1
|
CDC42 Regulates Cell Proliferation and Apoptosis in Bladder Cancer via the IQGAP3-Mediated Ras/ERK Pathway. Biochem Genet 2022; 60:2383-2398. [PMID: 35412170 DOI: 10.1007/s10528-022-10223-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/09/2022] [Indexed: 11/02/2022]
Abstract
Bladder cancer (BC) is the most common malignant tumour of the urinary system. The current conventional treatments for BC have certain limitations. It is very urgent and necessary to find new treatment strategies for BC. Our study elucidated the underlying regulatory mechanisms of cell division control protein 42 homologue (CDC42) to regulate the development of BC. Quantitative real-time polymerase chain reaction, Western blot, immunofluorescence and immunohistochemistry were used to assess the expression of CDC42 and IQ motif-containing GTPase-activating protein 3 (IQGAP3) in BC tissues and BC cells. We induced the knockdown or overexpression by transfecting sh-CDC42 or oe-IQGAP3 into BC cells. In addition, cell proliferation and apoptosis were evaluated by cell counting kit-8 and flow cytometry assays, respectively. Moreover, proteins involved in the rat sarcoma (Ras)/extracellular regulated protein kinase (ERK) pathway were determined by Western blot. The expression of CDC42 and IQGAP3 was markedly upregulated in both BC tissues and BC cells. CDC42 silencing downregulated the expression of IQGAP3 and suppressed the Ras/ERK pathway. In addition, CDC42 silencing markedly promoted apoptosis and inhibited proliferation in BC cells. Further experiments showed that overexpression of IQGAP3 dramatically abolished the bioeffects mediated by CDC42 silencing on the proliferation and apoptosis of BC cells. All our results suggested that CDC42 promoted the Ras/ERK pathway by regulating IQGAP3, thus enhancing cell proliferation and suppressing cell apoptosis in BC cells and ultimately participating in the pathogenesis of BC.
Collapse
|
2
|
Parizi PK, Yarahmadi F, Tabar HM, Hosseini Z, Sarli A, Kia N, Tafazoli A, Esmaeili SA. MicroRNAs and target molecules in bladder cancer. Med Oncol 2020; 37:118. [PMID: 33216248 DOI: 10.1007/s12032-020-01435-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Bladder cancer (BC) is considered as one of the most common malignant tumors in humans with complex pathogenesis including gene expression variation, protein degradation, and changes in signaling pathways. Many studies on involved miRNAs in BC have demonstrated that they could be used as potential biomarkers in the prognosis, response to treatment, and screening before the cancerous phenotype onset. MicroRNAs (miRNAs) regulate many cellular processes through their different effects on special targets along with modifying signaling pathways, apoptosis, cell growth, and differentiation. The diverse expression of miRNAs in cancerous tissues could mediate procedures leading to the oncogenic or suppressor behavior of certain genes in cancer cells. Since a specific miRNA may have multiple targets, an mRNA could also be regulated by multiple miRNAs which further demonstrates the actual role of miRNAs in cancer. In addition, miRNAs can be utilized as biomarkers in some cancers that cannot be screened in the early stages. Hence, finding blood, urine, or tissue miRNA biomarkers by novel or routine gene expression method could be an essential step in the prognosis and control of cancer. In the present review, we have thoroughly evaluated the recent findings on different miRNAs in BC which can provide comprehensive information on better understanding the role of diverse miRNAs and better decision making regarding the new approaches in the diagnosis, prognosis, prevention, and treatment of BC.
Collapse
Affiliation(s)
- Payam Kheirmand Parizi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Genome Medical Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Zohreh Hosseini
- Faculty of Veterinary Medicine, Shahid Chamran University, Ahvaz, Iran
| | - Abdolazim Sarli
- Department of Medical Genetic, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Nadia Kia
- Agostino Gemelli University Hospital, Torvergata University of Medical Sciences, Rome, Italy
| | - Alireza Tafazoli
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy With the Division of Laboratory Medicine, Medical University of Bialystok, Bialystok, Poland.,Clinical Research Center, Medical University of Bialystok, Bialystok, Poland
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Ashrafizadeh M, Hushmandi K, Hashemi M, Akbari ME, Kubatka P, Raei M, Koklesova L, Shahinozzaman M, Mohammadinejad R, Najafi M, Sethi G, Kumar AP, Zarrabi A. Role of microRNA/Epithelial-to-Mesenchymal Transition Axis in the Metastasis of Bladder Cancer. Biomolecules 2020; 10:E1159. [PMID: 32784711 PMCID: PMC7464913 DOI: 10.3390/biom10081159] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is the 11th most common diagnosed cancer, and a number of factors including environmental and genetic ones participate in BC development. Metastasis of BC cells into neighboring and distant tissues significantly reduces overall survival of patients with this life-threatening disorder. Recently, studies have focused on revealing molecular pathways involved in metastasis of BC cells, and in this review, we focus on microRNAs (miRNAs) and their regulatory effect on epithelial-to-mesenchymal transition (EMT) mechanisms that can regulate metastasis. EMT is a vital process for migration of BC cells, and inhibition of this mechanism restricts invasion of BC cells. MiRNAs are endogenous non-coding RNAs with 19-24 nucleotides capable of regulating different cellular events, and EMT is one of them. In BC cells, miRNAs are able to both induce and/or inhibit EMT. For regulation of EMT, miRNAs affect different molecular pathways such as transforming growth factor-beta (TGF-β), Snail, Slug, ZEB1/2, CD44, NSBP1, which are, discussed in detail this review. Besides, miRNA/EMT axis can also be regulated by upstream mediators such as lncRNAs, circRNAs and targeted by diverse anti-tumor agents. These topics are also discussed here to reveal diverse molecular pathways involved in migration of BC cells and strategies to target them to develop effective therapeutics.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran;
| | - Mohammad Esmaeil Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1989934148, Iran;
| | - Peter Kubatka
- Department of Medical Biology and Division of Oncology—Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran;
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 55877577, Iran;
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Cancer Science Institute of Singapore, Centre for Translational Medicine, 14 Medical Drive, #11-01M, Singapore 117599, Singapore
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| |
Collapse
|
4
|
Li X, Shang D, Shen H, Song J, Hao G, Tian Y. ZSCAN16 promotes proliferation, migration and invasion of bladder cancer via regulating NF-kB, AKT, mTOR, P38 and other genes. Biomed Pharmacother 2020; 126:110066. [PMID: 32172065 DOI: 10.1016/j.biopha.2020.110066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND As one of the most common genitourinary malignancies worldwide, bladder cancer affects about 3.4 million people globally, with 430,000 new cases a year since 2015. Despite the advances in bladder cancer diagnosis and therapy, there has been little progress in the patients' overall survival in nearly 30 years. Therefore, investigating novel molecular therapeutic targets is required to gain insight into the tumorigenesis of bladder cancer, which ultimately may be used to develop more effective therapeutic strategies. METHODS Herein, we used gene knockdown in vitro and in vivo to unveil the unknown roles of ZSCAN16 in bladder cancer. Afterward, to decipher the unknown regulatory role of ZSCAN16 in tumor progression, we verified that a bunch of genes including NF-κB, AKT, mTOR, and P38 were the key downstream regulators of ZSCAN16 by western blot and rescue experiments. RESULTS We found high expression of ZSCAN16 transcripts in bladder cancer cells and tumor samples from the TCGA database and tissue microarray bank, demonstrated in correlation with poor prognosis for bladder cancer patients. The in vitro experiments indicated that the silencing of ZSCAN16 by shRNA lentivirus promoted apoptosis and inhibited proliferation, colony formation, as well as migration and invasion in T24 cells. By investigating the signaling pathways, we proved ZSCAN16 play a novel role as oncogenic gene in bladder cancer by regulating NF-κB, AKT, mTOR, P38 and other genes. Furthermore, the in vivo experiments identified that ZSCAN16 knockdown retarded the tumor growth in nude mice. CONCLUSIONS In summary, these findings revealed that ZSCAN16 is a potential novel oncogene in the development and progression of bladder cancer. This study will shed light on developing novel therapeutic targets in the future treatment of bladder cancer.
Collapse
Affiliation(s)
- Xuanhao Li
- Department of Urology, Beijing Friendship Hospital, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, PR China.
| | - Donghao Shang
- Department of Urology, Beijing Friendship Hospital, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, PR China.
| | - Hongliang Shen
- Department of Urology, Beijing Friendship Hospital, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, PR China.
| | - Jian Song
- Department of Urology, Beijing Friendship Hospital, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, PR China.
| | - Gangyue Hao
- Department of Urology, Beijing Friendship Hospital, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, PR China.
| | - Ye Tian
- Department of Urology, Beijing Friendship Hospital, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, PR China.
| |
Collapse
|
5
|
Wang X, Ding Y, Wang J, Wu Y. Identification of the Key Factors Related to Bladder Cancer by lncRNA-miRNA-mRNA Three-Layer Network. Front Genet 2020; 10:1398. [PMID: 32047516 PMCID: PMC6997565 DOI: 10.3389/fgene.2019.01398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 12/20/2019] [Indexed: 12/29/2022] Open
Abstract
Bladder cancer is the most common malignant tumor of the urinary system, and it has high incidence, high degree of malignancy, and easy recurrence after surgery. The etiology and pathogenesis of bladder cancer are not fully understood, but more and more studies have shown that its development may be regulated by some core molecules. To identify key molecules in bladder cancer, we constructed a three-layer network by merging lncRNA-miRNA regulatory network, miRNA-mRNA regulatory network, and lncRNA-mRNA coexpression network, and further analyzed the topology attributes of the network including the degree, betweenness centrality and closeness centrality of nodes. We found that miRNA-93 and miRNA-195 are controllers for a three-layer network and regulators of numerous target genes associated with bladder cancer. Functional enrichment analysis of their target mRNAs revealed that miRNA-93 and miRNA-195 may be closely related to bladder cancer by disturbing the homeostasis of the cell cycle or HTLV-I infection. In addition, since E2F1 and E2F2 are enriched in various KEGG signaling pathways, we conclude that they are important target genes of miRNA-93, and participate in the apoptotic process by forming a complex with a certain protein or transcription factor activity, sequence-specific DNA binding in bladder cancer. Similarly, AKT3 is an important target gene of miRNA-195, its expression is associated with PI3K-Akt-mTOR signaling pathway and AMPK-mTOR signaling pathway. Therefore, we speculate that AKT3 may participate in proliferation and apoptosis of bladder cancer cells through these pathways, and ultimately affect the biological behavior of tumor cells. Furthermore, through survival analysis, we found that miRNA-195 and miRNA-93 are associated with poor prognosis of bladder cancer. And the Kaplan-Meier curve showed that 24 mRNAs and nine lncRNAs are closely related to overall survival of bladder cancer.
Collapse
Affiliation(s)
- Xiaxia Wang
- School of Science, Jiangnan University, Wuxi, China.,Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, China
| | - Yanrui Ding
- School of Science, Jiangnan University, Wuxi, China.,Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi, China
| | - Jie Wang
- School of Science, Jiangnan University, Wuxi, China.,Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, China
| | - Yanyan Wu
- School of Science, Jiangnan University, Wuxi, China.,Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Qian XQ, Tang SS, Shen YM, Chen LL, Cheng XD, Wan XY. Notch1 Affects Chemo-resistance Through Regulating Epithelial-Mesenchymal Transition (EMT) in Epithelial Ovarian cancer cells. Int J Med Sci 2020; 17:1215-1223. [PMID: 32547317 PMCID: PMC7294924 DOI: 10.7150/ijms.44683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/27/2020] [Indexed: 01/14/2023] Open
Abstract
Background: Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, chemo-resistance is the main cause for treatment failure. Our previous studies have found that SKOV3 could promote immune escape and tumor progression via Notch1 pathway. Therefore, Notch1 is suspected to be involved in chemo-resistance. The current study is to investigate the possible mechanisms of platinum-resistance in epithelial ovarian cancer mediated by Notch1. Methods: The expressions of Notch1, Snail, MMP-2, N-cadherin, Vimentin and E-cadherin were detected by Western-blot. A stable high expression or low expression of Notch1 in ovarian cancer cells was established by using lentiviral gene engineering. The cell migration and invasion ability were observed by scratch test and transwell test. Cell apoptosis rate and cell cycle were analyzed by flow cytometry. Results: The expression levels of Notch1, Snail, MMP-2, N-cadherin and Vimentin in ovarian cancer were high, while the expression levels of E-cadherin were low.Notch1 promoted the expression of Snail, vimentin, N-cadherin and MMP2 protein, but inhibiting the expression of E-cadherin, promoting cell migration and invasion. Notch1 affected apoptosis of cells through Epithelial-Mesenchymal Transition (EMT), increasing the proportion of cells in S phase and G2 phase, thus affecting drug resistance. Conclusion: Notch1 affects EOC cells chemo-resistance by regulating EMT. This may provide a new target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xue-Qian Qian
- Women's Reproductive Health Key Laboratory of Zhejiang Province; Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, and Hangzhou, China
| | - Sang-Sang Tang
- Women's Reproductive Health Key Laboratory of Zhejiang Province; Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, and Hangzhou, China
| | - Yuan-Ming Shen
- Women's Reproductive Health Key Laboratory of Zhejiang Province; Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, and Hangzhou, China
| | - Li-Li Chen
- Women's Reproductive Health Key Laboratory of Zhejiang Province; Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, and Hangzhou, China
| | - Xiao-Dong Cheng
- Women's Reproductive Health Key Laboratory of Zhejiang Province; Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, and Hangzhou, China
| | - Xiao-Yun Wan
- Women's Reproductive Health Key Laboratory of Zhejiang Province; Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, and Hangzhou, China
| |
Collapse
|
7
|
Yang K, Tang H, Ding M, Guo Y, Kai K, Xiao J, Shen Y, Miao S, Zhou R. Expression of miR-195 and MEK1 in patients with bladder cancer and their relationship to prognosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:843-850. [PMID: 31933892 PMCID: PMC6945159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/06/2018] [Indexed: 06/10/2023]
Abstract
OBJECTIVE MAPK kinase 1 (MEK1) plays an important role in regulating cell proliferation and apoptosis through activation of the ERK/MAPK signaling pathway. It was found that the expression of miR-195 in bladder cancer was abnormally decreased, suggesting that miR-195 may affect the development of bladder cancer. In this study, we examined the expression of miR-195 and MEK1 in bladder cancer tissues and analyzed the relationship between miR-195 and MEK1 in cell proliferation and apoptosis in bladder cancer cells. PATIENTS AND METHODS The expression of MEK1 in bladder cancer tissues was detected by western blot, and the expression levels of miR-195 and MEK1 mRNA were detected by qRT-PCR. Log Rank test was used to compare the survival and prognosis of patients with low and high expression of miR-195 and MEK1 by using the median expression of miR-195 and MEK1. Bioinformatics analysis and double luciferase reporter gene test were used to verify the relationship between miR-195 and MEK1. Bladder cancer BIU-87 and 5637 cells were cultured in vitro and divided into two groups: miR-NC group and miR-195 mimic group. The expression of MEK1 and p-MEK1 protein was detected by western blot, apoptosis was detected by flow cytometry, and cell proliferation was detected by EdU staining. RESULTS Compared with normal bladder tissue, expression of miR-195 in bladder cancer tissue was significantly decreased, while the expression of MEK1 mRNA and protein was significantly increased. The prognosis of patients with low expression of miR-195 was worse than those with high expression of miR-195. The prognosis of patients with low expression of MEK1 was better than those with high expression of MEK1. Bioinformatics analysis showed that there was a target complementary binding site between miR-195 and MEK1. Double luciferase reporter gene experiments confirmed that there was a target regulatory relationship between miR-195 and MEK1. miR-195 mimic transfection could significantly down-regulate the expression of MEK1 and p-MEK1 proteins in BIU-87 and 5637 cells, weaken cell proliferation, and increase cell apoptosis. CONCLUSION Overexpression of miR-195 can inhibit the proliferation of bladder cancer cells by inhibiting MEK1, which provides further evidence for developing therapy against bladder cancer.
Collapse
Affiliation(s)
- Kun Yang
- Department of Urology, Jing'an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing'an Branch) Shanghai, China
| | - Hai Tang
- Department of Urology, Jing'an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing'an Branch) Shanghai, China
| | - Mantang Ding
- Department of Urology, Jing'an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing'an Branch) Shanghai, China
| | - Yijun Guo
- Department of Urology, Jing'an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing'an Branch) Shanghai, China
| | - Kai Kai
- Department of Urology, Jing'an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing'an Branch) Shanghai, China
| | - Jun Xiao
- Department of Urology, Jing'an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing'an Branch) Shanghai, China
| | - Yu Shen
- Department of Urology, Jing'an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing'an Branch) Shanghai, China
| | - Shuai Miao
- Department of Urology, Jing'an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing'an Branch) Shanghai, China
| | - Renyuan Zhou
- Department of Urology, Jing'an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing'an Branch) Shanghai, China
| |
Collapse
|
8
|
Yu W, Liang X, Li X, Zhang Y, Sun Z, Liu Y, Wang J. MicroRNA-195: a review of its role in cancers. Onco Targets Ther 2018; 11:7109-7123. [PMID: 30410367 PMCID: PMC6200091 DOI: 10.2147/ott.s183600] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small and highly conserved noncoding RNAs that regulate gene expression at the posttranscriptional level by binding to the 3′-UTR of target mRNAs. Recently, increasing evidence has highlighted their profound roles in various pathological processes, including human cancers. Deregulated miRNAs function as either oncogenes or tumor suppressor genes in multiple cancer types. Among them, miR-195 has been reported to significantly impact oncogenicity in various neoplasms by binding to critical genes and signaling pathways, enhancing or inhibiting the progression of cancers. In this review, we focus on the expression of miR-195 in regulatory mechanisms and tumor biological processes and discuss the future potential therapeutic implications of diverse types of human malignancies.
Collapse
Affiliation(s)
- Wanpeng Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao 266021, China;
| | - Xiao Liang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiangdong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuan Zhang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao 266021, China;
| | - Zhenqing Sun
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ying Liu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao 266021, China;
| | - Jianxun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao 266021, China;
| |
Collapse
|
9
|
Giulietti M, Occhipinti G, Righetti A, Bracci M, Conti A, Ruzzo A, Cerigioni E, Cacciamani T, Principato G, Piva F. Emerging Biomarkers in Bladder Cancer Identified by Network Analysis of Transcriptomic Data. Front Oncol 2018; 8:450. [PMID: 30370253 PMCID: PMC6194189 DOI: 10.3389/fonc.2018.00450] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/25/2018] [Indexed: 01/03/2023] Open
Abstract
Bladder cancer is a very common malignancy. Although new treatment strategies have been developed, the identification of new therapeutic targets and reliable diagnostic/prognostic biomarkers for bladder cancer remains a priority. Generally, they are found among differentially expressed genes between patients and healthy subjects or among patients with different tumor stages. However, the classical approach includes processing these data taking into consideration only the expression of each single gene regardless of the expression of other genes. These complex gene interaction networks can be revealed by a recently developed systems biology approach called Weighted Gene Co-expression Network Analysis (WGCNA). It takes into account the expression of all genes assessed in an experiment in order to reveal the clusters of co-expressed genes (modules) that, very probably, are also co-regulated. If some genes are co-expressed in controls but not in pathological samples, it can be hypothesized that a regulatory mechanism was altered and that it could be the cause or the effect of the disease. Therefore, genes within these modules could play a role in cancer and thus be considered as potential therapeutic targets or diagnostic/prognostic biomarkers. Here, we have reviewed all the studies where WGCNA has been applied to gene expression data from bladder cancer patients. We have shown the importance of this new approach in identifying candidate biomarkers and therapeutic targets. They include both genes and miRNAs and some of them have already been identified in the literature to have a role in bladder cancer initiation, progression, metastasis, and patient survival.
Collapse
Affiliation(s)
- Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Giulia Occhipinti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Alessandra Righetti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Massimo Bracci
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Alessandro Conti
- Department of Urology, Bressanone/Brixen Hospital, Bressanone, Italy
| | - Annamaria Ruzzo
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Fano, Italy
| | - Elisabetta Cerigioni
- Unit of Pediatric and Specialistic Surgery, United Hospitals, "G.Salesi", Ancona, Italy
| | - Tiziana Cacciamani
- Department of Life and Environmental Science, Polytechnic University of Marche, Ancona, Italy
| | - Giovanni Principato
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
10
|
Hong Z, Zhang R, Qi H. Diagnostic and prognostic relevance of serum miR-195 in pediatric acute myeloid leukemia. Cancer Biomark 2018; 21:269-275. [PMID: 29226854 DOI: 10.3233/cbm-170327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND MicroRNA-195 acts as a tumor suppressor in a variety of cancers. However, its clinical significance in pediatric acute myeloid leukemia (AML) remains largely undefined. OBJECTIVE To investigate the diagnostic and prognostic relevance of miR-195 in this malignancy. METHODS Expression levels of miR-195 in peripheral blood and bone marrow samples of patients with pediatric AML and normal controls were detected by real-time quantitative PCR. Then, receiver-operating characteristic (ROC) curve analysis, Kaplan-Meier method, and Cox regression analysis were performed to evaluate the diagnostic and prognostic relevance of serum miR-195 in pediatric AML. RESULTS Compared to normal controls, the expression levels of miR-195 in both bone marrow and patients' sera were significantly decreased (both P< 0.001). In addition, serum miR-195 had an optimal diagnostic cut-off point (2.09) for pediatric AML with sensitivity of 68.87% and specificity of 96.23%. The area under the ROC curve (AUC) based on serum miR-195 was 0.910. Moreover, patients with low serum miR-195 level more often had French-American-British classification subtype M7 (P= 0.02), unfavorable karyotypes (P= 0.01), and shorter relapse-free and overall survivals (both P= 0.001) than those with high serum miR-195 level. Furthermore, the multivariate analysis identified serum miR-195 level as an independent prognostic factor for both relapse-free and overall survivals. CONCLUSION The findings of this study suggest that the aberrant expression of miR-195 may play crucial roles in the development and progression of pediatric AML patients. Serum miR-195 may serve as a promising marker for monitoring the occurrence of this disease and predicting the clinical outcome of patients.
Collapse
|
11
|
Chen S, Wang W, Lin G, Zhong S. MicroRNA-195 inhibits epithelial-mesenchymal transition via downregulating CDK4 in bladder cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3891-3902. [PMID: 31949777 PMCID: PMC6962775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/02/2017] [Indexed: 06/10/2023]
Abstract
Bladder cancer is one of the most common cancers in the world. Despite advanced development made to improve the diagnosis and therapy techniques for bladder cancer, patients always have a poor outcome based on its high potential for metastasis. MiR-195 was reported to have close relevance with the process of bladder cancer. However, the molecular mechanism of miR-195 underlying bladder cancer metastasis and epithelial-mesenchymal transition (EMT) remains unclear. The present study was done to explore the function of miR-195 on EMT and cell migration in bladder cancer. In the present study, we detected the level of miR-195 in 25 matched human bladder cancer tissues and normal adjacent tissues, as well as bladder cancer cell lines or normal cells. Additionally, we determined the effects of miR-195 on expression of CDK4, and the miR-195/CKD4 signaling cascade on cell cycle, invasion, migration, and viability. Results showed that miR-195 was down expressed in bladder cancer tissues and cell lines, which inhibited EMT, cell migration, and invasion. We identify CDK4, an early G1 cell cycle regulator, as a downstream target of miR-195. Also, we found that miR-195 could induce G1-phase arrest, inhibit cell invasion, migration, and viability through down-regulation of CDK4 expression in 5637 and BIU-87 cells. Our experimental data suggest an important role for miR-195/CDK4 in bladder tumorigenesis and provide a potential therapeutic strategy for bladder cancer.
Collapse
Affiliation(s)
- Shanwen Chen
- Department of Urology, Huashan Hospital, Fudan UniversityShanghai, China
| | - Wanzhi Wang
- Department of Oncology, Qian Xi Nan Zhou People Hospital95 Panjiang Road, Xingyi 562400, Guizhou, China
| | - Guanlong Lin
- Department of Urology, Huashan Hospital, Fudan UniversityShanghai, China
| | - Shan Zhong
- Department of Urology, Huashan Hospital, Fudan UniversityShanghai, China
| |
Collapse
|
12
|
Yang C, Wu K, Wang S, Wei G. Long non-coding RNA XIST promotes osteosarcoma progression by targeting YAP via miR-195-5p. J Cell Biochem 2018; 119:5646-5656. [PMID: 29384226 DOI: 10.1002/jcb.26743] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/25/2018] [Indexed: 12/15/2022]
Abstract
The lncRNA XIST (X inactive-specific transcript) is an oncogenic lncRNA that is present in various malignant tumors; however, its role and molecular mechanisms in osteosarcoma (OS) progression remain unclear. In the current study, 40 pairs of OS tissues and matched adjacent non-tumor tissues were collected. qRT-PCR was conducted to investigate the differences in XIST expression in tissues and OS cell lines. The proliferation, invasion, and EMT status of OS cells after transfection were assessed with WST-1 assays, Transwell assays, and Western blot analysis, respectively. Whether miR-195-5p was a direct downstream target of XIST was verified by both bioinformatics target gene prediction and dual-luciferase report analysis. A mouse model was established to evaluate tumor proliferation in vivo. Our results demonstrated that XIST expression was significantly upregulated in OS tissues and cell lines and negatively correlated with clinical prognosis. XIST knockdown inhibited cancer cell proliferation and invasion in vitro, inhibited the EMT of OS cells in vitro, and suppressed subcutaneous tumor growth in vivo. Further analysis demonstrated that XIST regulated YAP expression by functioning as a competing endogenous RNA that sponged miR-195-5p in OS cells. XIST directly interacted with miR-195-5p and decreased the binding of miR-195-5p to the YAP 3'UTR, which suppressed the degradation of YAP mRNA by miR-195-5p. In conclusion, this work demonstrates that lncRNA XIST enhances OS cancer cell proliferation and invasion in part through the miR-195-5p/YAP pathway. Therefore, lncRNA XIST might be a promising therapeutic target for OS.
Collapse
Affiliation(s)
- Chao Yang
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ke Wu
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Shan Wang
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Guanghui Wei
- China International Science and Technology Cooperation Base of Child development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| |
Collapse
|
13
|
Dysregulation of miRNAs in bladder cancer: altered expression with aberrant biogenesis procedure. Oncotarget 2018; 8:27547-27568. [PMID: 28187437 PMCID: PMC5432357 DOI: 10.18632/oncotarget.15173] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/24/2017] [Indexed: 12/31/2022] Open
Abstract
Aberrant expression profiles of miRNAs are widely observed in the clinical tissue specimens and urine samples as well as the blood samples of bladder cancer patients. These profiles are closely related to the pathological features of bladder cancer, such as the tumour stage/grade, metastasis, recurrence and chemo-sensitivity. MiRNA biogenesis forms the basis of miRNA expression and function, and its dysregulation has been shown to be essential for variations in miRNA expression profiles as well as tumourigenesis and cancer progression. In this review, we summarize the up-to-date and widely reported miRNAs in bladder cancer that display significantly altered expression. We then compare the miRNA expression profiles among three different sample types (tissue, urine and blood) from patients with bladder cancer. Moreover, for the first time, we outline the dysregulated miRNA biogenesis network in bladder cancer from different levels and analyse its possible relationship with aberrant miRNA expression and the pathological characteristics of the disease.
Collapse
|
14
|
Wang C, Chen L, Yang Y, Zhang M, Wong G. Identification of bladder cancer prognostic biomarkers using an ageing gene-related competitive endogenous RNA network. Oncotarget 2017; 8:111742-111753. [PMID: 29340088 PMCID: PMC5762356 DOI: 10.18632/oncotarget.22905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023] Open
Abstract
Competitive endogenous RNAs (ceRNAs) are a newly proposed RNA interaction mechanism that has been associated with the initiation and progression of various cancers. In this study, we constructed an ageing gene related ceRNA network (AgeingCeNet) in bladder cancer. Network analysis revealed that ageing gene ceRNAs have a larger degree and closeness centrality than ageing genes themselves. Notably, the difference of betweenness centrality of ageing genes and their ceRNAs is not significant, suggesting that the ceRNAs of ageing genes and ageing genes themselves both play important communication roles in AgeingCeNet. KEGG pathway enrichment analysis for genes in AgeingCeNet revealed that AgeingCeNet genes are enriched in cancer pathways and several cancer related singaling pathways. We also identified 37 core modules from AgeingCeNet using CFinder software. Next, we identified 2 potential prognostic modules, named K11M14 and K13M4, whose prognostic ability is better than that of age and gender. Finally, we identified microRNAs (miRNAs) regulating the two modules, which include miR-15b-5p, miR-195-5p, miR-30 family members, and several other cancer-related miRNAs. Our study demonstrated that constructing an ageing gene related ceRNA network is a feasible strategy to explore the mechanism of initiation and progression of bladder cancer, which might benefit the treatment of this disease.
Collapse
Affiliation(s)
- Changliang Wang
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Liang Chen
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Yang Yang
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Menglei Zhang
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Garry Wong
- Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
15
|
Shuang Y, Li C, Zhou X, Huang Y, Zhang L. MicroRNA-195 inhibits growth and invasion of laryngeal carcinoma cells by directly targeting DCUN1D1. Oncol Rep 2017; 38:2155-2165. [PMID: 28791411 PMCID: PMC5652960 DOI: 10.3892/or.2017.5875] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 07/25/2017] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNAs that regulate gene expression and are involved in cell biological processes. The aberrant expression of miR-195 has been found in various types of human cancer. However, the effect of miR-195 on the initiation and development of laryngeal squamous cell carcinoma (LSCC) remains to be elucidated. Accordingly, in the present study, we detected the expression level of miR-195 in the LSCC and the normal tissues and found that miR-195 were significantly downregulated in the LSCC tissues. Gain-of-function or loss-of-function studies including cell proliferation, wound healing assay, Transwell assay, cell cycle and apoptosis assays were performed to investigate the biological function of miR-195. Luciferase reporter assay and the rescue study confirmed that DCUN1D1 was a target of miR-195. Furthermore, DCUN1D1 expression levels were found to be upregulated in laryngeal tissues and to have a negative correlation with miR-195. We also found that both miR-195 and DCUN1D1 siRNAs can inhibit cell invasion possibly through downregulating Matrix metalloproteinase-2 (MMP-2) and Matrix metalloproteinase-9 (MMP-9) at the post-transcriptional level, which can be attenuated by restoring the expression of DCUN1D1. In summary, these data suggest that low expression of miR-195 contributes to the poor prognosis of LSCC and miR-195 regulates the proliferation and invasion ability of LSCC cells in vitro. miR-195 may suppress growth and invasion of LSCC cells possibly through targeting DCUN1D1, which would provide a candidate target for cancer therapy.
Collapse
Affiliation(s)
- Yu Shuang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Chao Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Xuan Zhou
- Department of Otorhinolaryngology and Maxillofacial Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer; Tianjin 300211, P.R. China
| | - Yongwang Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Lun Zhang
- Department of Otorhinolaryngology and Maxillofacial Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer; Tianjin 300211, P.R. China
| |
Collapse
|
16
|
Understanding the Role of Non-Coding RNAs in Bladder Cancer: From Dark Matter to Valuable Therapeutic Targets. Int J Mol Sci 2017; 18:ijms18071514. [PMID: 28703782 PMCID: PMC5536004 DOI: 10.3390/ijms18071514] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/22/2017] [Accepted: 07/07/2017] [Indexed: 02/07/2023] Open
Abstract
The mortality and morbidity that characterize bladder cancer compel this malignancy into the category of hot topics in terms of biomolecular research. Therefore, a better knowledge of the specific molecular mechanisms that underlie the development and progression of bladder cancer is demanded. Tumor heterogeneity among patients with similar diagnosis, as well as intratumor heterogeneity, generates difficulties in terms of targeted therapy. Furthermore, late diagnosis represents an ongoing issue, significantly reducing the response to therapy and, inevitably, the overall survival. The role of non-coding RNAs in bladder cancer emerged in the last decade, revealing that microRNAs (miRNAs) may act as tumor suppressor genes, respectively oncogenes, but also as biomarkers for early diagnosis. Regarding other types of non-coding RNAs, especially long non-coding RNAs (lncRNAs) which are extensively reviewed in this article, their exact roles in tumorigenesis are—for the time being—not as evident as in the case of miRNAs, but, still, clearly suggested. Therefore, this review covers the non-coding RNA expression profile of bladder cancer patients and their validated target genes in bladder cancer cell lines, with repercussions on processes such as proliferation, invasiveness, apoptosis, cell cycle arrest, and other molecular pathways which are specific for the malignant transformation of cells.
Collapse
|
17
|
Jin L, Li X, Li Y, Zhang Z, He T, Hu J, Liu J, Chen M, Shi M, Jiang Z, Gui Y, Yang S, Mao X, Lai Y. Identification of miR‑195‑3p as an oncogene in RCC. Mol Med Rep 2017; 15:1916-1924. [PMID: 28260025 DOI: 10.3892/mmr.2017.6198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 12/19/2016] [Indexed: 11/06/2022] Open
Abstract
There is increasing evidence that the deregulation of microRNAs (miRNAs; miRs) contributes to tumorigenesis. Previous studies have shown that miR‑195 is downregulated in various types of cancer. The present study aimed to investigate the function and expression levels of miR‑125b. Results of qPCR revealed that miR‑195‑3p, the mature sequence of miR‑195, was upregulated in renal cell carcinoma (RCC) tissues and cell lines (786‑O, 769P and ACHN). This indicated that the function and role of miR‑195‑3p may differ in different types of tumor. To assess the function of miR‑195‑3p in RCC cell lines, cell proliferation was examined using MTT and CCK‑8 assays, mobility was assessed using a cell scratch assay, Transwell migration assay and invasion assay, and apoptosis was examined using flow cytometry. These assessments were also performed in cells with upregulated or downregulated miR‑195‑3p via transfection with synthesized miR‑195‑3p mimic or inhibitor. The results revealed that the overexpression of miR‑195‑3p promoted 786‑O and ACHN RCC cell proliferation, migration and invasion, and inhibited cell apoptosis, whereas the downregulation of miR‑195‑3p suppressed cell proliferation, migration and invasion, and induced cell apoptosis. These results indicated that miR‑195‑3p was associated with the tumorigenesis of RCC, with further investigations to focus on the pathway and use of miR‑195‑3p as a clinical biomarker for RCC.
Collapse
Affiliation(s)
- Lu Jin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xi Li
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yifan Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Zeng Zhang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Tao He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jia Hu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jiaju Liu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Mingwei Chen
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Min Shi
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Zhimao Jiang
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Yaoting Gui
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xiangming Mao
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
18
|
Zhang H, Zhou D, Ying M, Chen M, Chen P, Chen Z, Zhang F. Expression of Long Non-Coding RNA (lncRNA) Small Nucleolar RNA Host Gene 1 (SNHG1) Exacerbates Hepatocellular Carcinoma Through Suppressing miR-195. Med Sci Monit 2016; 22:4820-4829. [PMID: 27932778 PMCID: PMC5167104 DOI: 10.12659/msm.898574] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Aberrant expression of lncRNA has been suggested to have an association with tumorigenesis. Our study was designed to reveal the underlying connection between lncRNA SNHG1 and hepatocellular carcinoma (HCC) pathogenesis. Material/Methods A total of 122 pairs of HCC tissues (case group) and matched adjacent non-tumor liver tissues (control group) were collected for this study. RT-PCR and in situ hybridization were conducted to investigate differences in lncRNA SNHG1 expression between the case and control group. The expression levels of lncRNA SNHG1 and miR-195 in HepG2 cells transfected with SNHG1-mimic and SNHG1-inhibitor were measured by RT-PCR. The proliferation, invasion, and migration status of HepG2 cells after transfection were assessed through MTT assay, wound healing assay, and Transwell assay, respectively. Whether miR-195 is a direct downstream target of lncRNA SNHG1 was verified by both bioinformatics target gene prediction and dual-luciferase report assay. Results The expression level of lncRNA SNHG1 was remarkably upregulated in HCC tissues and cell lines compared with normal tissues and cell lines. High expression of lncRNA SNHG1 contributed to the downregulation of miR-195 in HepG2 cells. Also, lncRNA SNHG1 exacerbated HCC cell proliferation, invasion, and migration in vitro through the inhibition of miR-195. This suggests that miR-195 is a direct downstream target of lncRNA SNHG1. Conclusions lncRNA SNHG1 may contribute to the aggravation of HCC through the inhibition of miR-195.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Abdominal Surgery, Fujian Provincial Cancer Hospital, Fujian Medical University Teaching Hospital, Fuzhou, Fujian, China (mainland)
| | - Dong Zhou
- Department of Abdominal Surgery, Fujian Provincial Cancer Hospital, Fujian Medical University Teaching Hospital, Fuzhou, Fujian, China (mainland)
| | - Mingang Ying
- Department of Abdominal Surgery, Fujian Provincial Cancer Hospital, Fujian Medical University Teaching Hospital, Fuzhou, Fujian, China (mainland)
| | - Minyong Chen
- Department of Abdominal Surgery, Fujian Provincial Cancer Hospital, Fujian Medical University Teaching Hospital, Fuzhou, Fujian, China (mainland)
| | - Peng Chen
- Department of Abdominal Surgery, Fujian Provincial Cancer Hospital, Fujian Medical University Teaching Hospital, Fuzhou, Fujian, China (mainland)
| | - Zhaoshuo Chen
- Department of Abdominal Surgery, Fujian Provincial Cancer Hospital, Fujian Medical University Teaching Hospital, Fuzhou, Fujian, China (mainland)
| | - Fan Zhang
- Department of Abdominal Surgery, Fujian Provincial Cancer Hospital, Fujian Medical University Teaching Hospital, Fuzhou, Fujian, China (mainland)
| |
Collapse
|
19
|
Enokida H, Yoshino H, Matsushita R, Nakagawa M. The role of microRNAs in bladder cancer. Investig Clin Urol 2016; 57 Suppl 1:S60-76. [PMID: 27326409 PMCID: PMC4910767 DOI: 10.4111/icu.2016.57.s1.s60] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/17/2016] [Indexed: 12/20/2022] Open
Abstract
Bladder cancer (BC) is the fifth most common cancer worldwide and is associated with significant morbidity and mortality. The prognosis of muscle invasive BC is poor, and recurrence is common after radical surgery or chemotherapy. Therefore, new diagnostic methods and treatment modalities are critical. MicroRNAs (miRNAs), a class of small noncoding RNAs, regulate the expression of protein-coding genes by repressing translation or cleaving RNA transcripts in a sequence-specific manner. miRNAs have important roles in the regulation of genes involved in cancer development, progression, and metastasis. The availability of genomewide miRNA expression profiles by deep sequencing technology has facilitated rapid and precise identification of aberrant miRNA expression in BC. Indeed, several miRNAs that are either upregulated or downregulated have been shown to have associations with significant cancer pathways. Furthermore, many miRNAs, including those that can be detected in urine and blood, have been studied as potential noninvasive tumor markers for diagnostic and prognostic purposes. Here, we searched PubMed for publications describing the role of miRNAs in BC by using the keywords "bladder cancer" and "microRNA" on March 1, 2016. We found 374 papers and selected articles written in English in which the level of scientific detail and reporting were sufficient and in which novel findings were demonstrated. In this review, we summarize these studies from the point of view of miRNA-related molecular networks (specific miRNAs and their targets) and miRNAs as tumor markers in BC. We also discuss future directions of miRNA studies in the context of therapeutic modalities.
Collapse
Affiliation(s)
- Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ryosuke Matsushita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|