57‐year‐old male visited a stem cell clinic with a diagnosis of LC attributed to hepatitis B virus. This patient took tenofovir and diuretics at the initial presentation and was administered bone marrow‐derived MSCs twice via hepatic intra‐arterial infusion. Subsequently, the patient's clinical symptoms and biochemical tests (aspartate aminotransferase, alanine aminotransferase, albumin, total bilirubin, international normalized ratio, creatinine, alpha‐fetoprotein) improved. Computed tomography findings showed loss of ascites, reduced nodularity, and especially increased liver volume, which suggested that MSCs have meaningful effects on liver volume, as well as improving liver function.
Collapse
Affiliation(s)
- Kwangmin Kim
- Department of Surgery Yonsei University Wonju College of Medicine Wonju South Korea.,Trauma Center Wonju Severance Christian Hospital Wonju South Korea.,Wonju Severance Surgical Research Group Wonju Severance Christian Hospital Wonju South Korea
| | - In Sik Shin
- Department of Surgery Yonsei University Wonju College of Medicine Wonju South Korea.,Wonju Severance Surgical Research Group Wonju Severance Christian Hospital Wonju South Korea
| | - Hui-Jae Bang
- Department of Surgery Yonsei University Wonju College of Medicine Wonju South Korea.,Wonju Severance Surgical Research Group Wonju Severance Christian Hospital Wonju South Korea
| | - Sanghyun An
- Department of Surgery Yonsei University Wonju College of Medicine Wonju South Korea.,Wonju Severance Surgical Research Group Wonju Severance Christian Hospital Wonju South Korea
| | - Gaesung Ha
- Department of Surgery Yonsei University Wonju College of Medicine Wonju South Korea.,Wonju Severance Surgical Research Group Wonju Severance Christian Hospital Wonju South Korea
| | - Hyun Soo Kim
- Pharmicell Co., Ltd. Sungnam South Korea.,Kim's Stem Cell Clinic Seoul South Korea
| | - Keum Seok Bae
- Department of Surgery Yonsei University Wonju College of Medicine Wonju South Korea.,Trauma Center Wonju Severance Christian Hospital Wonju South Korea
| |
Collapse
|
7
|
Platelets Boost Recruitment of CD133 + Bone Marrow Stem Cells to Endothelium and the Rodent Liver-The Role of P-Selectin/PSGL-1 Interactions. Int J Mol Sci 2020; 21:ijms21176431. [PMID: 32899390 PMCID: PMC7504029 DOI: 10.3390/ijms21176431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
We previously demonstrated that clinical administration of mobilized CD133+ bone marrow stem cells (BMSC) accelerates hepatic regeneration. Here, we investigated the potential of platelets to modulate CD133+BMSC homing to hepatic endothelial cells and sequestration to warm ischemic livers. Modulatory effects of platelets on the adhesion of CD133+BMSC to human and mouse liver-sinusoidal- and micro- endothelial cells (EC) respectively were evaluated in in vitro co-culture systems. CD133+BMSC adhesion to all types of EC were increased in the presence of platelets under shear stress. This platelet effect was mostly diminished by antagonization of P-selectin and its ligand P-Selectin-Glyco-Ligand-1 (PSGL-1). Inhibition of PECAM-1 as well as SDF-1 receptor CXCR4 had no such effect. In a model of the isolated reperfused rat liver subsequent to warm ischemia, the co-infusion of platelets augmented CD133+BMSC homing to the injured liver with heightened transmigration towards the extra sinusoidal space when compared to perfusion conditions without platelets. Extravascular co-localization of CD133+BMSC with hepatocytes was confirmed by confocal microscopy. We demonstrated an enhancing effect of platelets on CD133+BMSC homing to and transmigrating along hepatic EC putatively depending on PSGL-1 and P-selectin. Our insights suggest a new mechanism of platelets to augment stem cell dependent hepatic repair.
Collapse
|
8
|
Chu DT, Phuong TNT, Tien NLB, Tran DK, Thanh VV, Quang TL, Truong DT, Pham VH, Ngoc VTN, Chu-Dinh T, Kushekhar K. An Update on the Progress of Isolation, Culture, Storage, and Clinical Application of Human Bone Marrow Mesenchymal Stem/Stromal Cells. Int J Mol Sci 2020; 21:E708. [PMID: 31973182 PMCID: PMC7037097 DOI: 10.3390/ijms21030708] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Bone marrow mesenchymal stem/stromal cells (BMSCs), which are known as multipotent cells, are widely used in the treatment of various diseases via their self-renewable, differentiation, and immunomodulatory properties. In-vitro and in-vivo studies have supported the understanding mechanisms, safety, and efficacy of BMSCs therapy in clinical applications. The number of clinical trials in phase I/II is accelerating; however, they are limited in the size of subjects, regulations, and standards for the preparation and transportation and administration of BMSCs, leading to inconsistency in the input and outcome of the therapy. Based on the International Society for Cellular Therapy guidelines, the characterization, isolation, cultivation, differentiation, and applications can be optimized and standardized, which are compliant with good manufacturing practice requirements to produce clinical-grade preparation of BMSCs. This review highlights and updates on the progress of production, as well as provides further challenges in the studies of BMSCs, for the approval of BMSCs widely in clinical application.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam;
| | - Thuy Nguyen Thi Phuong
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam; (N.L.B.T.); (V.V.T.)
| | - Dang Khoa Tran
- Department of Anatomy, University of Medicine Pham Ngoc Thach, Ho Chi Minh City 700000, Vietnam;
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam; (N.L.B.T.); (V.V.T.)
- Department of Surgery, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Thuy Luu Quang
- Center for Anesthesia and Surgical Intensive Care, Viet Duc Hospital, Hanoi 100000, Vietnam;
| | | | - Van Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Vo Truong Nhu Ngoc
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam;
| | - Thien Chu-Dinh
- Institute for Research and Development, Duy Tan University, Danang 550000, Vietnam
| | - Kushi Kushekhar
- Institute of Cancer Research, Oslo University Hospital, 0310 Oslo, Norway;
| |
Collapse
|
9
|
Sabry D, Mohamed A, Monir M, Ibrahim HA. The Effect of Mesenchymal Stem Cells Derived Microvesicles on the Treatment of Experimental CCL4 Induced Liver Fibrosis in Rats. Int J Stem Cells 2019; 12:400-409. [PMID: 31474025 PMCID: PMC6881047 DOI: 10.15283/ijsc18143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 06/22/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022] Open
Abstract
Background and Objectives The release of microvesicles (MVs) from mesenchymal stem cells (MSCs) has been implicated in intercellular communication, and may contribute to beneficial paracrine effects of stem cell-based therapies. We investigated the effect of administration of MSC-MVs on the therapeutic potential of carbon tetrachloride (CCL4) induced liver fibrosis in rats. Methods Our work included: isolation and further identification of bone marrow MSC-MVs by transmission electron microscopy (TEM). Liver fibrosis was induced in rats by CCl4 followed by injection of prepared MSC-MVs in injured rats. The effects of MSC-MVs were evaluated by biochemical analysis of liver functions, RNA gene expression quantitation for collagen-1α, transforming growth factor β (TGF-β), interleukin-1β (IL-1β), vascular endothelial growth factor (VEGF) by real time reverse transcription PCR (RT-PCR) techniques. Finally histopathological examination of the liver tissues was assessed for all studied groups. Results BM-MSC-MVs treated group showed significant increase in serum albumin levels, VEGF quantitative gene expression (p<0.05), while it showed a significant decrease in serum alanine transaminase (ALT) enzyme levels, quantitative gene expression of TGF-β, collagen-1α, IL-1β compared to CCL4 fibrotic group (p<0.05). Additionally, the histopathological assessment of the liver tissues of BM-MSC-MVs treated group showed marked decrease in the collagen deposition & improvement of histopathological picture in comparison with CCL4 fibrotic group. Conclusions Our study demonstrates that BM-MSC-MVs possess anti-fibrotic, anti-inflammatory, and pro-angiogenic properties which can promote the resolution of CCL4 induced liver fibrosis in rats.
Collapse
Affiliation(s)
- Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Abbas Mohamed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Manar Monir
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Heba A Ibrahim
- Department of Pathology, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
10
|
Xia P, Gu R, Zhang W, Shao L, Li F, Wu C, Sun Y. MicroRNA-377 exerts a potent suppressive role in osteosarcoma through the involvement of the histone acetyltransferase 1-mediated Wnt axis. J Cell Physiol 2019; 234:22787-22798. [PMID: 31152456 DOI: 10.1002/jcp.28843] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022]
Abstract
It has been demonstrated that microRNAs (miRNAs) may contribute to tumorigenesis and tumor growth in osteosarcoma (OS), which is a primary malignant tumor of bone frequently diagnosed in adolescents and young people. The purpose of our investigation was to evaluate the functional relevance of miR-377 in OS and to investigate whether the mechanism was related to the histone acetyltransferase 1 (HAT1)-mediated Wnt signaling pathway. By screening differentially expressed genes in microarray GSE47572, HAT1 was found to be a candidate gene of interest. Besides, the regulatory miRNA (miR-377) of HAT1 was also selected. The interaction among miR-377, HAT1, and the Wnt signaling pathway was evaluated. In addition, the miR-377 expression was altered in OS cells (U-2OS and SOSP-9607) to assess the in vitro cell apoptosis and the in vivo tumor growth. OS tissues presented elevated HAT1 expression and decreased miR-377 expression. A putative miR-377 binding site in HAT1 3'-UTR HAT1 was verified. Cells with miR-377 overexpression or HAT1 silencing were observed to exhibit reduced HAT1 expression and promoted apoptosis, accompanied by blockade of Wnt signaling. Moreover, the in vivo experiment revealed that miR-377 overexpression or HAT1 silencing inhibited tumor growth and reduced tumor size in nude mice. Taken together, our results conclude that miR-377 may promote OS cell apoptosis through inactivation of the HAT1-mediated Wnt signaling pathway, highlighting the potential therapeutic effect of miR-377 on OS treatment.
Collapse
Affiliation(s)
- Peng Xia
- Department of Orthopeadics, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Rui Gu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Wei Zhang
- Department of Orthopeadics, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Liwei Shao
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Fang Li
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Changyan Wu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yifu Sun
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
11
|
Yuan FH, Chen YL, Zhao Y, Liu ZM, Nan CC, Zheng BL, Liu XY, Chen XY. microRNA-30a inhibits the liver cell proliferation and promotes cell apoptosis through the JAK/STAT signaling pathway by targeting SOCS-1 in rats with sepsis. J Cell Physiol 2019; 234:17839-17853. [PMID: 30972748 DOI: 10.1002/jcp.28410] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/15/2022]
Abstract
Sepsis is a systemic inflammatory response that may be induced by trauma, infection, surgery, and burns. With the aim of discovering novel treatment targets for sepsis, this current study was conducted to investigate the effect and potential mechanism by which microRNA-30a (miR-30a) controls sepsis-induced liver cell proliferation and apoptosis. Rat models of sepsis were established by applying the cecal ligation and puncture (CLP) method to simulate sepsis models. The binding site between miR-30a and suppressor of cytokine signaling protein 1 (SOCS-1) was determined by dual luciferase reporter gene assay. The gain-of-and-loss-of-function experiments were applied to analyze the effects of miR-30a and SOCS-1 on liver cell proliferation and apoptosis of the established sepsis rat models. The expression of miR-30a, SOCS-1, Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), Bcl-2 associated X protein (Bax), B cell lymphoma-2 (Bcl-2), toll-like receptor 4 (TLR4), and high-mobility group box 1 (HMGB1), and the extent of JAK2 and STAT3 phosphorylation were all determined. Sepsis led to an elevation of miR-30a and also a decline of SOCS-1 in the liver cells. SOCS-1 was negatively regulated by miR-30a. Upregulated miR-30a and downregulated SOCS-1 increased the expression of JAK2, STAT3, Bax, TLR4, and HMGB1 as well as the extent of JAK2 and STAT3 phosphorylation whereas impeding the expression of SOCS-1 and Bcl-2. More important, either miR-30a elevation or SOCS-1 silencing suppressed liver cell proliferation and also promoted apoptosis. On the contrary, the inhibition of miR-30a exhibited the opposite effects. Altogether, we come to the conclusion that miR-30a inhibited the liver cell proliferation and promoted cell apoptosis by targeting and negatively regulating SOCS-1 via the JAK/STAT signaling pathway in rats with sepsis.
Collapse
Affiliation(s)
- Feng-Hua Yuan
- Department of Critical Care Medicine, The Second Clinical Medicine College, Shenzhen People's Hospital, Jinan University, Shenzhen, People's Republic of China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Shenzhen, People's Republic of China
| | - You-Lian Chen
- Department of Critical Care Medicine, The Second Clinical Medicine College, Shenzhen People's Hospital, Jinan University, Shenzhen, People's Republic of China
| | - Ying Zhao
- Department of Critical Care Medicine, The Second Clinical Medicine College, Shenzhen People's Hospital, Jinan University, Shenzhen, People's Republic of China
| | - Zhen-Mi Liu
- Department of Critical Care Medicine, The Second Clinical Medicine College, Shenzhen People's Hospital, Jinan University, Shenzhen, People's Republic of China
| | - Chuan-Chuan Nan
- Department of Critical Care Medicine, The Second Clinical Medicine College, Shenzhen People's Hospital, Jinan University, Shenzhen, People's Republic of China
| | - Biao-Lin Zheng
- Department of Critical Care Medicine, The Second Clinical Medicine College, Shenzhen People's Hospital, Jinan University, Shenzhen, People's Republic of China
| | - Xue-Yan Liu
- Department of Critical Care Medicine, The Second Clinical Medicine College, Shenzhen People's Hospital, Jinan University, Shenzhen, People's Republic of China
| | - Xiao-Yin Chen
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Shenzhen, People's Republic of China.,Department of Traditional Chinese Medicine, Medical College, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
12
|
Zhao W, Zhang LN, Wang XL, Zhang J, Yu HX. Long noncoding RNA NSCLCAT1 increases non-small cell lung cancer cell invasion and migration through the Hippo signaling pathway by interacting with CDH1. FASEB J 2019; 33:1151-1166. [PMID: 30148675 DOI: 10.1096/fj.201800408r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022]
Abstract
Metastatic growth is the leading cause of cancer-related death in non-small cell lung cancer (NSCLC). Metastasis is believed to be initiated by an increase in cell motility mediated by the loss of cell-cell adhesion because of the suppression of E-cadherin [encoded by cadherin 1 ( CDH1)]. However, very little is known about the molecular mechanism of CDH1 regulation. Therefore, we hypothesized that non-small cell lung cancer-associated transcript-1 (NSCLCAT1) suppresses functional CDH1 and mediates the Hippo signaling pathway, resulting in increased cell migration and invasion, and reduced apoptosis. Initially, microarray profiling and target prediction programs were employed to identify whether NSCLCAT1 targets CDH1. Next, quantitative PCR was used to determine the expression pattern of NSCLCAT1 in 114 specimens. The biologic functions of NSCLCAT1 in NSCLC were assessed through the up-regulation and down-regulation of the levels of endogenous NSCLCAT1 with the use of NSCLCAT1 vector or small interfering RNA against NSCLCAT1 in NSCLC cells. Furthermore, the Hippo signaling pathway in NSCLC cells was blocked by applying the verteporfin treatment to have a better understanding on the pivotal role of the Hippo signaling pathway in NSCLC. Microarray expression profiles of long noncoding RNAs, GSE19804 and GSE27262), revealed that NSCLCAT1 was up-regulated in NSCLC. Among patients with NSCLC, we determined that the NSCLCAT1 was robustly induced, whereas CDH1 was suppressed. The luciferase activity determination identified CDH1 as a NSCLCAT1 target. NSCLCAT1 was found to increase cell viability, migration, and invasion and to reduce apoptosis in NSCLC cells. The results from the quantitative PCR and Western blot analysis revealed that NSCLCAT1 modulated the Hippo signaling pathway. Furthermore, the inhibition of the Hippo signaling pathway by verteporfin treatment led to the loss of the effect of NSCLCAT1 on NSCLC cells. In summary, our findings suggested that NSCLCAT1 potentially has a role in NSCLC and NSCLCAT1-mediated regulation of the Hippo signaling pathway through the transcriptional repression of CDH1; therefore, the functional suppression or inhibition of NSCLCAT1 could be used as a novel therapeutic pathway in the control of aggressive and metastatic NSCLC.-Zhao, W., Zhang, L.-N., Wang, X.-L., Zhang, J., Yu, H.-X. Long noncoding RNA NSCLCAT1 increases non-small cell lung cancer cell invasion and migration through the Hippo signaling pathway by interacting with CDH1.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Thoracic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Le-Ning Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xiao-Long Wang
- Department of Thoracic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ji Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Hai-Xiang Yu
- Department of Thoracic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
13
|
Liu HC, Zeng J, Zhang B, Liu XQ, Dai M. Inhibitory effect of MSH6 gene silencing in combination with cisplatin on cell proliferation of human osteosarcoma cell line MG63. J Cell Physiol 2018; 234:9358-9369. [PMID: 30456894 DOI: 10.1002/jcp.27620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Osteosarcoma (OS) is one of the most common primary bone malignancies, with the survival rate of patients with OS remaining low. Therefore, we conducted this study to identify the potential role combination of both MSH6 gene silencing and cisplatin (DDP) plays in OS cell proliferation and apoptosis. Microarray-based gene expression profiling was used to identify the differentially expressed genes (DEGs) in patients with OS, as well as microRNAs (miRNAs) that regulate the candidate gene. OS tissues from 67 patients with OS along with normal tissues from 24 amputee patients were collected for detection of the positive expression of mutS homolog 6 (MSH6) protein, mRNA, and protein expressions of c-myc, cyclin D1, l-2, B-cell lymphoma 2 (Bcl-2), Stathmin, proliferating cell nuclear antigen (PCNA), and Bcl-2-associated X (Bax). Moreover, after MSH6 silencing and DDP were treated on the selected human OS cell line MG63 with the highest expression of MSH6, cell viability, cell cycle distribution, and apoptosis were detected. The microarray analysis showed that MSH6 was upregulated in OS chip data. Furthermore, silencing MSH6 combined with DDP reduced expressions of c-myc, cyclin D1, Bcl-2, Stathmin, and PCNA, and elevated Bax expression, whereas inhibiting OS cell viability, impeding cell cycle distribution, and inducing apoptosis. In conclusion, our preliminary results indicated that the combination of MSH6 gene silencing coupled with DDP may have a better effect on the inhibition of OS cell proliferation and promote apoptosis, potentially providing targets for the OS treatment.
Collapse
Affiliation(s)
- Hu-Cheng Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jin Zeng
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu-Qiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Up-regulation of microRNA-340 promotes osteosarcoma cell apoptosis while suppressing proliferation, migration, and invasion by inactivating the CTNNB1-mediated Notch signaling pathway. Biosci Rep 2018; 38:BSR20171615. [PMID: 29769415 PMCID: PMC6117618 DOI: 10.1042/bsr20171615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/04/2023] Open
Abstract
Osteosarcoma (OS) is the most common histological form of primary bone cancer. It is most prevalent in teenagers and young adults. The present study aims at exploring the regulatory effect of microRNA-340 (miR-340) on OS cell proliferation, invasion, migration, and apoptosis via regulating the Notch signaling pathway by targeting β-catenin (cadherin-associated protein) 1 (CTNNB1). OS tissues belonging to 45 patients and normal femoral head tissues of 45 amputees were selected. Cells were allocated to different groups. In situ hybridization was performed to determine the positive rate of miR-340 expression while immunohistochemistry was used to determine that of CTNNB1 and B-cell lymphoma 2 (Bcl-2). We used a series of experiments to measure the expressions of related factors and assess rates of cell proliferation, migration, invasion, cycle, and apoptosis respectively. Our results show that miR-340 was expressed a higher level in normal tissue than OS tissue. Expression of Notch, CTNNB1, hairy and enhancer of split 1 (Hes1), Bcl-2, Runt-related transcription factor 2 (Runx2), and osteocalcin increased and that of miR-340, Bcl-2 interacting mediator of cell death (BIM), and Bcl-2 associated protein X (Bax) decreased in OS tissues. U-2OS cell line had the highest miR-340 expression. We also found that the up-regulation of miR-340 had increased expression of miR-340, BIM, and Bax but decreased expression of Notch, CTNNB1, Hes1, Bcl-2, Runx2, and osteocalcin. Up-regulation of miR-340p lead to increased cell apoptosis, suppressed cell proliferation, migration, and invasion. Our study demonstrates that overexpression of miR-340 could suppress OS cell proliferation, migration, and invasion as well as promoting OS cell apoptosis by inactivating the Notch signaling pathway via down-regulating CTNNB1. Functional miR-340 overexpression might be a future therapeutic strategy for OS.
Collapse
|
15
|
Tian Y, Han Y, Guo H, Jin H, Sun C, Qi X, Ma L, Bo S. Retracted
: Upregulated microRNA‐485 suppresses apoptosis of renal tubular epithelial cells in mice with lupus nephritis via regulating the TGF‐β‐MAPK signaling pathway by inhibiting RhoA expression. J Cell Biochem 2018; 119:9154-9167. [DOI: 10.1002/jcb.27178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/24/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Yu Tian
- Department of Immunology and Rheumatology The Second Hospital of Hebei Medical University Shijiazhuang China
| | - Yu‐Xiang Han
- Department of Immunology and Rheumatology The Second Hospital of Hebei Medical University Shijiazhuang China
| | - Hui‐Fang Guo
- Department of Immunology and Rheumatology The Second Hospital of Hebei Medical University Shijiazhuang China
| | - Hong‐Tao Jin
- Department of Immunology and Rheumatology The Second Hospital of Hebei Medical University Shijiazhuang China
| | - Chao Sun
- Department of Immunology and Rheumatology The Second Hospital of Hebei Medical University Shijiazhuang China
| | - Xuan Qi
- Department of Immunology and Rheumatology The Second Hospital of Hebei Medical University Shijiazhuang China
| | - Li‐Yan Ma
- Department of Immunology and Rheumatology The Second Hospital of Hebei Medical University Shijiazhuang China
| | - Shi‐Wei Bo
- Department of Medical Radiology The Second Hospital of Hebei Medical University Shijiazhuang China
| |
Collapse
|
16
|
Li ZH, Li L, Kang LP, Wang Y. Retracted: MicroRNA-92a promotes tumor growth and suppresses immune function through activation of MAPK/ERK signaling pathway by inhibiting PTEN in mice bearing U14 cervical cancer. Cancer Med 2018; 7:3118-3131. [PMID: 29752775 PMCID: PMC6051186 DOI: 10.1002/cam4.1329] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer is known as the possible outcome of genital infection, while the molecular mechanisms of initiation, development, and metastasis of cervical cancer have not yet been fully elucidated. Our study aims to investigate the effects of microRNA-92a (miR-92a) on tumor growth and immune function by targeting PTEN via the MAPK/ERK signaling pathway in tumor-bearing mice. C57BL/6 female mice were used for tumor-bearing mouse models and their tumor and adjacent normal tissues were collected, and normal cervical tissues were obtained from normal mice. Serum levels of tumor necrosis factor-α (TNF-α) and soluble interleukin-2 receptor (sIL-2R) were detected by ELISA. The cells were divided into the normal, blank, negative control (NC), miR-92a mimic, miR-92a inhibitor, siRNA-PTEN, and miR-92a inhibitor + siRNA-PTEN groups. Dual-luciferase reporter assay was adopted to determine the relationship between PTEN and miR-92a. Expressions of miR-92a, PTEN, TNF-α, sIL-2R, ERK1, and ERK2 were tested by RT-qPCR and Western blotting. Cell proliferation was detected by cell count kit-8 (CCK-8); cell cycle and apoptosis were detected by flow cytometry. Compared with the normal cervical tissues and adjacent normal tissues, the cervical cancer tissues exhibited increased expressions of miR-92a, p-ERK1/2, and serum levels of TNF-α and sIL-2R while decreased PTEN expression. PTEN was confirmed to be the target gene of miR-92a. As compared with the blank and NC groups, expressions of miR-92a, ERK1 and ERK2 increased, and expressions of PTEN decreased in the miR-92a mimic group. The miR-92a mimic group exhibited increased expression levels of TNF-α and sIL-2R, cell proliferation, and cell number in S phase but decreased cell apoptosis, and cell number in G0/G1 phase, while the miR-92a inhibitor group followed opposite trends. miR-92a promotes tumor growth and suppresses immune function by inhibiting PTEN via activation of the MAPK/ERK signaling pathway in mice bearing U14 cervical cancer.
Collapse
Affiliation(s)
- Zeng-Hui Li
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Lei Li
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Lin-Ping Kang
- Department of Obstetrics and Gynecology, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Yan Wang
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P.R., China
| |
Collapse
|
17
|
Qin D, Yan Y, Hu B, Zhang W, Li H, Li X, Liu S, Dai D, Hu X, Huang X, Zhang L. Wisp2 disruption represses Cxcr4 expression and inhibits BMSCs homing to injured liver. Oncotarget 2017; 8:98823-98836. [PMID: 29228730 PMCID: PMC5716770 DOI: 10.18632/oncotarget.22006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/02/2017] [Indexed: 11/25/2022] Open
Abstract
Liver regeneration/repair is a compensatory regrowth following acute liver failure, and bone marrow-derived mesenchyme stem cell (BMSC) transplantation is an effective therapy that promotes liver regeneration/repair. Wnt1 inducible signaling pathway protein 2 (Wisp2) is highly expressed in BMSCs, however, its function remains unclear. In this work, we used clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein -9 nuclease (CRISPR/Cas9) genome editing technology to knockdown Wisp2 in BMSCs, and these modified cells were then transplanted into rats which were induced by the 2-AAF/PH. By linking the expression of Cas9 to green fluorescent protein (GFP), we tracked BMSCs in the rats. Disruption of Wisp2 inhibited the homing of BMSCs to injured liver and aggravated liver damage as indicated by remarkably high levels of ALT and AST. Moreover, the key factor in BMSC transplantation, C-X-C chemokine receptor type 4 (Cxcr4), was down-regulated in the Wisp2 depleted BMSCs and had a lower expression in the livers of the corresponding rats. By tracing the GFP marker, more BMSCs were observed to differentiate into CD31 positive endothelial cells in the functional Wisp2 cells but less in the Wisp2 gene disrupted cells. In summary, Wisp2 promotes the homing of BMSCs through Cxcr4 related signaling during liver repair in rats.
Collapse
Affiliation(s)
- Dan Qin
- College of Veterinary Medicine, University of Huazhong Agricultural, Wuhan 430070, People's Republic of China
| | - Yi Yan
- College of Veterinary Medicine, University of Huazhong Agricultural, Wuhan 430070, People's Republic of China
| | - Bian Hu
- School of Life Science and Technology, Shanghai Tech University, Pudong New Area, Shanghai 201210, People's Republic of China
| | - Wanpo Zhang
- College of Veterinary Medicine, University of Huazhong Agricultural, Wuhan 430070, People's Republic of China
| | - Hanmin Li
- Hepatic Disease Institute, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, People's Republic of China
| | - Xiaodong Li
- Hepatic Disease Institute, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, People's Republic of China
| | - Shenghui Liu
- College of Veterinary Medicine, University of Huazhong Agricultural, Wuhan 430070, People's Republic of China
| | - Depeng Dai
- College of Veterinary Medicine, University of Huazhong Agricultural, Wuhan 430070, People's Republic of China
| | - Xiongji Hu
- College of Veterinary Medicine, University of Huazhong Agricultural, Wuhan 430070, People's Republic of China
| | - Xingxu Huang
- School of Life Science and Technology, Shanghai Tech University, Pudong New Area, Shanghai 201210, People's Republic of China
| | - Lisheng Zhang
- College of Veterinary Medicine, University of Huazhong Agricultural, Wuhan 430070, People's Republic of China
| |
Collapse
|
18
|
Zhang ZF, Wang YJ, Fan SH, Du SX, Li XD, Wu DM, Lu J, Zheng YL. MicroRNA-182 downregulates Wnt/β-catenin signaling, inhibits proliferation, and promotes apoptosis in human osteosarcoma cells by targeting HOXA9. Oncotarget 2017; 8:101345-101361. [PMID: 29254169 PMCID: PMC5731879 DOI: 10.18632/oncotarget.21167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/04/2017] [Indexed: 12/12/2022] Open
Abstract
We investigated the mechanisms by which microRNA (miR)-182 promotes apoptosis and inhibits proliferation in human osteosarcoma (OS) cells. Levels of miR-182 and Homeobox A9 (HOXA9) expression were compared between human OS and normal cells. Subjects were divided into OS and normal groups. We analyzed the target relationship of miR-182 and Homeobox A9 (HOXA9). Cells were then assigned into blank, negative control, miR-182 mimics, miR-182 inhibitors, siRNA-HOXA9, or and miR-182 inhibitors + siRNA-HOXA9 groups. Cell function was assayed by CCK-8, flow cytometry and wound healing assay. Additionally, we analyzed OS tumor growth in a xenograft mouse model. Dual-luciferase reporter assays indicated miR-182 directly targets HOXA9. Reverse transcription quantitative PCR and western blotting revealed elevated expression of miR-182, WIF-1, BIM, and Bax, and reduced expression of HOXA9, Wnt, β-catenin, Survivin, Cyclin D1, c-Myc, Mcl-1, Bcl-xL, and Snail in osteosarcoma cells treated with miR-182 mimic or siRNA-HOXA9 as compared to controls. Osteosarcoma cells also exhibited decreased cell proliferation, migration, and tumor growth, and increased apoptosis when treated with miR-182 mimic or siRNA-HOXA9. Correspondingly, in a xenograft mouse model, osteosarcoma tumor volume and growth were increased when cells were treated with miR-182 inhibitor and decreased by miR-182 mimic or siRNA-HOXA9. These results indicate that miR-182 downregulates Wnt/β-catenin signaling, inhibits cell proliferation, and promotes apoptosis in osteosarcoma cells by suppressing HOXA9 expression.
Collapse
Affiliation(s)
- Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Yong-Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Shi-Xin Du
- Department of Orthopedics, The Third Affiliated Hospital, Shenzhen University, Shenzhen 518002, P.R. China
| | - Xue-Dong Li
- Department of Orthopedics, The Third Affiliated Hospital, Shenzhen University, Shenzhen 518002, P.R. China
| | - Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| |
Collapse
|
19
|
Sun Z, Wang J, Weng M, Tang J, Wang J, Xu J, Lin L, Yuan H. Role of Small Interfering RNA Silencing Protein Kinase C‐α Gene on the Occurrence of Ultrafiltration Failure in Peritoneal Dialysis Rats. J Cell Biochem 2017; 118:4607-4616. [PMID: 28485503 DOI: 10.1002/jcb.26125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/08/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Zhi‐Wei Sun
- Department of Hepatobiliary SurgeryThe First People's Hospital of Yunnan ProvinceKunhua Hospital Affiliated to Kunming University of Science and TechnologyKunming650031P. R. China
| | - Jian Wang
- Department of NephrologyThe First People's Hospital of Yunnan ProvinceKunhua Hospital Affiliated to Kunming University of Science and TechnologyKunming650031P. R. China
| | - Min Weng
- Department of NutritionThe First Affiliated Hospital of Kunming Medical UniversityKunming650032P. R. China
| | - Jian‐Zhong Tang
- Department of Hepatobiliary SurgeryThe First People's Hospital of Yunnan ProvinceKunhua Hospital Affiliated to Kunming University of Science and TechnologyKunming650031P. R. China
| | - Jun‐Feng Wang
- Department of Hepatobiliary SurgeryThe First People's Hospital of Yunnan ProvinceKunhua Hospital Affiliated to Kunming University of Science and TechnologyKunming650031P. R. China
| | - Jian Xu
- Department of NephrologyThe First People's Hospital of Yunnan ProvinceKunhua Hospital Affiliated to Kunming University of Science and TechnologyKunming650031P. R. China
| | - Ling Lin
- Department of Geriatric CardiologyThe First Affiliated Hospital of Kunming Medical UniversityKunming650032P. R. China
| | - Hong‐Ling Yuan
- Department of NephrologyThe First Affiliated Hospital of Kunming Medical UniversityKunming650032P. R. China
| |
Collapse
|
20
|
Topical Application of Mesenchymal Stromal Cells Ameliorated Liver Parenchyma Damage After Ischemia-Reperfusion Injury in an Animal Model. Transplant Direct 2017; 3:e160. [PMID: 28620644 PMCID: PMC5464779 DOI: 10.1097/txd.0000000000000675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
Supplemental digital content is available in the text. Background Ischemia-reperfusion injury (IRI) is commonly encountered after liver surgery. This study evaluated the hepatoprotective effects of topically applied adipose-derived mesenchymal stromal cells (ADMSCs) on hepatic IRI in a rat model. Methods ADMSCs from transgenic green fluorescent protein Sprague-Dawley rats were topically applied to the liver surface of Sprague-Dawley rats after hepatic IRI and fixed in position by fibrin glue (group A, n = 24). An equivalent amount of ADMSCs were administered through the portal (group B, n = 24) or tail vein (group C, n = 24). In the control group (group D, n = 20), no treatment was given to the IRI liver. Results All the rats in group A and group D survived. Within 2 days after hepatic IRI, only 50% of rats survived in group B, and ADMSCs were detected in thromboemboli within large vessels. 62.5% of the rats died in group C because most of the ADMSCs were trapped in the lungs. ADMSCs migrated across the liver capsule and homed to the injured liver parenchyma 3 days after topical application in group A. The homed ADMSCs expressed hepatocyte nuclear factor-4α and hepatocyte nuclear factor-1. Compared with group D, the rate of hepatic regeneration in group A was enhanced with less inflammation, smaller necrotic areas, and improved liver function. Proinflammatory cytokines IL-6, IL-21, and CD70 were significantly downregulated in group A by 6.3-, 2.7-, and 12.7-fold, respectively (P < 0.05). The neurogenic locus NOTCH homolog protein pathway was activated in the topical ADMSCs. Conclusions Topically applied adipose-derived mesenchymal stromal cells demonstrated hepatoprotective effects on hepatic IRI in an animal model.
Collapse
|
21
|
Elmahdy NA, Sokar SS, Salem ML, Sarhan NI, Abou-Elela SH. Anti-fibrotic potential of human umbilical cord mononuclear cells and mouse bone marrow cells in CCl 4- induced liver fibrosis in mice. Biomed Pharmacother 2017; 89:1378-1386. [PMID: 28320105 DOI: 10.1016/j.biopha.2017.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/17/2017] [Accepted: 03/03/2017] [Indexed: 02/07/2023] Open
Abstract
Liver fibrosis is the consequence of hepatocyte injury that leads to the activation of hepatic stellate cells (HSC). The treatment of choice is Liver transplantation; however, it has many problems such as surgery-related complications, immunological rejection and high costs associated with the procedure. Stem cell-based therapy would be a potential alternative, so the aim of this study is to investigate the therapeutic potential of human umbilical cord mononuclear cells (MNC) and mouse bone marrow cells (BMC) against carbon tetrachloride (CCl4) induced liver fibrosis in mice and compare it with that of silymarin. In the present study, male albino mice (N=60) were divided into six groups (10 mice each), the first group served as the normal control group while the remaining five groups were rendered fibrotic by intraperitoneal injections of CCl4 and being left for 6 weeks to develop hepatic fibrosis. Thereafter, the mice were divided into CCl4 group, CCl4 group receiving MNC or BMC or silymarin or MNC and silymarin combination. After the specified treatment period, animals were then euthanized, blood and tissue samples were collected for measurement of alanine aminotransferase(ALT), aspartate aminotransferase(AST), malondialdehyde(MDA), reduced glutathione(GSH), collagen, Laminin, transforming growth factor β1(TGFβ1), tumor necrosis factor alpha(TNFα). MNC, BMC, and the combination therapy showed a significant decrease in ALT, AST, MDA, collagen, Laminin, TGFβ1, and TNFα and a significant increase in GSH. The data displayed a similar regression of fibrosis with the histological and immunohistological parameters. In conclusion, MNC, BMC and the combination therapy showed a potential therapeutic effect against liver fibrosis via reducing oxidative stress, inflammatory mediators, and fibrogenic markers.
Collapse
Affiliation(s)
- Nageh Ahmed Elmahdy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Samia Salem Sokar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mohamed Labib Salem
- Zoology Department, Faculty of Science, Immunology and Biotechnology Unit, Immunology and Biotechnology Division, Center of Excellence in Cancer Research, Tanta University, Tanta, Egypt
| | | | - Sherin Hamed Abou-Elela
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW To date, the only curative treatment for end-stage liver disease is liver transplantation, which is limited by the shortage of available organs. Cell therapy, in the form of cell transplantation or cell-based extracorporeal support devices, may in the future offer an alternative to transplantation, or at least provide liver function support as a bridging therapy until surgery may be performed. The purpose of this review is to highlight the most recent advances made in the field of cell therapy and regenerative medicine for the treatment of chronic liver disease. RECENT FINDINGS After hepatocyte transplantation, long-term engraftment in the liver and spleen may be achieved, which can be stimulated through preconditioning, multiple infusions, and inflammatory response blockade. Mesenchymal stem cells are promising candidates for cell transplantation, as they have been shown to reduce liver fibrosis and support endogenous regeneration. Adipose tissue-derived stem cells are also being tested in this setting, because of their ready availability. Bioartificial liver devices are being built that allow for effective preservation of hepatocytes, and one such device has recently demonstrated survival benefit in a porcine model of liver failure. SUMMARY Cell transplantation of primary hepatocytes or stem cell-derived hepatocyte-like cells for the treatment of chronic liver disease holds promise. Bioartificial liver systems may in the future be able to bridge acute-on-chronic liver failure patients to liver transplantation.
Collapse
|
23
|
Comparison of the Treatment Efficiency of Bone Marrow-Derived Mesenchymal Stem Cell Transplantation via Tail and Portal Veins in CCl4-Induced Mouse Liver Fibrosis. Stem Cells Int 2015; 2016:5720413. [PMID: 26839564 PMCID: PMC4709782 DOI: 10.1155/2016/5720413] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/14/2022] Open
Abstract
Because of self-renewal, strong proliferation in vitro, abundant sources for isolation, and a high differentiation capacity, mesenchymal stem cells are suggested to be potentially therapeutic for liver fibrosis/cirrhosis. In this study, we evaluated the treatment effects of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) on mouse liver cirrhosis induced by carbon tetrachloride. Portal and tail vein transplantations were examined to evaluate the effects of different injection routes on the liver cirrhosis model at 21 days after transplantation. BM-MSCs transplantation reduced aspartate aminotransferase/alanine aminotransferase levels at 21 days after injection. Furthermore, BM-MSCs induced positive changes in serum bilirubin and albumin and downregulated expression of integrins (600- to 7000-fold), transforming growth factor, and procollagen-α1 compared with the control group. Interestingly, both injection routes ameliorated inflammation and liver cirrhosis scores. All mice in treatment groups had reduced inflammation scores and no cirrhosis. In conclusion, transplantation of BM-MSCs via tail or portal veins ameliorates liver cirrhosis in mice. Notably, there were no differences in treatment effects between tail and portal vein administrations. In consideration of safety, we suggest transfusion of bone marrow-derived mesenchymal stem cells via a peripheral vein as a potential method for liver fibrosis treatment.
Collapse
|