1
|
Wang M, Lai Z, Zhang H, Yang W, Zheng F, He D, Liu X, Zhong R, Qahar M, Yang G. Diabetes Mellitus Inhibits Hair Follicle Regeneration by Inducing Macrophage Reprogramming-Mediated Pyroptosis. J Inflamm Res 2024; 17:6781-6796. [PMID: 39372592 PMCID: PMC11451467 DOI: 10.2147/jir.s469239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/21/2024] [Indexed: 10/08/2024] Open
Abstract
Background Diabetes mellitus (DM) is known to inhibit skin self-renewal and hair follicle stem cell (HFSC) activation, which may be key in the formation of chronic diabetic wounds. This study aimed to investigate the reasons behind the suppression of HFSC activation in DM mice. Methods Type 1 DM (T1DM) was induced in 6-week-old mice via streptozotocin, and hair follicle growth was subsequently monitored. RNA sequencing, bioinformatics analyses, qRT‒PCR, immunostaining, and cellular experiments were carried out to investigate the underlying mechanisms involved. Results T1DM inhibited HFSC activation, which correlated with an increase in caspase-dependent programmed cell death. Additionally, T1DM triggered apoptosis and pyroptosis, predominantly in HFSCs and epidermal regions, with pyroptosis being more pronounced in the inner root sheath of hair follicles. Notably, significant cutaneous immune imbalances were observed, particularly in macrophages. Cellular experiments demonstrated that M1 macrophages inhibited HaCaT cell proliferation and induced cell death, whereas high-glucose environments alone did not have the same effect. Conclusion T1DM inhibits HFSC activation via macrophage reprogramming-mediated caspase-dependent pyroptosis, and there is a significant regional characterization of cell death. Moreover, T1DM-induced programmed cell death in the skin may be more closely related to immune homeostasis imbalance than to hyperglycemia itself. These findings shed light on the pathogenesis of diabetic ulcers and provide a theoretical basis for the use of hair follicle grafts in wound repair.
Collapse
Affiliation(s)
- Minghui Wang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, People’s Republic of China
| | - Zhiwei Lai
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, People’s Republic of China
| | - Hua Zhang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, People’s Republic of China
| | - Weiqi Yang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
| | - Fengping Zheng
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, People’s Republic of China
| | - Dehua He
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
| | - Xiaofang Liu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
| | - Rong Zhong
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
| | - Mulan Qahar
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, People’s Republic of China
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
| | - Guang Yang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, People’s Republic of China
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
- Department of Life Sciences, Yuncheng University, Yuncheng, 044011, People’s Republic of China
| |
Collapse
|
2
|
Jansen TM, Janßen S, Bölke E, Homey B, Hoff N. Hair follicle punch grafts in hard-to-heal wounds: A monocenter study and patient survey. Health Sci Rep 2024; 7:e2319. [PMID: 39144406 PMCID: PMC11322219 DOI: 10.1002/hsr2.2319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/22/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Background and Aims Chronic wounds present a growing challenge in the aging population, resulting in an extended course of treatment and an increased influx of patients with recalcitrant wounds seeking admission to hospitals. Furthermore, the general trend in patient care is toward simple and inexpensive treatment methods, feasible in an outpatient setting with little material costs. This retrospective case study aims to elucidate the operative procedure and outcomes associated with hair follicle unit transplantation utilizing punch grafts from the scalp for the management of hard-to-heal wounds. Methods A cohort of 28 patients, comprising 20 males and eight females, with a mean age of 72.61 years (range: 48-89) and an average wound area of 82.49 cm2, underwent dissection of punch grafts containing hair follicles (2-3 mm in diameter) from the scalp. Subsequently, these grafts were transplanted into the wound bed. The retrospective evaluation of ulcer healing encompassed photo documentation and clinical records, while patient satisfaction was assessed through structured questionnaires. Results In 78.6% (22) of the cases, a favorable impact on wound healing was observed, characterized by epithelization, and in 57.1% (16) of the patients, complete wound closure was achieved. With the exception of one donor site, all other sites healed without complications. The patient survey indicated that the majority of individuals subjected to the procedure did not perceive it as painful or time-consuming. Notably, 81% (17) of individuals expressed a willingness to undergo the treatment again. Even in challenging wound conditions, such as pyoderma gangrenosum, our method demonstrated a positive effect on wound healing. Conclusion Within our cohort, the utilization of hair follicle units in the management of hard-to-heal wounds resulted in either complete or partial wound closure for the majority of patients, accompanied by minimal morbidity, reduced operation time, and a low incidence of complications and associated costs.
Collapse
Affiliation(s)
- Theresa M. Jansen
- Department of Dermatology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Sarah Janßen
- Department of Dermatology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Edwin Bölke
- Department of Radiotherapy and Radiooncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Norman‐Philipp Hoff
- Department of Dermatology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
3
|
Shang Y, Li M, Zhang L, Han C, Shen K, Wang K, Li Y, Zhang Y, Luo L, Jia Y, Guo K, Cai W, Zhang J, Wang X, Wang H, Hu D. Exosomes derived from mouse vibrissa dermal papilla cells promote hair follicle regeneration during wound healing by activating Wnt/β-catenin signaling pathway. J Nanobiotechnology 2024; 22:425. [PMID: 39030543 PMCID: PMC11264511 DOI: 10.1186/s12951-024-02689-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/01/2024] [Indexed: 07/21/2024] Open
Abstract
Hair follicle (HF) regeneration during wound healing continues to present a significant clinical challenge. Dermal papilla cell-derived exosomes (DPC-Exos) hold immense potential for inducing HF neogenesis. However, the accurate role and underlying mechanisms of DPC-Exos in HF regeneration in wound healing remain to be fully explained. This study, represents the first analysis into the effects of DPC-Exos on fibroblasts during wound healing. Our findings demonstrated that DPC-Exos could stimulate the proliferation and migration of fibroblasts, more importantly, enhance the hair-inducing capacity of fibroblasts. Fibroblasts treated with DPC-Exos were capable of inducing HF neogenesis in nude mice when combined with neonatal mice epidermal cells. In addition, DPC-Exos accelerated wound re-epithelialization and promoted HF regeneration during the healing process. Treatment with DPC-Exos led to increased expression levels of the Wnt pathway transcription factors β-catenin and Lef1 in both fibroblasts and the dermis of skin wounds. Specifically, the application of a Wnt pathway inhibitor reduced the effects of DPC-Exos on fibroblasts and wound healing. Accordingly, these results offer evidence that DPC-Exos promote HF regeneration during wound healing by enhancing the hair-inducing capacity of fibroblasts and activating the Wnt/β-catenin signaling pathway. This suggests that DPC-Exos may represent a promising therapeutic strategy for achieving regenerative wound healing.
Collapse
Affiliation(s)
- Yage Shang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Mengyang Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Lixia Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Chao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yue Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Kai Guo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xujie Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
4
|
Belatti A, Bertarini F, Pombo V, Mazzuoccolo L, Ferrario D. Follicular unit grafting in chronic ulcers: a valuable technique for integrated management. An Bras Dermatol 2024; 99:568-577. [PMID: 38521704 PMCID: PMC11220926 DOI: 10.1016/j.abd.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 03/25/2024] Open
Abstract
Chronic ulcers significantly affect the quality of life of patients and impose a high cost on the healthcare system. The therapeutic management should be comprehensive, taking into consideration the etiological diagnosis of the wound and the characteristics of the wound bed when deciding on a therapeutic proposal appropriate to the healing phase, correcting factors that delay healing. During the epithelialization phase, repair techniques with grafts are recommended to shorten re-epithelialization time, improve the quality of scar tissue, and achieve adequate pain management. Currently, due to the reported benefits of skin appendages, the technique of follicular unit auto-grafting obtained with a scalp punch is among the chosen strategies for wound repair. This is a minimally invasive, outpatient practice, whose technique has advantages over the donor site, patients recovery and well-being.
Collapse
Affiliation(s)
- Anahi Belatti
- Department of Dermatology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Florencia Bertarini
- Department of Dermatology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina.
| | - Virginia Pombo
- Department of Dermatology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Luis Mazzuoccolo
- Department of Dermatology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Damian Ferrario
- Department of Dermatology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Zhang Y, Cui J, Cang Z, Pei J, Zhang X, Song B, Fan X, Ma X, Li Y. Hair follicle stem cells promote epidermal regeneration under expanded condition. Front Physiol 2024; 15:1306011. [PMID: 38455843 PMCID: PMC10917960 DOI: 10.3389/fphys.2024.1306011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Skin soft tissue expansion is the process of obtaining excess skin mixed with skin development, wound healing, and mechanical stretching. Previous studies have reported that tissue expansion significantly induces epidermal proliferation throughout the skin. However, the mechanisms underlying epidermal regeneration during skin soft tissue expansion are yet to be clarified. Hair follicle stem cells (HFSCs) have been recognized as a promising approach for epidermal regeneration. This study examines HFSC-related epidermal regeneration mechanisms under expanded condition and proposes a potential method for its cellular and molecular regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xing Fan
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xianjie Ma
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yang Li
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Saha D, Thannimangalath S, Budamakuntla L, Loganathan E, Jamora C. Hair Follicle Grafting Therapy Promotes Re-Emergence of Critical Skin Components in Chronic Nonhealing Wounds. JID INNOVATIONS 2021; 1:100041. [PMID: 34909736 PMCID: PMC8659399 DOI: 10.1016/j.xjidi.2021.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 12/03/2022] Open
Abstract
An exploding public health crisis is the exponential growth in the incidence of chronic nonhealing ulcers associated with diseases such as diabetes. Various modalities have been developed to stimulate wound closure that is otherwise recalcitrant to standard clinical treatments. However, these approaches primarily focus on the process of re-epithelialization and are often deficient in regenerating the full spectrum of structures necessary for normal skin function. Autologous hair follicle grafting is a recent therapy to stimulate the closure of such nonhealing wounds, and we observed effects beyond the epidermis to other important components of the dermis. We found that hair follicle grafting facilitated the reappearance of various undifferentiated and differentiated layers of the epidermis with the restoration of epidermal junctions. In addition, other important structures that are critical for cutaneous health and function such as the blood and lymph vasculature, nerve fibers, and sweat gland structures were restored in postgrafted wounds. Interestingly, both immune cells and inflammatory signals were substantially decreased, indicating a reduction in the chronic inflammation that is a hallmark of nonhealing wounds. Our observation that punch wounds created on the postgrafted area likewise healed suggests that this is a self-sustaining long-term therapy for patients with chronic wounds.
Collapse
Affiliation(s)
- Dyuti Saha
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
- Department of Biology, Manipal Academy of Higher Education, Manipal, India
| | - Sujaya Thannimangalath
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Leelavathy Budamakuntla
- Department of Dermatology, Bangalore Medical College and Research Institute, Bangalore, India
| | - Eswari Loganathan
- Department of Dermatology, Bangalore Medical College and Research Institute, Bangalore, India
| | - Colin Jamora
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| |
Collapse
|
7
|
Zhai X, Gong M, Peng Y, Yang D. Effects of UV Induced-Photoaging on the Hair Follicle Cycle of C57BL6/J Mice. Clin Cosmet Investig Dermatol 2021; 14:527-539. [PMID: 34040410 PMCID: PMC8140904 DOI: 10.2147/ccid.s310487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022]
Abstract
Purpose To study the changes in the hair follicle cycle and related stem cells induced by photoaging to establish a mouse model of senescence in hair follicles. Methods There were 54 C57BL6/J mice randomly divided into three groups. The UVA group and the UVB group underwent photoaging induced by UV lamps for 8 weeks. Changes in skin and the hair follicle cycle were compared by physical signs, dermoscopy, and hematoxylin and eosin and Masson's staining in each group. Western blot, immunohistochemistry, and RT-qPCR were carried out to test canonical proteins and gene expression of the Wnt signaling pathway in the samples. Immunofluorescence was chosen to show variations in the stem cells related to the hair follicle cycle. Results There were more gray hairs in the UVA group than the other groups (P<0.05). Both diameter of the hair shaft and depth of hair root were significantly decreased in the UV groups (P<0.05). Stem cells and melanocytes of the hair follicles were reduced in the UVA group. UV, especially UVB, up-regulated the expression of the Wnt signaling pathway and prolonged anagen and telogen phases in the hair follicles, compared with the control group (P<0.05). Conclusion By decreasing the number of stem cells related to hair follicles, UVA induces hair follicle photoaging characterized by hair follicle miniaturization and gray hairs. UV up-regulated the expression of the Wnt signaling pathway, and the hair follicle cycle was significantly prolonged by UVB.
Collapse
Affiliation(s)
- Xu Zhai
- Department of Plastic Surgery, The 2nd Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Meihua Gong
- Department of Plastic Surgery, The 2nd Hospital of Harbin Medical University, Harbin, People's Republic of China.,Department of Plastic and Cosmetic Surgery, Shenzhen People's Hospital, Second Affiliated Hospital of Jinan University Medical College, Shenzhen, People's Republic of China
| | - Yixuan Peng
- Department of Plastic Surgery, The 2nd Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Daping Yang
- Department of Plastic Surgery, The 2nd Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
8
|
Jimenez F, Alam M, Vogel JE, Avram M. Hair Transplantation: Basic Overview. J Am Acad Dermatol 2021; 85:803-814. [PMID: 33905785 DOI: 10.1016/j.jaad.2021.03.124] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Modern hair restoration surgery is based on a technique known as follicular unit transplantation in which follicular units (FUs) are the exclusive structures used as hair grafts. In Part 1 of this two-part review, we describe how the techniques employed in hair transplantation have evolved into their present forms. Anatomic concepts of specific relevance for dermatologists are discussed, including the distribution and ex-vivo morphology of scalp FUs. Male androgenetic alopecia and female pattern hair loss are the most common reasons for hair loss consultations with dermatologists and will be the primary focus of this review. However, as not all hair disorders are suitable for transplantation, this review will also describe which scalp conditions are amenable to surgery and which are not. In addition, guidelines are provided to help dermatologists better define good or bad candidates for hair transplantation. Finally, other conditions for which hair transplantation surgery is indicated are reviewed.
Collapse
Affiliation(s)
- Francisco Jimenez
- Mediteknia Dermatology and Hair Transplant Clinic, Universidad Fernando Pessoa Canarias, Gran Canaria, Spain.
| | - Majid Alam
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - James E Vogel
- Associate Professor of Surgery, Department of Plastic Surgery, The Johns Hopkins Hospital and School of Medicine, Baltimore, MD, USA
| | - Marc Avram
- Clinical Professor of Dermatology Weill Cornell Medical School; Private practice, New York, NY, USA
| |
Collapse
|
9
|
Lu J, Deegan AJ, Cheng Y, Mandell SP, Wang RK. OCT-Based Angiography and Surface Topography in Burn-Damaged Skin. Lasers Surg Med 2020; 53:849-860. [PMID: 33305835 DOI: 10.1002/lsm.23367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND OBJECTIVES There is a clinical need for an accurate, non-invasive imaging tool that can provide the objective assessment of burn wounds. The aims of this study are to demonstrate the potential of optical coherence tomography (OCT) in evaluating burn wound healing, as well as exploring the physiological basis of human wound healing. STUDY DESIGN/MATERIALS AND METHODS This was a retrospective study. Seven patients with severe burn wounds who were admitted to Harborview Medical Center were imaged using an in-house-built, clinical-prototype OCT system. OCT imaging was carried out at multiple scan sites on the burned skin across two time points (imaging session #1 and #2) with a field of view of ~9 × 9 mm. Due to pathological differences among burn zones, scan sites were classified into red sites (zone of hyperemia), white sites (zone of coagulation), and mixed sites. In addition to obtaining qualitative en face vascular and surface topography maps, we quantified vascular area density and surface roughness for comparative purposes. RESULTS En face vascular and surface topography maps demonstrated numerous morphological changes over both imaging sessions associated with burn injury, such as altered blood flow and loss of regular texture. Quantitative analyses revealed that during imaging session #1, vascular area density was significantly increased within the red sites compared with that of a healthy control (P = 0.0130), while vascular area density was significantly decreased within the white sites compared with that of a healthy control (P < 0.0001). During imaging session #2, vascular area density was significantly reduced to a more normal range within the red sites compared with imaging session #1 (P = 0.0215); however, vascular area density was still significantly lower within the white sites compared with that of a healthy control (P < 0.0001). Furthermore, vascular area density and surface roughness were significantly increased within the white sites during imaging session #2 compared with imaging session #1 (both P < 0.0001). CONCLUSIONS OCT is clinically feasible to monitor vascular changes and alterations in skin surface roughness during the process of burn wound healing. Variations in vascular area density and roughness measurements within the burn wounds revealed by OCT offer some key insights into the underlying pathophysiological mechanisms responsible for wound healing, which may become critical biological indicators in future clinical evaluation and monitoring of wound healing. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Jie Lu
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195
| | - Anthony J Deegan
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195
| | - Yuxuan Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195
| | - Samuel P Mandell
- Department of Surgery, Division of Trauma, Critical Care, and Burn, School of Medicine, University of Washington, Seattle, Washington, 98104
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195.,Department of Ophthalmology, School of Medicine, University of Washington, Seattle, Washington, 98104
| |
Collapse
|
10
|
Chen F, Zhang Q, Wu P, Zhao Y, Suo X, Xiao A, Ke M, He X, Tong Z, Chen Y. Green fabrication of seedbed-like Flammulina velutipes polysaccharides-derived scaffolds accelerating full-thickness skin wound healing accompanied by hair follicle regeneration. Int J Biol Macromol 2020; 167:117-129. [PMID: 33249152 DOI: 10.1016/j.ijbiomac.2020.11.154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
A novel seedbed-like scaffold was firstly fabricated by the "frozen sectioning" processing method using Flammulina velutipes as a raw material. The Flammulina velutipes polysaccharides scaffold is composed of a natural structure imitating the "ground" (connected and aligned hollow tubes with porous walls). Meanwhile, its biologically active components include polysaccharides and proteins, mimicking the "plant nutrition" in the seedbed. To further optimize the ground and nutrition components, Flammulina velutipes polysaccharides-derived scaffolds (FPDSs) were fabricated via the treatment of original Flammulina velutipes polysaccharides scaffold (labeled FPS) by NaOH, cysteine (labeled as FPS/NaOH, FPS/Cys, respectively). FPDSs were characterized by SEM, FTIR, XRD, water absorption and retention, and mechanical evaluations. From the results, FPS/NaOH and FPS/Cys lost the characteristic big tubes of original strips and had higher water absorption capacities comparing to FPS. Simultaneously, FPS/NaOH had better ductility, FPS/Cys had showed increased stiffness. Biological activities of FPDSs were tested against different types of bacteria exhibiting excellent anti-bacterial activity, and FPS/NaOH and FPS/Cys had dramatically higher anti-bacterial activity than FPS. The cytocompatibility of FPDSs was evaluated utilizing mouse fibroblast cell line (L929), and all FPDSs showed good cytocompatibility. The FPDSs were further applied to a rat full-thickness skin wound model, and they all exhibited obviously accelerated re-epithelialization, among which FPS/NaOH showed the greatest efficiency. FPS/NaOH could shorten the wound-healing process as evidenced by dynamic alterations of the expression levels of specific stagewise markers in the healing areas. Similarly, FPS/NaOH can efficiently induce hair follicle regeneration in the healing skin tissues. In summary, FPDSs exhibit potential functions as seedbeds to promote the regeneration of the "seed" including hair follicles and injured skin, opening a new avenue for wound healing.
Collapse
Affiliation(s)
- Feixiang Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiang Zhang
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hangzhou Singclean Medical Products Co., Ltd., Hangzhou 310018, China
| | - Ping Wu
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yanan Zhao
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaotong Suo
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ao Xiao
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Meifang Ke
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaohua He
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zan Tong
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
11
|
Rezaie F, Momeni-Moghaddam M, Naderi-Meshkin H. Regeneration and Repair of Skin Wounds: Various Strategies for Treatment. INT J LOW EXTR WOUND 2019; 18:247-261. [PMID: 31257948 DOI: 10.1177/1534734619859214] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skin as a mechanical barrier between the inner and outer environment of our body protects us against infection and electrolyte loss. This organ consists of 3 layers: the epidermis, dermis, and hypodermis. Any disruption in the integrity of skin leads to the formation of wounds, which are divided into 2 main categories: acute wounds and chronic wounds. Generally, acute wounds heal relatively faster. In contrast to acute wounds, closure of chronic wounds is delayed by 3 months after the initial insult. Treatment of chronic wounds has been one of the most challenging issues in the field of regenerative medicine, promoting scientists to develop various therapeutic strategies for a fast, qualified, and most cost-effective treatment modality. Here, we reviewed more recent approaches, including the development of stem cell therapy, tissue-engineered skin substitutes, and skin equivalents, for the healing of complex wounds.
Collapse
Affiliation(s)
- Fahimeh Rezaie
- Hakim Sabzevari University, Sabzevar, Iran.,Iranian Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | | | - Hojjat Naderi-Meshkin
- Iranian Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| |
Collapse
|
12
|
Rousselle P, Braye F, Dayan G. Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Adv Drug Deliv Rev 2019; 146:344-365. [PMID: 29981800 DOI: 10.1016/j.addr.2018.06.019] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/28/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
Cutaneous wound healing in adult mammals is a complex multi-step process involving overlapping stages of blood clot formation, inflammation, re-epithelialization, granulation tissue formation, neovascularization, and remodelling. Re-epithelialization describes the resurfacing of a wound with new epithelium. The cellular and molecular processes involved in the initiation, maintenance, and completion of epithelialization are essential for successful wound closure. A variety of modulators are involved, including growth factors, cytokines, matrix metalloproteinases, cellular receptors, and extracellular matrix components. Here, we focus on cellular mechanisms underlying keratinocyte migration and proliferation during epidermal closure. Inability to re-epithelialize is a clear indicator of chronic non-healing wounds, which fail to proceed through the normal phases of wound healing in an orderly and timely manner. This review summarizes the current knowledge regarding the management and treatment of acute and chronic wounds, with a focus on re-epithelialization, offering some insights into novel future therapies.
Collapse
|
13
|
Li B, Hu W, Ma K, Zhang C, Fu X. Are hair follicle stem cells promising candidates for wound healing? Expert Opin Biol Ther 2019; 19:119-128. [PMID: 30577700 DOI: 10.1080/14712598.2019.1559290] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION With the continued focus on in-depth investigations of hair follicle stem cells (HFSCs), the role of HFSCs in wound healing has attracted increasing attention from researchers. This review may afford meaningful implications for HFSC treatment of wounds. AREAS COVERED We present the properties of HFSCs, analyze the possibility of HFSCs in wound healing, and sum up the recent studies into wound repair with HFSCs. The details of HFSCs in wound healing have been discussed. The possible mechanisms of wound healing with HFSCs have been elaborated. Additionally, the factors that influence HFSCs in wound healing are also summarized. EXPERT OPINION Hair follicle stem cells are promising sources for wound healing. However, a further understanding of human HFSCs and the safety use of HFSCs in clinical practice still remain in relative infancy.
Collapse
Affiliation(s)
- Bingmin Li
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Wenzhi Hu
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Kui Ma
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Cuiping Zhang
- b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Xiaobing Fu
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| |
Collapse
|
14
|
Xi Y, Ge J, Guo Y, Lei B, Ma PX. Biomimetic Elastomeric Polypeptide-Based Nanofibrous Matrix for Overcoming Multidrug-Resistant Bacteria and Enhancing Full-Thickness Wound Healing/Skin Regeneration. ACS NANO 2018; 12:10772-10784. [PMID: 30481960 DOI: 10.1021/acsnano.8b01152] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Overcoming the multidrug-resistant (MDR) bacterial infection is a challenge and urgently needed in wound healing. Few wound dressings possess the capacity to treat MDR bacterial infections and enhance wound healing. Herein, we develop an elastomeric, photoluminescent, and antibacterial hybrid polypeptide-based nanofibrous matrix as a multifunctional platform to inhibit the MDR bacteria and enhance wound healing. The hybrid nanofibrous matrix was composed of poly(citrate)-ε-poly lysine (PCE) and poly caprolactone (PCL). The PCL-PCE hybrid nanofibrous matrix showed a biomimetic elastomeric behavior, robust antibacterial activity including killing MDR bacteria capacity, and excellent biocompatibility. PCL-PCE nanofibrous system can efficiently prevent the MDR bacteria-derived wound infection and significantly enhance the complete skin-thickness wound healing and skin regeneration in a mouse model. PCL-PCE hybrid nanofibrous matrix might become a competitive multifunctional dressing for bacteria-infected wound healing and skin regeneration.
Collapse
|
15
|
Wang Y, Pati S, Schreiber M. Cellular therapies and stem cell applications in trauma. Am J Surg 2018; 215:963-972. [PMID: 29502858 DOI: 10.1016/j.amjsurg.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND As the leading cause of mortality in the United States, trauma management have improved drastically over the past few decades with improved resuscitation and hemorrhage control. Stem cells are being used in an attempt to augment healing from trauma. DATA SOURCES PubMed and ClinicalTrials.gov were searched for published and registered pre-clinical and clinical trials for the application of stem cells to AKI, ARDS, shock, infection, TBI, wound healing, and bone healing. CONCLUSIONS Stem cell therapy for augmentation of healing traumatic injuries appears safe, as demonstrated by completed phase I/II trials. Further large scale studies are needed to assess the clinical efficacy.
Collapse
Affiliation(s)
- Yuxuan Wang
- Oregon Health and Science University, Department of Trauma, Surgical Critical Care, and Acute Care Surgery, USA.
| | - Shibani Pati
- University of California, San Francisco, Department of Laboratory Medicine, USA
| | - Martin Schreiber
- Oregon Health and Science University, Department of Trauma, Surgical Critical Care, and Acute Care Surgery, USA
| |
Collapse
|
16
|
Prodinger CM, Reichelt J, Bauer JW, Laimer M. Current and Future Perspectives of Stem Cell Therapy in Dermatology. Ann Dermatol 2017; 29:667-687. [PMID: 29200755 PMCID: PMC5705348 DOI: 10.5021/ad.2017.29.6.667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 12/19/2022] Open
Abstract
Stem cells are undifferentiated cells capable of generating, sustaining, and replacing terminally differentiated cells and tissues. They can be isolated from embryonic as well as almost all adult tissues including skin, but are also generated through genetic reprogramming of differentiated cells. Preclinical and clinical research has recently tremendously improved stem cell therapy, being a promising treatment option for various diseases in which current medical therapies fail to cure, prevent progression or relieve symptoms. With the main goal of regeneration or sustained genetic correction of damaged tissue, advanced tissue-engineering techniques are especially applicable for many dermatological diseases including wound healing, genodermatoses (like the severe blistering disorder epidermolysis bullosa) and chronic (auto-)inflammatory diseases. This review summarizes general aspects as well as current and future perspectives of stem cell therapy in dermatology.
Collapse
Affiliation(s)
- Christine M Prodinger
- Department of Dermatology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Julia Reichelt
- Department of Dermatology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Johann W Bauer
- Department of Dermatology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Martin Laimer
- Department of Dermatology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| |
Collapse
|
17
|
Martínez MM, Travesedo EE, Acosta FJ. Hair-follicle Transplant Into Chronic Ulcers: A New Graft Concept. ACTAS DERMO-SIFILIOGRAFICAS 2017. [DOI: 10.1016/j.adengl.2017.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
Trasplante de folículos pilosos en úlceras crónicas: un nuevo concepto de injerto. ACTAS DERMO-SIFILIOGRAFICAS 2017; 108:524-531. [DOI: 10.1016/j.ad.2017.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 01/29/2017] [Accepted: 02/26/2017] [Indexed: 01/24/2023] Open
|
19
|
Martínez ML, Escario E, Poblet E, Sánchez D, Buchón FF, Izeta A, Jimenez F. Hair follicle-containing punch grafts accelerate chronic ulcer healing: A randomized controlled trial. J Am Acad Dermatol 2017; 75:1007-1014. [PMID: 27745629 DOI: 10.1016/j.jaad.2016.02.1161] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 02/03/2016] [Accepted: 02/09/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND A prominent role of hair follicle-derived cells in epidermal wound closure is now well established but clinical translation of basic research findings is scarce. Although skin punch grafts have been used as a therapeutic intervention to improve healing of chronic leg ulcers, they are normally harvested from nonhairy areas, thus not taking advantage of the reported role of the hair follicle as a wound-healing promoter. OBJECTIVE We sought to substantiate the role of hair follicles in venous leg ulcer healing by transplanting hair follicle-containing versus nonhairy punch grafts. METHODS This was a randomized controlled trial with intraindividual comparison of hair follicle scalp grafts and nonhairy skin grafts transplanted in parallel into 2 halves of the same ulcer. RESULTS Ulcer healing measured as the average percentage reduction 18 weeks postintervention was significantly increased (P = .002) in the hair follicle group with a 75.15% (SD 23.03) ulcer area reduction compared with 33.07% (SD 46.17) in the control group (nonhairy grafts). LIMITATIONS Sample size was small (n = 12). CONCLUSION Autologous transplantation of terminal hair follicles by scalp punch grafts induces better healing than punch grafts harvested from nonhairy areas. Hair punch grafting is a minimally invasive surgical procedure that appears to be effective as a therapeutic tool for chronic venous leg ulcers.
Collapse
Affiliation(s)
| | - Eduardo Escario
- Department of Dermatology, Hospital General Universitario de Albacete and Universidad de Castilla La Mancha, Albacete, Spain
| | - Enrique Poblet
- Department of Pathology, Hospital General Universitario Reina Sofía de Murcia and Universidad de Murcia, Murcia, Spain
| | - David Sánchez
- Department of Ingeniería Cartográfica, Geodesia y Fotogrametría, Universidad Politécnica de Valencia, Valencia, Spain
| | - Fernando-Francisco Buchón
- Department of Ingeniería Cartográfica, Geodesia y Fotogrametría, Universidad Politécnica de Valencia, Valencia, Spain
| | - Ander Izeta
- Instituto Biodonostia, Hospital Universitario Donostia, San Sebastian, Spain
| | - Francisco Jimenez
- Mediteknia Dermatology Clinic, Medical Pathology Group, University of Las Palmas de Gran Canaria, Gran Canaria, Spain.
| |
Collapse
|
20
|
Bassino E, Vallariello E, Gasparri F, Munaron L. Dermal-Epidermal Cross-Talk: Differential Interactions With Microvascular Endothelial Cells. J Cell Physiol 2016; 232:897-903. [PMID: 27764901 DOI: 10.1002/jcp.25657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
Abstract
The biological importance of circulatory blood supply and angiogenesis for hair growth is now well recognized, but the their regulatory mechanisms require more mechanistic investigation. In vitro cocultures and tricultures can be successfully employed to greatly improve our knowledge on paracrine crosstalk between cell types that populate the dermal-epidermal interface and cutaneous vasculature. Here we report that human dermal fibroblasts (NHDF) promote viability and proliferation of microvascular endothelial cells (HMVEC), while HMVEC are not mitogenic for NHDF. In triculture setup, conditioned media (CM) obtained by cocultures (HMVEC/NHDF or HMVEC/follicle fibroblasts) differently modulate growth and proliferation of keratinocytes and alter the expression of metabolic and pro-inflammatory markers. In conclusion, tricultures were successfully employed to characterize in vitro dermal-epithelial and endothelial interactions and could integrate ex vivo and in vivo approaches by the use of high-throughput and standardized protocols in controlled conditions. J. Cell. Physiol. 232: 897-903, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eleonora Bassino
- Deparment of Life Sciences and Systems Biology, University of Turin, Italy
| | | | | | - Luca Munaron
- Deparment of Life Sciences and Systems Biology, University of Turin, Italy
| |
Collapse
|