1
|
Khalid Ijaz M, Nims RW, McKinney J, Gerba CP. Virucidal efficacy of laundry sanitizers against SARS-CoV-2 and other coronaviruses and influenza viruses. Sci Rep 2022; 12:5247. [PMID: 35347149 PMCID: PMC8960219 DOI: 10.1038/s41598-022-08259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
The clothes laundering process affords numerous opportunities for dissemination of infectious virus from contaminated clothing to appliance surfaces and other household surfaces and eventually to launderer's hands. We have explored the efficacy of laundry sanitizers for inactivating coronaviruses and influenza viruses. Virucidal efficacy was tested using standardized suspension inactivation methods (EN 14476) or hard-surface inactivation methods (ASTM E1053-20) against SARS-CoV-2, human coronavirus 229E (HCoV 229E), influenza A virus (2009-H1N1 A/Mexico), or influenza B virus (B/Hong Kong). Efficacy was measured in terms of log10 reduction in infectious virus titer, after 15 min contact time (suspension studies) or 5 min contact time (hard surface studies) at 20 ± 1 °C. In liquid suspension studies, laundry sanitizers containing p-chloro-m-xylenol (PCMX) or quaternary ammonium compounds (QAC) caused complete inactivation (≥ 4 log10) of HCoV 229E and SARS-CoV-2 within 15 min contact time at 20 ± 1 °C. In hard surface studies, complete inactivation (≥ 4 log10) of each coronavirus or influenza virus, including SARS-CoV-2, was observed following a 5-min contact time at 20 ± 1 °C. Respiratory viruses may remain infectious on clothing/fabrics and environmental surfaces for hours to days. The use of a laundry sanitizer containing microbicidal actives may afford mitigation of the risk of contamination of surfaces during handling of the laundry and washing appliances (i.e., washer/dryer or basin), adjacent surfaces, the waste water stream, and the hands of individuals handling clothes contaminated with SARS-CoV-2, influenza viruses, or other emerging enveloped viruses.
Collapse
Affiliation(s)
- M Khalid Ijaz
- Global Research and Development for Lysol and Dettol, Reckitt Benckiser LLC, One Philips Parkway, Montvale, NJ, 07645, USA.
| | - Raymond W Nims
- RMC Pharmaceutical Solutions, Inc., 1851 Lefthand Circle, Suite A, Longmont, CO, 80501, USA
| | - Julie McKinney
- Global Research and Development for Lysol and Dettol, Reckitt Benckiser LLC, One Philips Parkway, Montvale, NJ, 07645, USA
| | - Charles P Gerba
- Department of Environmental Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
2
|
Reynolds KA, Verhougstraete MP, Mena KD, Sattar SA, Scott EA, Gerba CP. Quantifying pathogen infection risks from household laundry practices. J Appl Microbiol 2022; 132:1435-1448. [PMID: 34465009 PMCID: PMC9290578 DOI: 10.1111/jam.15273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/23/2022]
Abstract
AIMS Contaminated laundry can spread infections. However, current directives for safe laundering are limited to healthcare settings and not reflective of domestic conditions. We aimed to use quantitative microbial risk assessment to evaluate household laundering practices (e.g., detergent selection, washing and drying temperatures, and sanitizer use) relative to log10 reductions in pathogens and infection risks during the clothes sorting, washer/dryer loading, folding and storing steps. METHODS AND RESULTS Using published data, we characterized laundry infection risks for respiratory and enteric pathogens relative to a single user contact scenario and a 1.0 × 10-6 acceptable risk threshold. For respiratory pathogens, risks following cold water wash temperatures (e.g. median 14.4℃) and standard detergents ranged from 2.2 × 10-5 to 2.2 × 10-7 . Use of advanced, enzymatic detergents reduced risks to 8.6 × 10-8 and 2.2 × 10-11 respectively. For enteric pathogens, however, hot water, advanced detergents, sanitizing agents and drying are needed to reach risk targets. SIGNIFICANCE AND IMPACT OF THE STUDY Conclusions provide guidance for household laundry practices to achieve targeted risk reductions, given a single user contact scenario. A key finding was that hand hygiene implemented at critical control points in the laundering process was the most significant driver of infection prevention, additionally reducing infection risks by up to 6 log10 .
Collapse
Affiliation(s)
- Kelly A. Reynolds
- The Mel and Enid Zuckerman College of Public HealthUniversity of ArizonaTucsonAZUSA
| | | | - Kristina D. Mena
- School of Public HealthThe University of Texas Health Science Center at HoustonEl PasoTXUSA
| | | | - Elizabeth A. Scott
- Center for Hygiene and Health, Department of BiologySimmons UniversityBostonMAUSA
| | - Charles P. Gerba
- Department of Environmental SciencesUniversity of ArizonaTucsonAZUSA
| |
Collapse
|
3
|
Cryptocurrency as Epidemiologically Safe Means of Transactions: Diminishing Risk of SARS-CoV-2 Spread. MATHEMATICS 2021. [DOI: 10.3390/math9243263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In comparison with other respiratory viruses, the current COVID-19 pandemic’s rapid seizing the world can be attributed to indirect (contact) way of transmission of SARS-CoV-2 virus in addition to the regular airborne way. A significant part of indirect transmission is made through cash bank notes. SARS-CoV-2 remains on cash paper money for period around four times larger than influenza A virus and is absorbed by cash notes two and a half times more effectively than influenza A (our model). During the pandemic, cryptocurrencies have gained attractiveness as an “epidemiologically safe” means of transactions. On the basis of the authors’ gallop polls performed online with social networks users in 44 countries in 2020–2021 (the total number of clear responses after the set repair 32,115), around 14.7% of surveyed participants engaged in cryptocurrency-based transactions during the pandemic. This may be one of the reasons of significant rise of cryptocurrencies rates since mid-March 2020 till the end of 2021. The paper discusses the reasons for cryptocurrency attractiveness during the COVID-19 pandemic. Among them, there are fear of SARS-CoV-2 spread via cash contacts and the ability of the general population to mine cryptocurrencies. The article also provides a breakdown of the polled audience profile to determine the nationalities that have maximal level of trust to saving and transacting money as cryptocurrencies.
Collapse
|
4
|
Abstract
Laundering of textiles—clothing, linens, and cleaning cloths—functionally removes dirt and bodily fluids, which prevents the transmission of and reexposure to pathogens as well as providing odor control. Thus, proper laundering is key to controlling microbes that cause illness and produce odors. The practice of laundering varies from region to region and is influenced by culture and resources. This review aims to define laundering as a series of steps that influence the exposure of the person processing the laundry to pathogens, with respect to the removal and control of pathogens and odor-causing bacteria, while taking into consideration the types of textiles. Defining laundering in this manner will help better educate the consumer and highlight areas where more research is needed and how to maximize products and resources. The control of microorganisms during laundering involves mechanical (agitation and soaking), chemical (detergent and bleach), and physical (detergent and temperature) processes. Temperature plays the most important role in terms of pathogen control, requiring temperatures exceeding 40°C to 60°C for proper inactivation, while detergents play a role in reducing the microbial load of laundering through the release of microbes attached to fabrics and the inactivation of microbes sensitive to detergents (e.g., enveloped viruses). The use of additives (enzymes) and bleach (chlorine and activated oxygen) becomes essential in washes with temperatures below 20°C, especially for certain enteric viruses and bacteria. A structured approach is needed that identifies all the steps in the laundering process and attempts to identify each step relative to its importance to infection risk and odor production.
Collapse
|
5
|
Labadie T, Batéjat C, Leclercq I, Manuguerra JC. Historical Discoveries on Viruses in the Environment and Their Impact on Public Health. Intervirology 2020; 63:17-32. [PMID: 33238280 DOI: 10.1159/000511575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/14/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Transmission of many viruses occurs by direct transmission during a close contact between two hosts, or by an indirect transmission through the environment. Several and often interconnected factors, both abiotic and biotic, determine the persistence of these viruses released in the environment, which can last from a few seconds to several years. Moreover, viruses in the environment are able to travel short to very long distances, especially in the air or in water. SUMMARY Although well described now, the role of these environments as intermediaries or as reservoirs in virus transmission has been extensively studied and debated in the last century. The majority of these discoveries, such as the pioneer work on bacteria transmission, the progressive discoveries of viruses, as well as the persistence of the influenza virus in the air varying along with droplet sizes, or the role of water in the transmission of poliovirus, have contributed to the improvement of public health. Recent outbreaks of human coronavirus, influenza virus, and Ebola virus have also demonstrated the contemporaneity of these research studies and the need to study virus persistence in the environment. Key Messages: In this review, we discuss historical discoveries that contributed to describe biotic and abiotic factors determining viral persistence in the environment.
Collapse
Affiliation(s)
- Thomas Labadie
- Unité Environnement et Risques Infectieux, Institut Pasteur, Cellule d'Intervention Biologique d'Urgence (CIBU), Paris, France.,Centre de Biochimie Structurale (CBS), UMR 5048, University of Montpellier, CNRS, Montpellier, France
| | - Christophe Batéjat
- Unité Environnement et Risques Infectieux, Institut Pasteur, Cellule d'Intervention Biologique d'Urgence (CIBU), Paris, France
| | - India Leclercq
- Unité Environnement et Risques Infectieux, Institut Pasteur, Cellule d'Intervention Biologique d'Urgence (CIBU), Paris, France, .,Université de Paris, Cellule Pasteur, Paris, France,
| | - Jean-Claude Manuguerra
- Unité Environnement et Risques Infectieux, Institut Pasteur, Cellule d'Intervention Biologique d'Urgence (CIBU), Paris, France
| |
Collapse
|
6
|
Galante AJ, Haghanifar S, Romanowski EG, Shanks RMQ, Leu PW. Superhemophobic and Antivirofouling Coating for Mechanically Durable and Wash-Stable Medical Textiles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22120-22128. [PMID: 32320200 DOI: 10.1021/acsami.9b23058] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Medical textiles have a need for repellency to body fluids such as blood, urine, or sweat that may contain infectious vectors that contaminate surfaces and spread to other individuals. Similarly, viral repellency has yet to be demonstrated and long-term mechanical durability is a major challenge. In this work, we demonstrate a simple, durable, and scalable coating on nonwoven polypropylene textile that is both superhemophobic and antivirofouling. The treatment consists of polytetrafluoroethylene (PTFE) nanoparticles in a solvent thermally sintered to polypropylene (PP) microfibers, which creates a robust, low-surface-energy, multilayer, and multilength scale rough surface. The treated textiles demonstrate a static contact angle of 158.3 ± 2.6° and hysteresis of 4.7 ± 1.7° for fetal bovine serum and reduce serum protein adhesion by 89.7 ± 7.3% (0.99 log). The coated textiles reduce the attachment of adenovirus type 4 and 7a virions by 99.2 ± 0.2% and 97.6 ± 0.1% (2.10 and 1.62 log), respectively, compared to noncoated controls. The treated textiles provide these repellencies by maintaining a Cassie-Baxter state of wetting where the surface area in contact with liquids is reduced by an estimated 350 times (2.54 log) compared to control textiles. Moreover, the treated textiles exhibit unprecedented mechanical durability, maintaining their liquid, protein, and viral repellency after extensive and harsh abrasion and washing. The multilayer, multilength scale roughness provides for mechanical durability through self-similarity, and the samples have high-pressure stability with a breakthrough pressure of about 255 kPa. These properties highlight the potential of durable, repellent coatings for medical gowning, scrubs, or other hygiene textile applications.
Collapse
Affiliation(s)
- Anthony J Galante
- Department of Industrial Engineering, University of Pittsburgh, 3700 O'Hara, Benedum Hall, Pittsburgh, Pennsylvania 15261, United States
| | - Sajad Haghanifar
- Department of Industrial Engineering, University of Pittsburgh, 3700 O'Hara, Benedum Hall, Pittsburgh, Pennsylvania 15261, United States
| | - Eric G Romanowski
- Department of Ophthalmology, Charles T. Campbell Laboratory for Ophthalmic Microbiology, University of Pittsburgh School of Medicine, 203 Lothrop Street, Pittsburgh, Pennsylvania 15213, United States
| | - Robert M Q Shanks
- Department of Ophthalmology, Charles T. Campbell Laboratory for Ophthalmic Microbiology, University of Pittsburgh School of Medicine, 203 Lothrop Street, Pittsburgh, Pennsylvania 15213, United States
| | - Paul W Leu
- Department of Industrial Engineering, University of Pittsburgh, 3700 O'Hara, Benedum Hall, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|