1
|
Xia YM, Guan YQ, Liang JF, Wu WD. TAK-242 improves sepsis-associated acute kidney injury in rats by inhibiting the TLR4/NF-κB signaling pathway. Ren Fail 2024; 46:2313176. [PMID: 38482886 PMCID: PMC10877656 DOI: 10.1080/0886022x.2024.2313176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/27/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVE This study was designed to observe the effect of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway activity on sepsis-associated acute kidney injury (SA-AKI), thereby providing new considerations for the prevention and treatment of SA-AKI. METHODS The rats were divided into Sham, cecal ligation and puncture (CLP), CLP + vehicle, and CLP + TAK-242 groups. Except the Sham group, a model of CLP-induced sepsis was established in other groups. After 24 h, the indicators related to kidney injury in blood samples were detected. The pathological changes in the kidneys were observed by hematoxylin-eosin staining, and tubular damage was scored. Oxidative stress-related factors, mitochondrial dysfunction-related indicators in each group were measured; the levels of inflammatory factors in serum and kidney tissue of rats were examined. Finally, the expression of proteins related to the TLR4/NF-κB signaling pathway was observed by western blot. RESULTS Compared with the CLP + vehicle and CLP + TAK-242 groups, the CLP + TAK-242 group reduced blood urea nitrogen (BUN), creatinine (Cr), cystatin-C (Cys-C), reactive oxygen species (ROS), malondialdehyde (MDA), and inflammatory factors levels (p < 0.01), as well as increased superoxide dismutase (SOD) activity of CLP rats (p < 0.01). Additionally, TAK-242 treatment improved the condition of CLP rats that had glomerular and tubular injuries and mitochondrial disorders (p < 0.01). Further mechanism research revealed that TAK-242 can inhibit the TLR4/NF-κB signaling pathway activated by CLP (p < 0.01). Above indicators after TAK-242 treatment were close to those of the Sham group. CONCLUSION TAK-242 can improve oxidative stress, mitochondrial dysfunction, and inflammatory response by inhibiting the activity of TLR4/NF-κB signaling pathway, thereby preventing rats from SA-AKI.
Collapse
Affiliation(s)
- Yan-mei Xia
- Department of Critical, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PRChina
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PRChina
| | - Yu-qian Guan
- Department of Critical, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PRChina
| | - Ji-fang Liang
- Department of Critical, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PRChina
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PRChina
| | - Wei-dong Wu
- Department of Critical, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PRChina
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PRChina
| |
Collapse
|
2
|
Juha M, Molnár A, Jakus Z, Ledó N. NETosis: an emerging therapeutic target in renal diseases. Front Immunol 2023; 14:1253667. [PMID: 37744367 PMCID: PMC10514582 DOI: 10.3389/fimmu.2023.1253667] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Neutrophil extracellular traps (NETs) are web-like structures composed of nuclear and granular components. The primary role of NETS is to prevent the dissemination of microbes and facilitate their elimination. However, this process is accompanied by collateral proinflammatory adverse effects when the NET release becomes uncontrollable, or clearance is impaired. Although NET-induced organ damage is conducted primarily and indirectly via immune complexes and the subsequent release of cytokines, their direct effects on cells are also remarkable. NETosis plays a critical pathogenic role in several renal disorders, such as the early phase of acute tubular necrosis, anti-neutrophil cytoplasmic antibody-mediated renal vasculitis, lupus nephritis, thrombotic microangiopathies, anti-glomerular basement membrane disease, and diabetic nephropathy. Their substantial contribution in the course of these disorders makes them a desirable target in the therapeutic armamentarium. This article gives an in-depth review of the heterogeneous pathogenesis and physiological regulations of NETosis and its pivotal role in renal diseases. Based on the pathogenesis, the article also outlines the current therapeutic options and possible molecular targets in the treatment of NET-related renal disorders. Methods We carried out thorough literature research published in PubMed and Google Scholar, including a comprehensive review and analysis of the classification, pathomechanisms, and a broad spectrum of NET-related kidney disorders. Conclusions NETosis plays a pivotal role in certain renal diseases. It initiates and maintains inflammatory and autoimmune disorders, thus making it a desirable target for improving patient and renal outcomes. Better understanding and clinical translation of the pathogenesis are crucial aspects to treatment, for improving patient, and renal outcomes.
Collapse
Affiliation(s)
- Márk Juha
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Adél Molnár
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Nóra Ledó
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Liu FC, Lee HC, Liao CC, Chou AH, Yu HP. Role of NADPH Oxidase-Derived ROS-Mediated IL-6/STAT3 and MAPK/NF-κB Signaling Pathways in Protective Effect of Corilagin against Acetaminophen-Induced Liver Injury in Mice. BIOLOGY 2023; 12:biology12020334. [PMID: 36829609 PMCID: PMC9952884 DOI: 10.3390/biology12020334] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
Acetaminophen (APAP) overdose causes acute liver injury via oxidative stress, uncontrolled inflammatory response, and subsequent hepatocyte death. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a potent source of cellular reactive oxygen species (ROS) and may contribute to oxidative stress in many inflammatory processes. Corilagin, a component of Phyllanthus urinaria, possesses antioxidant, anti-inflammatory, and hepatoprotective effects. We evaluated the mechanisms underlying the protective effect of corilagin against acetaminophen-induced liver injury. Mice were intraperitoneally administrated 300 mg/kg APAP or equal volume of saline (control), with or without various concentrations of corilagin (0, 1, 5, or 10 mg/kg) administered after 30 min. All animals were sacrificed 16 h after APAP administration, and serum and liver tissue assays including histology, immunohistochemistry, and Western blot assay were performed. Corilagin post-treatment significantly attenuated APAP-induced liver injury (p < 0.005), inflammatory cell infiltration, hepatic proinflammatory cytokine levels, and hepatic oxidative stress. Furthermore, corilagin attenuated the protein levels of NOX1, NOX2, signal transducer and activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) in APAP-induced liver injury. These results indicated that the antioxidant, anti-inflammatory, and protective effects of corilagin in APAP-induced liver injury might involve the regulation of interleukin (IL)-6/STAT3 and mitogen-activated protein kinase (MAPK)/NF-κB signaling pathways through NOX-derived ROS.
Collapse
Affiliation(s)
- Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hung-Chen Lee
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - An-Hsun Chou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-3281200 (ext. 2324)
| |
Collapse
|
4
|
Sapidolide A alleviates acetaminophen-induced acute liver injury by inhibiting NLRP3 inflammasome activation in macrophages. Acta Pharmacol Sin 2022; 43:2016-2025. [PMID: 35022542 PMCID: PMC9343373 DOI: 10.1038/s41401-021-00842-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Macrophages play a critical role in the pathogenesis of acetaminophen (APAP)-induced liver injury (AILI), a major cause of acute liver failure or even death. Sapidolide A (SA) is a sesquiterpene lactone extracted from Baccaurea ramiflora Lour., a folk medicine used in China to treat inflammatory diseases. In this study, we investigated whether SA exerted protective effects on macrophages, thus alleviated the secondary hepatocyte damage in an AILI. We showed that SA (5-20 μM) suppressed the phosphorylated activation of NF-κB in a dose-dependent manner, thereby inhibiting the expression and activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and pyroptosis in LPS/ATP-treated mouse bone marrow-derived primary macrophages (BMDMs). In human hepatic cell line L02 co-cultured with BMDMs, SA (10 μM) protected macrophages from the pyroptosis induced by APAP-damaged L02 cells. Moreover, SA treatment reduced the secondary liver cell damage aggravated by the conditioned medium (CM) taken from LPS/ATP-treated macrophages. The in vivo assessments conducted on mice pretreated with SA (25, 50 mg/kg, ip) then with a single dose of APAP (400 mg/kg, ip) showed that SA significantly alleviated inflammatory responses of AILI by inhibiting the expression and activation of the NLRP3 inflammasome. In general, the results reported herein revealed that SA exerts anti-inflammatory effects by regulating NLRP3 inflammasome activation in macrophages, which suggests that SA has great a potential for use in the treatment of AILI patients.
Collapse
|
5
|
Dua TK, Palai S, Roy A, Paul P. Protective effect of probiotics against acetaminophen induced nephrotoxicity. Mol Biol Rep 2022; 49:8139-8143. [PMID: 35661049 DOI: 10.1007/s11033-022-07534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
Abstract
Acetaminophen (APAP) is commonly prescribed as an antipyretic and analgesic agent in the practical field. Like every other drug(s), APAP also undergo metabolism by oxidation or conjugation by glucuronate and sulphate to form the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI). Moreover, the NAPQI is detoxified by conjugation with reduced glutathione (GSH). Interestingly, APAP is also metabolized in the kidney by deacetylation reaction in the presence of N-deacetylase enzyme into another severely toxic but minor metabolite, p-aminophenol. Both NAPQI and p-aminophenol shows nephrotoxicity as well as hepatotoxicity. Hence, the long-term therapeutic dose use and unnecessary overdose of APAP are of great concern as prolonged negligence may cost the nephrotoxicity that may lead to uremia and finally to kidney failure. It has recently been investigated that probiotic supplementation inhibits the sequential events associated with APAP-induced nephrotoxicity. This review emphasizes the role of different probiotics that have already been investigated in nephrotoxicity or uremia caused by APAP overdose.
Collapse
Affiliation(s)
- Tarun Kumar Dua
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, 734013, Darjeeling, West Bengal, India.
| | - Sangita Palai
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, 734013, Darjeeling, West Bengal, India
| | - Abani Roy
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, 734013, Darjeeling, West Bengal, India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, 734013, Darjeeling, West Bengal, India
| |
Collapse
|
6
|
Tao Y, Ma J, Huang C, Lai C, Ling Z, Yong Q. The immunomodulatory activity of degradation products of Sesbania cannabina galactomannan with different molecular weights. Int J Biol Macromol 2022; 205:530-538. [PMID: 35217078 DOI: 10.1016/j.ijbiomac.2022.02.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 11/05/2022]
Abstract
Galactomannan (GM) is widely recognized as an immune enhancer; however, the underlying molecular mechanism is still unknown. Herein, four products with molecular weights in descending order, namely GM40, GM50, GM65, and GMOS, were separated from incomplete degradation products of Sesbania cannabina GM by ethanol precipitation, followed by their immunomodulatory activity. Through FTIR and XPS spectra, the amount of free hydroxyl groups was shown to decrease in the following order: GM > GM50 > GMOS > GM40 > GM65. Moreover, the immunomodulatory activity of different products decreased in abovementioned order. The TNF-α, IL-6 and TLR4 content in RAW 264.7 cells treated with different GM products in the presence or absence of TAK-242 (TLR4 inhibitor) suggested that the immunomodulatory activity of GM and its degradation products is TLR4-dependent. Overall, the preliminary relationship indicated here between the hydroxyl groups or the possible deeper structural changes of GM and the immunomodulatory activity need to be further investigated.
Collapse
Affiliation(s)
- Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Junmei Ma
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
7
|
Liu M, Zen K. Toll-Like Receptors Regulate the Development and Progression of Renal Diseases. KIDNEY DISEASES 2021; 7:14-23. [PMID: 33614730 DOI: 10.1159/000511947] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Background Stimulated by both microbial and endogenous ligands, toll-like receptors (TLRs) play an important role in the development and progression of renal diseases. Summary As a highly conserved large family, TLRs have 11 members in humans (TLR1∼TLR11) and 13 members in mouse (TLR1∼TLR13). It has been widely reported that TLR2 and TLR4 signaling, activated by both exogenous and endogenous ligands, promote disease progression in both renal ischemia-reperfusion injury and diabetic nephropathy. TLR4 also vitally functions in CKD and infection-associated renal diseases such as pyelonephritis induced by urinary tract infection. Stimulation of intracellular TLR7/8 and TLR9 by host-derived nucleic acids also plays a key role in systemic lupus erythematosus. Given that certain microRNAs with GU-rich sequence have recently been found to be able to serve as TLR7/8 ligands, these microRNAs may initiate pro-inflammatory signal via activating TLR signal. Moreover, as microRNAs can be transferred across different organs via cell-secreted exosomes or protein-RNA complex, the TLR signaling activated by the miRNAs released by other injured organs may also result in renal dysfunction. Key Messages In this review, we sum up the recent progress in the role of TLRs in various forms of glomerulonephritis and discuss the possible prevention or therapeutic strategies for clinic treatment to renal diseases.
Collapse
Affiliation(s)
- Minghui Liu
- School of Life Science and Technology, Chinese Pharmaceutical University, Nanjing, China
| | - Ke Zen
- School of Life Science and Technology, Chinese Pharmaceutical University, Nanjing, China.,School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Alshahrani S, Ashafaq M, Hussain S, Mohammed M, Sultan M, Jali AM, Siddiqui R, Islam F. Renoprotective effects of cinnamon oil against APAP-Induced nephrotoxicity by ameliorating oxidative stress, apoptosis and inflammation in rats. Saudi Pharm J 2021; 29:194-200. [PMID: 33679180 PMCID: PMC7910143 DOI: 10.1016/j.jsps.2021.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Acetaminophen (APAP) is used as a primary medication in relieving moderate pain and fever. However, APAP is associated with toxic effects in renal tissue that appear because of its free radicals property. The principle goal of the present work is to assess the kidney damage by APAP and its restore antioxidative property of cinnamon oil (CO). Animals were distributed into six animals each in six groups. Rats were administered with three varying doses of CO from 50 to 200 mg/kg b.w. respectively and only a single dose of APAP. APAP induced an alteration in serum biochemical markers, imbalance in oxidative parameters, morphological changes in kidney tissue along with increased interleukins cytokines (IL-1β & 6) and caspase (3, 9) levels. CO administration significantly ameliorates all the parameters and histopathological changes were restored. Moreover, it also restored the activities of antioxidative enzymes. Our work proved that an variance of oxidative markers in the kidney by APAP is ameliorated by CO in rats. Thus, CO could be used in reducing APAP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Mohammad Ashafaq
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Sohail Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Manal Mohammed
- Substance Abuse Research Center (SARC), College of Pharmacy, Jazan University, Saudi Arabia
| | - Muhammad Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Rahimullah Siddiqui
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Fakhrul Islam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| |
Collapse
|
9
|
Vázquez-Carballo C, Guerrero-Hue M, García-Caballero C, Rayego-Mateos S, Opazo-Ríos L, Morgado-Pascual JL, Herencia-Bellido C, Vallejo-Mudarra M, Cortegano I, Gaspar ML, de Andrés B, Egido J, Moreno JA. Toll-Like Receptors in Acute Kidney Injury. Int J Mol Sci 2021; 22:ijms22020816. [PMID: 33467524 PMCID: PMC7830297 DOI: 10.3390/ijms22020816] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is an important health problem, affecting 13.3 million individuals/year. It is associated with increased mortality, mainly in low- and middle-income countries, where renal replacement therapy is limited. Moreover, survivors show adverse long-term outcomes, including increased risk of developing recurrent AKI bouts, cardiovascular events, and chronic kidney disease. However, there are no specific treatments to decrease the adverse consequences of AKI. Epidemiological and preclinical studies show the pathological role of inflammation in AKI, not only at the acute phase but also in the progression to chronic kidney disease. Toll-like receptors (TLRs) are key regulators of the inflammatory response and have been associated to many cellular processes activated during AKI. For that reason, a number of anti-inflammatory agents targeting TLRs have been analyzed in preclinical studies to decrease renal damage during AKI. In this review, we updated recent knowledge about the role of TLRs, mainly TLR4, in the initiation and development of AKI as well as novel compounds targeting these molecules to diminish kidney injury associated to this pathological condition.
Collapse
Affiliation(s)
- Cristina Vázquez-Carballo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
| | - Melania Guerrero-Hue
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Cristina García-Caballero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Sandra Rayego-Mateos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
| | - Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - José Luis Morgado-Pascual
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Carmen Herencia-Bellido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
| | - Mercedes Vallejo-Mudarra
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Isabel Cortegano
- Immunobiology Department, Carlos III Health Institute, 28220 Majadahonda (Madrid), Spain; (I.C.); (M.L.G.); (B.d.A.)
| | - María Luisa Gaspar
- Immunobiology Department, Carlos III Health Institute, 28220 Majadahonda (Madrid), Spain; (I.C.); (M.L.G.); (B.d.A.)
| | - Belén de Andrés
- Immunobiology Department, Carlos III Health Institute, 28220 Majadahonda (Madrid), Spain; (I.C.); (M.L.G.); (B.d.A.)
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
- Correspondence: (J.E.); (J.A.M.); Tel.: +34-915504800 (J.E.); +34-957-218039 (J.A.M.)
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 28029 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 140471 Cordoba, Spain
- Correspondence: (J.E.); (J.A.M.); Tel.: +34-915504800 (J.E.); +34-957-218039 (J.A.M.)
| |
Collapse
|
10
|
Zhao J, Kim JW, Zhou Z, Qi J, Tian W, Lim CW, Han KM, Kim B. Macrophage-Inducible C-Type Lectin Signaling Exacerbates Acetaminophen-Induced Liver Injury by Promoting Kupffer Cell Activation in Mice. Mol Pharmacol 2020; 99:92-103. [PMID: 33262251 DOI: 10.1124/molpharm.120.000043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Overdose of acetaminophen (APAP) has become one of the most frequent causes of acute liver failure. Macrophage-inducible C-type lectin (Mincle) acts as a key moderator in immune responses by recognizing spliceosome-associated protein 130 (SAP130), which is an endogenous ligand released by necrotic cells. This study aims to explore the function of Mincle in APAP-induced hepatotoxicity. Wild-type (WT) and Mincle knockout (KO) mice were used to induce acute liver injury by injection of APAP. The hepatic expressions of Mincle, SAP130, and Mincle signaling intermediate (Syk) were markedly upregulated after the APAP challenge. Mincle KO mice showed attenuated injury in the liver, as shown by reduced pathologic lesions, decreased alanine aminotransferase and aspartate aminotransferase levels, downregulated levels of inflammatory cytokines, and decreased neutrophil infiltration. Consistently, inhibition of Syk signaling by GS9973 alleviated APAP hepatotoxicity. Most importantly, Kupffer cells (KCs) were found as the major cellular source of Mincle. The depletion of KCs abolished the detrimental role of Mincle, and the adoptive transfer of WT KC to Mincle KO mice partially reversed the hyporesponsiveness to hepatotoxicity induced by APAP. Furthermore, the expression levels of interleukin (IL)-1β and neutrophil-attractant CXC chemokines were substantially lower in KCs isolated from APAP-treated Mincle KO mice compared with those from WT mice. Similar results were found in primary Mincle KO KCs treated with a ligand of Mincle (trehalose-6,6-dibehenate) or in conditioned media obtained from APAP-treated hepatocytes. Collectively, Mincle can regulate the inflammatory response of KCs, which is necessary for the complete progression of hepatotoxicity induced by APAP. SIGNIFICANCE STATEMENT: Acetaminophen (APAP) overdose is becoming a main cause of drug-induced acute liver damage in the developed world. This study showed that macrophage-inducible C-type lectin (Mincle) deletion or inhibition of Mincle downstream signaling attenuates APAP hepatotoxicity. Furthermore, Mincle as a modulator of Kupffer cell activation contributes to the full process of hepatotoxicity induced by APAP. This mechanism will offer valuable insights to overcome the limitation of APAP hepatotoxicity treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea (J.Z., J.-W.K., Z.Z., J.Q., W.T., C.W.L., B.K.); Department of Pathology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea (K.M.H.); and College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China (J.Z.)
| | - Jong-Won Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea (J.Z., J.-W.K., Z.Z., J.Q., W.T., C.W.L., B.K.); Department of Pathology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea (K.M.H.); and College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China (J.Z.)
| | - Zixiong Zhou
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea (J.Z., J.-W.K., Z.Z., J.Q., W.T., C.W.L., B.K.); Department of Pathology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea (K.M.H.); and College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China (J.Z.)
| | - Jing Qi
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea (J.Z., J.-W.K., Z.Z., J.Q., W.T., C.W.L., B.K.); Department of Pathology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea (K.M.H.); and College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China (J.Z.)
| | - Weishun Tian
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea (J.Z., J.-W.K., Z.Z., J.Q., W.T., C.W.L., B.K.); Department of Pathology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea (K.M.H.); and College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China (J.Z.)
| | - Chae Woong Lim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea (J.Z., J.-W.K., Z.Z., J.Q., W.T., C.W.L., B.K.); Department of Pathology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea (K.M.H.); and College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China (J.Z.)
| | - Kang Min Han
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea (J.Z., J.-W.K., Z.Z., J.Q., W.T., C.W.L., B.K.); Department of Pathology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea (K.M.H.); and College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China (J.Z.)
| | - Bumseok Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea (J.Z., J.-W.K., Z.Z., J.Q., W.T., C.W.L., B.K.); Department of Pathology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea (K.M.H.); and College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China (J.Z.)
| |
Collapse
|
11
|
Current etiological comprehension and therapeutic targets of acetaminophen-induced hepatotoxicity. Pharmacol Res 2020; 161:105102. [DOI: 10.1016/j.phrs.2020.105102] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
|
12
|
Dibromoacetic Acid Induced Hepatotoxicity in Mice through Oxidative Stress and Toll-Like Receptor 4 Signaling Pathway Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5637235. [PMID: 31827682 PMCID: PMC6886355 DOI: 10.1155/2019/5637235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/31/2019] [Accepted: 09/26/2019] [Indexed: 01/13/2023]
Abstract
Dibromoacetic acid (DBA) is one of haloacetic acids, often as a by-product of disinfection in drinking water. DBA is a multiple-organ carcinogen in rodent animals, but little research on its hepatotoxicity has been conducted and its mechanism has not been elucidated. In this study, we found that DBA could induce obvious hepatotoxcity in Balb/c mice as indicated by histological changes, increasing serum level of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and accumulation of hepatic glycogen, after the mice were administered DBA at doses of 1.25, 5, and 20 mg/kg body weight for 28 days via oral gavage. In mechanism study, DBA induced oxidative stress as evidenced by increasing the level of malondialdehyde (MDA), reactive oxygen species (ROS) in the liver, advanced oxidative protein products (AOPPs) in the serum, and decreasing the level of glutathione (GSH) in the liver. DBA induced inflammation in the liver of the mice which is supported by increasing the production of tumor necrosis factor-α (TNF-α) and the mRNA levels of TNF-α, interleukin-6 (IL-6), interleukin-1β (IL-1β), and nuclear factor κB (NF-κB) in the liver. DBA also upregulated the protein levels of Toll-like receptor (TLR) 4, myeloid differentiation factor 88 (MyD88), tumor necrosis factor receptor-associated factor 6 (TRAF6), inhibitor of nuclear factor κB alpha (IκB-α), nuclear factor κB p65 (NF-κB p65), and the phosphoralation of P38 mitogen-activated protein kinase (P38MAPK) and c-Jun N-terminal kinase (JNK). Conclusion. DBA could induce hepatotoxicity in mice by oral exposure; the mechanism is related to oxidative stress, inflammation, and Toll-like receptor 4 signaling pathway activation.
Collapse
|
13
|
Biochemical targets of drugs mitigating oxidative stress via redox-independent mechanisms. Biochem Soc Trans 2017; 45:1225-1252. [PMID: 29101309 DOI: 10.1042/bst20160473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
Acute or chronic oxidative stress plays an important role in many pathologies. Two opposite approaches are typically used to prevent the damage induced by reactive oxygen and nitrogen species (RONS), namely treatment either with antioxidants or with weak oxidants that up-regulate endogenous antioxidant mechanisms. This review discusses options for the third pharmacological approach, namely amelioration of oxidative stress by 'redox-inert' compounds, which do not inactivate RONS but either inhibit the basic mechanisms leading to their formation (i.e. inflammation) or help cells to cope with their toxic action. The present study describes biochemical targets of many drugs mitigating acute oxidative stress in animal models of ischemia-reperfusion injury or N-acetyl-p-aminophenol overdose. In addition to the pro-inflammatory molecules, the targets of mitigating drugs include protein kinases and transcription factors involved in regulation of energy metabolism and cell life/death balance, proteins regulating mitochondrial permeability transition, proteins involved in the endoplasmic reticulum stress and unfolded protein response, nuclear receptors such as peroxisome proliferator-activated receptors, and isoprenoid synthesis. The data may help in identification of oxidative stress mitigators that will be effective in human disease on top of the current standard of care.
Collapse
|
14
|
Chen LC, Hu LH, Yin MC. Alleviative effects from boswellic acid on acetaminophen-induced hepatic injury - Corrected and republished from: Biomedicine (Taipei). 2016 Jun; 6 (2): 9. doi: 10.7603/s40681-016-0009-1PMCID: PMC4864770. Biomedicine (Taipei) 2017; 7:13. [PMID: 28612711 PMCID: PMC5479439 DOI: 10.1051/bmdcn/2017070207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/11/2016] [Indexed: 01/10/2023] Open
Abstract
Protective effects of boswellic acid (BA) against acetaminophen (APAP)-induced hepatotoxicity in Balb/ cA mice were examined. BA, at 0.05 or 0.1%, was supplied for 4 weeks. Acute liver injury was induced by APAP treatment. Results showed that BA intake increased hepatic BA bioavailability. APAP treatment decreased glutathione (GSH) level, increased reactive oxygen species (ROS) and oxidized glutathione (GSSG) production; and lowered activity and protein expression of glutathione reductase (GR) and heme oxygenase (HO)-1 in liver. BA intake at both doses alleviated subsequent APAP-induced oxidative stress by retaining GSH content, decreasing ROS and GSSG formations, reserving activity and expression of GR and HO-1 in liver, and lowering hepatic cytochrome P450 2E1 activity and expression. APAP treatment enhanced hepatic levels of interleukin-6, tumor necrosis factor-alpha and monocyte chemoattractant protein-1. BA pre-intake diminished APAP-induced release of those inflammatory cytokines and chemokines. APAP up-regulated hepatic protein expression of toll-like receptor (TLR)-3, TLR-4, MyD88, nuclear factor kappa B (NF-κB) p50, NF-κB p65 and JNK. BA pre-intake at both doses suppressed the expression of NF-κB p65 and p-JNK, and only at 0.1% down-regulated hepatic TLR-3, TLR-4 and MyD88 expression. APAP led to obvious foci of inflammatory cell infiltration in liver, determined by H&E stain. BA intake at both doses attenuated hepatic inflammatory infiltration. These findings support that boswellic acid is a potent hepato-protective agent.
Collapse
Affiliation(s)
- Lung-Che Chen
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Li-Hong Hu
- Shanghai Research Center for the Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mei-Chin Yin
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
15
|
Astragalus polysaccharides exerts immunomodulatory effects via TLR4-mediated MyD88-dependent signaling pathway in vitro and in vivo. Sci Rep 2017; 7:44822. [PMID: 28303957 PMCID: PMC5355992 DOI: 10.1038/srep44822] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/15/2017] [Indexed: 12/18/2022] Open
Abstract
Astragalus polysaccharides (APS), which is widely used as a remedy to promote immunity of breast cancer patients, can enhance immune responses and exert anti-tumor effects. In this study, we investigated the effects and mechanisms of APS on macrophage RAW 264.7 and EAC tumor-bearing mice. Griess reaction and ELISA assays revealed that the concentrations of nitric oxide, TNF-α, IL-1β and IL-6 were increased by APS. However, this effect was diminished in the presence of TAK-242 (TLR4 inhibitor) or ST-2825(MyD88 inhibitor). In C57BL/10J (TLR4+/+wild-type) and C57BL/6J (MyD88+/+wild-type) tumor-bearing mice, the tumor apoptosis rate, immune organ indexes and the levels of TNF-α, IL-1β and IL-6 in blood increased and the tumor weight decreased by oral administration of APS for 25 days. APS had no obvious effects on IL-12p70. However, these effects were not significant in C57BL/10ScNJ (TLR4-deficient) and C57BL/B6.129P2(SJL)-Myd88m1.1Defr/J (MyD88-deficient) tumor-bearing mice. qRT-PCR and Western blot indicated that APS stimulated the key nodes in the TLR4-MyD88 dependent signaling pathway, including TLR4, MyD88, TRAF-6, NF-κB and AP-1, both in vitro and in vivo. However, TRAM was an exception. Moreover, TRAF-6 and NF-κB were not triggered by APS in gene-deficient tumor-bearing mice. Therefore, APS may modulate immunity of host organism through activation of TLR4-mediated MyD88-dependent signaling pathway.
Collapse
|
16
|
Pei HF, Hou JN, Wei FP, Xue Q, Zhang F, Peng CF, Yang Y, Tian Y, Feng J, Du J, He L, Li XC, Gao EH, Li D, Yang YJ. Melatonin attenuates postmyocardial infarction injury via increasing Tom70 expression. J Pineal Res 2017; 62. [PMID: 27706848 DOI: 10.1111/jpi.12371] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/30/2016] [Indexed: 12/15/2022]
Abstract
Mitochondrial dysfunction leads to reactive oxygen species (ROS) overload, exacerbating injury in myocardial infarction (MI). As a receptor for translocases in the outer mitochondrial membrane (Tom) complex, Tom70 has an unknown function in MI, including melatonin-induced protection against MI injury. We delivered specific small interfering RNAs against Tom70 or lentivirus vectors carrying Tom70a sequences into the left ventricles of mice or to cultured neonatal murine ventricular myocytes (NMVMs). At 48 h post-transfection, the left anterior descending coronary arteries of mice were permanently ligated, while the NMVMs underwent continuous hypoxia. At 24 h after ischemia/hypoxia, oxidative stress was assessed by dihydroethidium and lucigenin-enhanced luminescence, mitochondrial damage by transmission electron microscopy and ATP content, and cell apoptosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling and caspase-3 assay. At 4 weeks after ischemia, cardiac function and fibrosis were evaluated in mice by echocardiography and Masson's trichrome staining, respectively. Ischemic/hypoxic insult reduced Tom70 expression in cardiomyocytes. Tom70 downregulation aggravated post-MI injury, with increased mitochondrial fragmentation and ROS overload. In contrast, Tom70 upregulation alleviated post-MI injury, with improved mitochondrial integrity and decreased ROS production. PGC-1α/Tom70 expression in ischemic myocardium was increased with melatonin alone, but not when combined with luzindole. Melatonin attenuated post-MI injury in control but not in Tom70-deficient mice. N-acetylcysteine (NAC) reversed the adverse effects of Tom70 deficiency in mitochondria and cardiomyocytes, but at a much higher concentration than melatonin. Our findings showed that Tom70 is essential for melatonin-induced protection against post-MI injury, by breaking the cycle of mitochondrial impairment and ROS generation.
Collapse
Affiliation(s)
- Hai-Feng Pei
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Juan-Ni Hou
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Fei-Peng Wei
- Department of Interventional Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiang Xue
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fan Zhang
- Department of Nephrology, Chengdu Military General Hospital, Chengdu, China
| | - Cheng-Fei Peng
- Cardiovascular Research Institute, Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
| | - Yi Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Yue Tian
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Juan Feng
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Jin Du
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Lei He
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Xiu-Chuan Li
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Er-He Gao
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, USA
| | - De Li
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Yong-Jian Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| |
Collapse
|
17
|
Horng CT, Liu ZH, Huang YT, Lee HJ, Wang CJ. Extract from Mulberry (Morus australis) leaf decelerate acetaminophen induced hepatic inflammation involving downregulation of myeloid differentiation factor 88 (MyD88) signals. J Food Drug Anal 2016; 25:862-871. [PMID: 28987363 PMCID: PMC9328886 DOI: 10.1016/j.jfda.2016.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/20/2022] Open
Abstract
Acetaminophen (APAP) induced inflammation and oxidative stress can cause cell death to induce liver damage. The antioxidative and anti-inflammatory effect of Mulberry (Morus australis) leaf extract (MLE) was shown in previous studies. In this study, we investigated the modulation of MLE on APAP induced inflammation and oxidative stress in rat liver injury or liver cancer cell (HepG2). Wistar rat was fed orally with MLE (0.5% or 1.0 %) for 1 week, and then, 900 mg/kg of APAP was injected intraperitoneally (i.p.). Pretreatment of MLE decreased obvious foci of inflammatory cell infiltration in liver. It also reduced the expression of inflammatory parameters including cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NF-κB) in liver. Treating with MLE increased the antioxidative enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase. Giving APAP to HepG2 hepatocyte was conducted to elucidate the mechanism of MLE or its functional components. The result showed that APAP upregulated hepatic protein expression of (myeloid differentiation factor 88) MyD88, nuclear factor kappa B (NF-kB), inhibitor of kappa B (IkB), c-Jun N-terminal kinases (JNK), and receptor interacting proteins (RIP1 and RIP3). Pretreatment of MLE, gallic acid (GA), gallocatechin gallate (GCG), or protocatechuic acid (PCA) suppressed the indicated protein expression. These findings confirmed that MLE has the potential to protect liver from APAP-induced inflammation, and the protecting mechanism might involve decreasing oxidative stress and regulating the innate immunity involving MyD88.
Collapse
Affiliation(s)
- Chi-Ting Horng
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung, Taiwan; Medical Education Center, Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan
| | - Zhi-Hong Liu
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ting Huang
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung, Taiwan
| | - Huei-Jane Lee
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung, Taiwan; Department of Biochemistry, School of Medicine, Medical College, Chung Shan Medical University, Taichung, Taiwan; Department of Clinical Biochemistry, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Chau-Jong Wang
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung, Taiwan; Department of Clinical Biochemistry, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
18
|
Shao Y, Sha M, Chen L, Li D, Lu J, Xia S. HMGB1/TLR4 signaling induces an inflammatory response following high-pressure renal pelvic perfusion in a porcine model. Am J Physiol Renal Physiol 2016; 311:F915-F925. [PMID: 27358057 DOI: 10.1152/ajprenal.00480.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 06/26/2016] [Indexed: 11/22/2022] Open
Abstract
Percutaneous nephrolithotomy (PCNL) causes a rapid increase in renal pelvic pressure in the kidney, which induces an inflammatory response. High-mobility group box-1 (HMGB1) is known to trigger the recruitment of inflammatory cells and the release of proinflammatory cytokines following ischemia reperfusion injury in the kidney, but the contribution of HMGB1 to the inflammatory response following high-pressure renal pelvic perfusion has not been investigated. In this study, high-pressure renal pelvic perfusion was induced in anesthetized pigs to examine the effect of HMGB1 on the inflammatory response. HMGB1 levels in the kidney increased following high-pressure renal pelvic perfusion, together with elevated levels of inflammatory cytokines in the plasma and kidney and an accumulation of neutrophils and macrophages. Inhibition of HMGB1 alleviated this inflammatory response while perfusion with recombinant HMGB1 had an augmentative effect, confirming the involvement of HMGB1 in the inflammatory response to high-pressure renal pelvic perfusion. HMGB1 regulated the inflammatory response by activating Toll-like receptor 4 (TLR4) signaling. In conclusion, this study has demonstrated that HMGB1/TLR4 signaling contributes to the inflammatory response following high-pressure renal pelvic perfusion in a porcine model and has implications for the management of inflammation after PCNL.
Collapse
Affiliation(s)
- Yi Shao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minglei Sha
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Deng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Lu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Chitohexaose protects against acetaminophen-induced hepatotoxicity in mice. Cell Death Dis 2016; 7:e2224. [PMID: 27171266 PMCID: PMC4917664 DOI: 10.1038/cddis.2016.131] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/11/2022]
Abstract
Acetaminophen (N-acetyl-para-aminophenol (APAP)) toxicity causes acute liver failure by inducing centrilobular hepatic damage as a consequence of mitochondrial oxidative stress. Sterile inflammation, triggered by hepatic damage, facilitates gut bacterial translocation leading to systemic inflammation; TLR4-mediated activation by LPS has been shown to have a critical role in APAP-mediated hepatotoxicity. In this study, we demonstrate significant protection mediated by chitohexaose (Chtx) in mice challenged with a lethal dose of APAP (400 mg/kg b.w.). Decreased mortality by Chtx was associated with reduced hepatic damage, increased peritoneal migration of neutrophils, decreased mRNA expression of IL-1β as well as inhibition of inflammasome activation in liver. Further, an alternate mouse model of co-administration of a sublethal doses of APAP (200 mg/kg b.w.) and LPS (5 mg/kg b.w.) operating synergistically and mediating complete mortality was developed. Overwhelming inflammation, characterized by increased inflammatory cytokines (TNF-α, IL-1β and so on) in liver as well as in circulation and mortality was demonstrable in this model. Also, Chtx administration mediated significant reversal of mortality in APAP+LPS co-administered mice, which was associated with reduced IL-1β in liver and plasma cytokines in this model. In conclusion, Chtx being a small molecular weight linear carbohydrate offers promise for clinical management of liver failure associated with APAP overdose.
Collapse
|
20
|
Chen LC, Hu LH, Yin MC. Alleviative effects from boswellic acid on acetaminophen-induced hepatic injury. Biomedicine (Taipei) 2016; 6:9. [PMID: 27161000 PMCID: PMC4864770 DOI: 10.7603/s40681-016-0009-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/11/2016] [Indexed: 02/03/2023] Open
Abstract
Protective effects of boswellic acid (BA) against acetaminophen (APAP)-induced hepatotoxicity in Balb/ cA mice were examined. BA, at 0.05 or 0.1%, was supplied for 4 weeks. Acute liver injury was induced by APAP treatment. Results showed that BA intake increased hepatic BA bioavailability. APAP treatment decreased glutathione (GSH) level, increased reactive oxygen species (ROS) and oxidized glutathione (GSSG) production; and lowered activity and protein expression of glutathione reductase (GR) and heme oxygenase (HO)-1 in liver. BA intake at both doses alleviated subsequent APAP-induced oxidative stress by retaining GSH content, decreasing ROS and GSSG formations, reserving activity and expression of GR and HO-1 in liver, and lowering hepatic cytochrome P450 2E1 activity and expression. APAP treatment enhanced hepatic levels of interleukin-6, tumor necrosis factor-alpha and monocyte chemoattractant protein-1. BA pre-intake diminished APAP-induced release of those inflammatory cytokines and chemokines. APAP upregulated hepatic protein expression of toll-like receptor (TLR)-3, TLR-4, MyD88, nuclear factor kappa B (NF-κB) p50, NF-κB p65 and JNK. BA pre-intake at both doses suppressed the expression of NF-κB p65 and p-JNK, and only at 0.1% down-regulated hepatic TLR-3, TLR-4 and MyD88 expression. APAP led to obvious foci of inflammatory cell infiltration in liver, determined by H&E stain. BA intake at both doses attenuated hepatic inflammatory infiltration. These findings support that boswellic acid is a potent hepatoprotective agent.
Collapse
Affiliation(s)
- Lung-Che Chen
- Department of Otolaryngology, Taipei Medical University Hospital, 110, Taipei, Taiwan
| | - Li-Hong Hu
- Shanghai Research Center for the Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Mei-Chin Yin
- Department of Nutrition, China Medical University, 404, No. 91, Hsueh-Shih Road, Taichung, China.
| |
Collapse
|
21
|
Ghanem CI, Pérez MJ, Manautou JE, Mottino AD. Acetaminophen from liver to brain: New insights into drug pharmacological action and toxicity. Pharmacol Res 2016; 109:119-31. [PMID: 26921661 DOI: 10.1016/j.phrs.2016.02.020] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/19/2016] [Accepted: 02/21/2016] [Indexed: 01/13/2023]
Abstract
Acetaminophen (APAP) is a well-known analgesic and antipyretic drug. It is considered to be safe when administered within its therapeutic range, but in cases of acute intoxication, hepatotoxicity can occur. APAP overdose is the leading cause of acute liver failure in the northern hemisphere. Historically, studies on APAP toxicity have been focused on liver, with alterations in brain function attributed to secondary effects of acute liver failure. However, in the last decade the pharmacological mechanism of APAP as a cannabinoid system modulator has been documented and some articles have reported "in situ" toxicity by APAP in brain tissue at high doses. Paradoxically, low doses of APAP have been reported to produce the opposite, neuroprotective effects. In this paper we present a comprehensive, up-to-date overview of hepatic toxicity as well as a thorough review of both toxic and beneficial effects of APAP in brain.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina; Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - María J Pérez
- Cátedra de Química Biológica Patológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires, Argentina
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - Aldo D Mottino
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| |
Collapse
|