1
|
Chen R, Wang K, Lin L, Chen Y, Liu Y, Li R, Wu X, Feng P, Chen X, Xu Y, Yang Z. Exploring the action mechanism and effective components of Yupingfeng powder on influenza based on computational system pharmacology and metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118678. [PMID: 39121925 DOI: 10.1016/j.jep.2024.118678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yupingfeng powder (YPF) is a classic traditional Chinese medicine prescription with a long history of clinical application. However, there is a consensus on the clinical efficacy of YPF in the prevention and treatment of influenza, the underlying pharmacological mechanisms and functional substances have not been thoroughly investigated. AIM OF THE STUDY This study aimed to elucidate the functional substances and potential mechanisms of YPF against influenza infections by integrating network analysis, metabolomics, computational system pharmacology, and in vitro experiments. MATERIALS AND METHODS In this study, the active ingredients, related targets, and potential mechanisms of YPF against influenza were identified through network pharmacology and GEO database mining. Combined with metabolomics to corroborate the results of network pharmacology analysis and construct C-T-P-D-M network. Based on this, the key network motifs (KNM) with significance were predicted by system pharmacology algorithm. Finally, the key components as functional substances in the KNM were validated by the coverage of influenza-causing genes and functional pathways, and in vitro experiments. RESULTS A total of 238 active components and 158 potential target genes intersecting with influenza infection differential genes were screened from YPF. KEGG enrichment analysis indicated that metabolism participated in YPF-provided prevention and treatment on influenza, and metabolomic results further corroborated the significance of the metabolic pathways intervened by YPF included pyruvate metabolism, Valine, leucine and isoleucine degradation, etc. The KNM prediction strategy was computed to include wogonin and isoimperaporin, a group of 48 potential functional components. This functional component group maintained a high degree of consistency with the corresponding C-T network in terms of the coverage of influenza pathogenic genes, and the coverage of functional pathways. Meanwhile, the in vitro results showed that wogonin and isoimperaporin had significant inhibitory effects on inflammation induced by influenza infection, confirming the reliability and accuracy of the KNM prediction strategy. CONCLUSION YPF against influenza has multi-target and multi-pathway effects, and the underlying mechanisms may be related to metabolism. The pharmacodynamic effects of core components such as wogonin and isoimperaporin on influenza prevention and treatment were confirmed, which represent promising functional candidates for subsequent influenza prevention and treatment, and provide references for the pharmacological and mechanistic analyses of subsequent formulas.
Collapse
Affiliation(s)
- Ruifeng Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou, 510230, China
| | - Kexin Wang
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Luping Lin
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510230, China
| | - Yaorong Chen
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou, 510230, China
| | - Ya Liu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou, 510230, China
| | - Runfeng Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou, 510230, China
| | - Xiao Wu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou, 510230, China
| | - Pei Feng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Xiaohong Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Zifeng Yang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China; Guangzhou National Laboratory, Guangzhou, 510005, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou, 510230, China; Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510230, China.
| |
Collapse
|
2
|
Khare T, Khare S, Angdisen JJ, Zhang Q, Stuckel A, Mooney BP, Ridenhour SE, Gitan RS, Hammoud GM, Ibdah JA. Defects in long-chain 3-hydroxy acyl-CoA dehydrogenase lead to hepatocellular carcinoma: A novel etiology of hepatocellular carcinoma. Int J Cancer 2020; 147:1461-1473. [PMID: 32115688 DOI: 10.1002/ijc.32943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/02/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022]
Abstract
The incidence of both nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC) have been increasing at an alarming rate. Little is known about NAFLD without cirrhosis as a risk for HCC. Here we report, for the first time, generation of a mouse model with a defect in long-chain 3-hydoxy acyl-CoA dehydrogenase (LCHAD). The LCHAD exon 15 deletion was embryonic lethal to the homozygous mice whereas heterozygous mice (HT) develop significant hepatic steatosis starting at young age (3 months old) and HCC at older age (>13 months old) without any evidence of fibrosis or cirrhosis. None of the wild-type (WT) mice developed steatosis and HCC (n = 39), whereas HT-LCHAD mice (n = 41) showed steatosis and ~20% (8/41) developed liver masses with histological features of HCC. Proteomic analysis of liver tissues from WT-mice and HT-mice with no signs of HCC was conducted. Proteins with significant changes in abundance were identified by mass spectrometry. Abundance of 24 proteins was significantly different (p < 0.01) between WT and HT-LCHAD mice. The proteins found to vary in abundance are associated with different cellular response processes ranging from intermediary metabolism of carbohydrate, protein and lipid to oxidative stress, signal transduction and the process of tumorigenesis. Protein expression pattern of the HT-LCHAD mouse liver indicates predisposition to HCC and suggests that impaired hepatic mitochondrial fatty acid oxidation plays an important role in the development and progression of HCC. To assess the implication of these studies in human disease, we demonstrated significant downregulation of HADHA transcripts in HCC patients.
Collapse
Affiliation(s)
- Tripti Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Sharad Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO, USA.,Harry S Truman Veterans' Hospital, Columbia, MO, USA
| | - Jerry J Angdisen
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Qiong Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Alexei Stuckel
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Brian P Mooney
- Gehrke Proteomics center, University of Missouri, Columbia, MO, USA
| | - Suzanne E Ridenhour
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Raad S Gitan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Ghassan M Hammoud
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Jamal A Ibdah
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO, USA.,Harry S Truman Veterans' Hospital, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Ye JS, Liu J, Ou HS, Wang LL. Degradation of ciprofloxacin by 280 nm ultraviolet-activated persulfate: Degradation pathway and intermediate impact on proteome of Escherichia coli. CHEMOSPHERE 2016; 165:311-319. [PMID: 27664520 DOI: 10.1016/j.chemosphere.2016.09.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
In this study, the degradation of ciprofloxacin (CIP) was explored using ultraviolet activated persulfate (UV/PS) with 280 nm ultraviolet light-emitting diodes (UV-LEDs), and the toxicological assessment of degrading intermediates was performed using iTRAQ labeling quantitative proteomic technology. The quantitative mass spectrum results showed that 280 nm UV/PS treatment had a high transformation efficiency of CIP ([CIP] = 3 μM, [S2O82-] = 210 μM, apparent rate constants 0.2413 min-1). The high resolution mass spectrum analyses demonstrated that the primary intermediates included C15H16FN3O3 (m/z 306.1248) and C17H18FN3O4 (m/z 348.1354). The former one was formed by the cleavage of piperazine ring, while the later one was generated by the addition of a hydroxyl on the quinolone backbone. The toxicological assessment demonstrated that 56 and 110 proteins had significant up regulations and down regulations, respectively, in the Escherichia coli exposed to degraded CIP compared to untreated CIP. The majority of up-regulated proteins, such as GapA, SodC, were associated with primary metabolic process rather than responses to stress and toxic substance, inferring that the moderate UV/PS treatment can reduce the antibacterial activity of CIP by incomplete mineralization. Consequently, these results provided a novel insight into the application of UV-LED/PS treatment as a promising removal methodology for quinolones.
Collapse
Affiliation(s)
- Jin-Shao Ye
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek 94598, CA, USA
| | - Juan Liu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Hua-Se Ou
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Lin-Lin Wang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek 94598, CA, USA
| |
Collapse
|