1
|
Hu Y, Liu C, Yang J, Zhong M, Qian B, Chen J, Zhang Y, Song J. HMGB1 is involved in viral replication and the inflammatory response in coxsackievirus A16-infected 16HBE cells via proteomic analysis and identification. Virol J 2023; 20:178. [PMID: 37559147 PMCID: PMC10410909 DOI: 10.1186/s12985-023-02150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
Coxsackievirus A16 (CV-A16) is still an important pathogen that causes hand, foot and mouth disease (HFMD) in young children and infants worldwide. Previous studies indicated that CV-A16 infection is usually mild or self-limiting, but it was also found that CV-A16 infection can trigger severe neurological complications and even death. However, there are currently no vaccines or antiviral compounds available to either prevent or treat CV-A16 infection. Therefore, investigation of the virus‒host interaction and identification of host proteins that play a crucial regulatory role in the pathogenesis of CV-A16 infection may provide a novel strategy to develop antiviral drugs. Here, to increase our understanding of the interaction of CV-A16 with the host cell, we analyzed changes in the proteome of 16HBE cells in response to CV-A16 using tandem mass tag (TMT) in combination with LC‒MS/MS. There were 6615 proteins quantified, and 172 proteins showed a significant alteration during CV-A16 infection. These differentially regulated proteins were involved in fundamental biological processes and signaling pathways, including metabolic processes, cytokine‒cytokine receptor interactions, B-cell receptor signaling pathways, and neuroactive ligand‒receptor interactions. Further bioinformatics analysis revealed the characteristics of the protein domains and subcellular localization of these differentially expressed proteins. Then, to validate the proteomics data, 3 randomly selected proteins exhibited consistent changes in protein expression with the TMT results using Western blotting and immunofluorescence methods. Finally, among these differentially regulated proteins, we primarily focused on HMGB1 based on its potential effects on viral replication and virus infection-induced inflammatory responses. It was demonstrated that overexpression of HMGB1 could decrease viral replication and upregulate the release of inflammatory cytokines, but deletion of HMGB1 increased viral replication and downregulated the release of inflammatory cytokines. In conclusion, the results from this study have helped further elucidate the potential molecular pathogenesis of CV-A16 based on numerous protein changes and the functions of HMGB1 Found to be involved in the processes of viral replication and inflammatory response, which may facilitate the development of new antiviral therapies as well as innovative diagnostic methods.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chen Liu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jinghui Yang
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, China
| | - Mingmei Zhong
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Baojiang Qian
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Juan Chen
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| | - Jie Song
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.
| |
Collapse
|
2
|
Teo FMS, Nyo M, Wong AA, Tan NWH, Koh MT, Chan YF, Chong CY, Chu JJH. Cytokine and Chemokine Profiling in Patients with Hand, Foot and Mouth Disease in Singapore and Malaysia. Sci Rep 2018; 8:4087. [PMID: 29511232 PMCID: PMC5840398 DOI: 10.1038/s41598-018-22379-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/22/2018] [Indexed: 02/08/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) is a prevalent contagious childhood disease typically associated with fever, oral lesions and limb exanthema. While HFMD is caused by a plethora of serotypes of viruses under the genus Enterovirus within the Picornaviridae family, Coxsackievirus A16 (CV-A16) and Enterovirus 71 (EV-A71) are considered the main etiological agents. In recent years however, other viruses have also been isolated in considerable numbers from infected individuals in many regions, joining the legion commonly associated with HFMD. The present study investigated the cytokine and chemokine profiles of HFMD patients from Singapore and Malaysia for the first time. Comparative cohort studies of EV-A71-associated HFMD cases revealed that the Malaysia cohort had a distinct profile from the Singapore cohort, and this could be partly attributed by different EV-A71 genotypes. As the isolation of CV-A6, instead of CV-A16, had become prevalent in the Singapore cohort, it was also of particular interest to study the differential cytokine and chemokine profiles. Our data revealed that overlapping as well as unique profiles exist between the two major causative clinical isolates in the Singapore cohort. Having a better understanding of the respective immunological profiles could be useful for more accurate HFMD diagnosis, which is imperative for disease transmission control until multi-valent vaccines and/or broad-spectrum anti-viral drugs become available.
Collapse
Affiliation(s)
- Fiona Mei Shan Teo
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Min Nyo
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anng Anng Wong
- Infectious Disease Service, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Natalie Woon Hui Tan
- Infectious Disease Service, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Mia Tuang Koh
- Department of Pediatrics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chia Yin Chong
- Infectious Disease Service, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Justin Jang Hann Chu
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Huang Q, Wang Y, Si C, Zhao D, Wang Y, Duan Y. Interleukin-35 Modulates the Imbalance Between Regulatory T Cells and T Helper 17 Cells in Enterovirus 71-Induced Hand, Foot, and Mouth Disease. J Interferon Cytokine Res 2017; 37:522-530. [PMID: 29172969 DOI: 10.1089/jir.2017.0080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Interleukin (IL)-35 modulates the imbalance between regulatory T cells (Tregs) and T helper (Th) 17 cells, which played vital roles in the pathogenesis of autoimmune and infectious diseases. However, the role of Tregs/Th17 cell imbalance and the regulatory functions of IL-35 have remained largely unknown in enterovirus 71 (EV71)-induced hand, foot, and mouth disease (HFMD). In this study, a total of 47 HFMD patients (30 with mild HFMD and 17 with severe HFMD) and 13 healthy individuals were enrolled. The frequencies of CD4+CD25+CD127dim/- Tregs and CD4+IL-17+ Th17 cells, as well as IL-35 expression levels, were measured. Cellular proliferation and cytokine production was also determined in purified Tregs following recombinant IL-35 stimulation. An imbalance between Tregs and Th17 cells was observed in children with severe HFMD, which manifested as a reduction in the Tregs population and an elevation in the Th17 population. Serum IL-35 concentrations were also decreased in case of severe HFMD, which correlated with the Tregs:Th17 cell ratios. Recombinant IL-35 stimulation increased the proportion of Tregs, but downregulated that of Th17 cells. Treatment with IL-35 enhanced Tregs suppressive function and IL-35 and IL-10 expression, but reduced IL-22 secretion in both healthy individuals and those with severe HFMD. The Tregs:Th17 cell ratio was increased in the convalescent patients, however, a significant reduction in serum IL-35 was not observed. Our findings indicated that EV71 infection shifted the Tregs:Th17 cell ratio through IL-35 by downregulating inhibitory cytokine production and reducing the cell-to-cell contact inhibition of effector T cells. Regulation of IL-35 as it relates to the Tregs/Th17 balance may play a critical role in the pathogenesis of EV71-associated HFMD.
Collapse
Affiliation(s)
- Qian Huang
- 1 Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| | - Yanhua Wang
- 1 Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| | - Changyun Si
- 2 Department of Infectious Diseases, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| | - De'an Zhao
- 1 Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| | - Yanping Wang
- 2 Department of Infectious Diseases, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| | - Yuxiu Duan
- 2 Department of Infectious Diseases, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| |
Collapse
|
4
|
Hua Y, Wang Y, Gong W. Inflammatory cytokine profiles of serum and cerebrospinal fluid in Chinese children with hand, foot and mouth disease. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11022-11029. [PMID: 31966447 PMCID: PMC6965817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/21/2017] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Hand, foot and mouth disease (HFMD) is mainly caused by enterovirus 71 (EV71) or coxsackie virus A16 infection. Severe HFMD with encephalitis is a life-threatening disease for children. This study aimed to examine the levels of a variety of inflammatory cytokines in HFMD patients. METHODS Sera of severe or common HFMD patients and cerebrospinal fluids from severe HFMD patients in the acute or recovery phase were collected to analyse 40 cytokines using the Raybiotec Cytokine array. Twenty-six samples of sera or cerebrospinal fluids from HFMD patients were further detected using Milliplex beads. RESULTS Numerous inflammatory cytokines, such as IL-8, IP-10, and RAENTES, were enhanced in the sera and cerebrospinal fluids of encephalitis-complicated HFMD patients. Serum IL-12p40 and IL-15 levels were higher in severe HFMD patients compared with common patients. Moreover, IL-8 and IP-10 levels in the cerebrospinal fluid were sharply enhanced by 30-fold on average compared with those in the sera. Cerebrospinal fluid IL-8, IP-10, and RANTES levels were significantly enhanced in the acute phase of severe HFMD patients compared with those in the recovery phase. However, no correlation of serum IL-8 or IP-10 level with its cerebrospinal fluid level was observed. CONCLUSION An inflammatory cytokine storm occurs both in sera and cerebrospinal fluids during severe HFMD, which is likely a Th1 cell-associated disease. Cerebrospinal fluid IL-8, IP-10 and RANTES levels could be used as potential biomarkers for diagnosing severe HFMD, whereas the enhanced serum levels of IL-12p40 and IL-15 could be used as candidate predictive factors for severe HFMD.
Collapse
Affiliation(s)
- Ying Hua
- Department of Neurology, Wuxi Children’s HospitalJiangsu Province, China
| | - Yanping Wang
- Department of Neurology, Wuxi Children’s HospitalJiangsu Province, China
| | - Weijuan Gong
- Department of Immunology, School of Medicine, Yangzhou UniversityYangzhou, China
- Department of Integrated Chinese and Western Medicine, School of Medicine, Yangzhou UniversityYangzhou, China
- Department of Gastroenterology, The Affiliated Hospital, Yangzhou UniversityYangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesJiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityJiangsu, China
| |
Collapse
|
5
|
Wang J, Zhang Y, Zhang X, Hu Y, Dong C, Liu L, Yang E, Che Y, Pu J, Wang X, Song J, Liao Y, Feng M, Liang Y, Zhao T, Jiang L, He Z, Lu S, Wang L, Li Y, Fan S, Guo L, Li Q. Pathologic and immunologic characteristics of coxsackievirus A16 infection in rhesus macaques. Virology 2016; 500:198-208. [PMID: 27829175 DOI: 10.1016/j.virol.2016.10.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/02/2016] [Accepted: 10/31/2016] [Indexed: 11/26/2022]
Abstract
Coxsackievirus A16 (CV-A16) causes human hand, foot and mouth disease, but its pathogenesis is unclear. In rhesus macaques, CV-A16 infection causes characteristic vesicles in the oral mucosa and limbs as well as viremia and positive viral loads in the tissues, suggesting that these animals reflect the pathologic process of the infection. An immunologic analysis indicated a defective immune response, which included undetectable neutralizing antibodies and IFN-γ-specific memory T-cells in macaques infected with CV-A16. Furthermore, existing neutralizing antibodies in macaques immunized with the inactivated vaccine were surprisingly unable to protect against a viral challenge despite the presence of a positive T-cell memory response against viral antigens. The virus was capable of infecting pre-conventional dendritic cells and replicating within them, which may correlate with the immunological characteristics observed in the animals.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Xiaolong Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Yajie Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Chenghong Dong
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Erxia Yang
- Jiangsu Convac Biotechnology Co., Ltd., Taizhou, Jiangsu, China
| | - Yanchun Che
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Jing Pu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Xi Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Jie Song
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Yun Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Min Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Yan Liang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Ting Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Li Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China; Jiangsu Convac Biotechnology Co., Ltd., Taizhou, Jiangsu, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Lichun Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Shengtao Fan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Lei Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China.
| |
Collapse
|