1
|
Aires I, Duarte JA, Vitorino R, Moreira-Gonçalves D, Oliveira P, Ferreira R. Restoring Skeletal Muscle Health through Exercise in Breast Cancer Patients and after Receiving Chemotherapy. Int J Mol Sci 2024; 25:7533. [PMID: 39062775 PMCID: PMC11277416 DOI: 10.3390/ijms25147533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer (BC) stands out as the most commonly type of cancer diagnosed in women worldwide, and chemotherapy, a key component of treatment, exacerbates cancer-induced skeletal muscle wasting, contributing to adverse health outcomes. Notably, the impact of chemotherapy on skeletal muscle seems to surpass that of the cancer itself, with inflammation identified as a common trigger for muscle wasting in both contexts. In skeletal muscle, pro-inflammatory cytokines modulate pathways crucial for the delicate balance between protein synthesis and breakdown, as well as satellite cell activation and myonuclear accretion. Physical exercise consistently emerges as a crucial therapeutic strategy to counteract cancer and chemotherapy-induced muscle wasting, ultimately enhancing patients' quality of life. However, a "one size fits all" approach does not apply to the prescription of exercise for BC patients, with factors such as age, menopause and comorbidities influencing the response to exercise. Hence, tailored exercise regimens, considering factors such as duration, frequency, intensity, and type, are essential to maximize efficacy in mitigating muscle wasting and improving disease outcomes. Despite the well-established anti-inflammatory role of aerobic exercise, resistance exercise proves equally or more beneficial in terms of mass and strength gain, as well as enhancing quality of life. This review comprehensively explores the molecular pathways affected by distinct exercise regimens in the skeletal muscle of cancer patients during chemotherapy, providing critical insights for precise exercise implementation to prevent skeletal muscle wasting.
Collapse
Affiliation(s)
- Inês Aires
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (I.A.); (R.F.)
- CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - José Alberto Duarte
- CIAFEL, and Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto (FADEUP), 4200-450 Porto, Portugal; (J.A.D.); (D.M.-G.)
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Daniel Moreira-Gonçalves
- CIAFEL, and Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto (FADEUP), 4200-450 Porto, Portugal; (J.A.D.); (D.M.-G.)
| | - Paula Oliveira
- CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (I.A.); (R.F.)
| |
Collapse
|
2
|
Peroxiredoxins-The Underrated Actors during Virus-Induced Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10060977. [PMID: 34207367 PMCID: PMC8234473 DOI: 10.3390/antiox10060977] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
Enhanced production of reactive oxygen species (ROS) triggered by various stimuli, including viral infections, has attributed much attention in the past years. It has been shown that different viruses that cause acute or chronic diseases induce oxidative stress in infected cells and dysregulate antioxidant its antioxidant capacity. However, most studies focused on catalase and superoxide dismutases, whereas a family of peroxiredoxins (Prdx), the most effective peroxide scavengers, were given little or no attention. In the current review, we demonstrate that peroxiredoxins scavenge hydrogen and organic peroxides at their physiological concentrations at various cell compartments, unlike many other antioxidant enzymes, and discuss their recycling. We also provide data on the regulation of their expression by various transcription factors, as they can be compared with the imprint of viruses on transcriptional machinery. Next, we discuss the involvement of peroxiredoxins in transferring signals from ROS on specific proteins by promoting the oxidation of target cysteine groups, as well as briefly demonstrate evidence of nonenzymatic, chaperone, functions of Prdx. Finally, we give an account of the current state of research of peroxiredoxins for various viruses. These data clearly show that Prdx have not been given proper attention despite all the achievements in general redox biology.
Collapse
|
3
|
Yoon Lee J, Chung J, Hwa Kim K, Hyun An S, Yi JE, Ae Kwon K, Kwon K. Extracorporeal shock waves protect cardiomyocytes from doxorubicin-induced cardiomyopathy by upregulating survivin via the integrin-ILK-Akt-Sp1/p53 axis. Sci Rep 2019; 9:12149. [PMID: 31434946 PMCID: PMC6704172 DOI: 10.1038/s41598-019-48470-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is a widely used anti-cancer drug; however, it has limited application due to cardiotoxicity. Extracorporeal shock waves (ESW) have been suggested to treat inflammatory and ischemic diseases, but the concrete effect of ESW in DOX-induced cardiomyopathy remain obscure. After H9c2 cells were subjected to ESW (0.04 mJ/cm2), they were treated with 1 μM DOX. As a result, ESW protected cardiomyocytes from DOX-induced cell death. H9c2 cells treated with DOX downregulated p-Akt and survivin expression, whereas the ESW treatment recovered both, suggesting its anti-apoptotic effect. ESW activated integrin αvβ3 and αvβ5, cardiomyocyte mechanosensors, followed by upregulation of ILK, p-Akt and survivin levels. Further, Sp1 and p53 were determined as key transcriptional factors mediating survivin expression via Akt phosphorylation by ESW. In in vivo acute DOX-induced cardiomyopathy model, the echocardiographic results showed that group subjected to ESW recovered from acute DOX-induced cardiomyopathy; left ventricular function was improved. The immunohistochemical staining results showed increased survivin and Bcl2 expression in ESW + DOX group compared to those in the DOX-injected group. In conclusion, non-invasive shockwaves protect cardiomyocytes from DOX-induced cardiomyopathy by upregulating survivin via integrin-ILK-Akt-Sp1/p53 pathway. In vivo study proposed ESW as a new kind of specific and safe therapy against acute DOX-induced cardiomyopathy.
Collapse
Affiliation(s)
- Ji Yoon Lee
- Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, 158-710, Korea
| | - Jihwa Chung
- Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, 158-710, Korea
| | - Kyoung Hwa Kim
- Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, 158-710, Korea
| | - Shung Hyun An
- Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, 158-710, Korea
| | - Jeong-Eun Yi
- Department of Internal Medicine, Cardiology Division, School of medicine, Ewha Womans University, Seoul, 158-710, Korea
| | - Kyoung Ae Kwon
- Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Kihwan Kwon
- Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, 158-710, Korea. .,Department of Internal Medicine, Cardiology Division, School of medicine, Ewha Womans University, Seoul, 158-710, Korea.
| |
Collapse
|
4
|
Guigni BA, Callahan DM, Tourville TW, Miller MS, Fiske B, Voigt T, Korwin-Mihavics B, Anathy V, Dittus K, Toth MJ. Skeletal muscle atrophy and dysfunction in breast cancer patients: role for chemotherapy-derived oxidant stress. Am J Physiol Cell Physiol 2018; 315:C744-C756. [PMID: 30207784 DOI: 10.1152/ajpcell.00002.2018] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
How breast cancer and its treatments affect skeletal muscle is not well defined. To address this question, we assessed skeletal muscle structure and protein expression in 13 women who were diagnosed with breast cancer and receiving adjuvant chemotherapy following tumor resection and 12 nondiseased controls. Breast cancer patients showed reduced single-muscle fiber cross-sectional area and fractional content of subsarcolemmal and intermyofibrillar mitochondria. Drugs commonly used in breast cancer patients (doxorubicin and paclitaxel) caused reductions in myosin expression, mitochondrial loss, and increased reactive oxygen species (ROS) production in C2C12 murine myotube cell cultures, supporting a role for chemotherapeutics in the atrophic and mitochondrial phenotypes. Additionally, concurrent treatment of myotubes with the mitochondrial-targeted antioxidant MitoQ prevented chemotherapy-induced myosin depletion, mitochondrial loss, and ROS production. In patients, reduced mitochondrial content and size and increased expression and oxidation of peroxiredoxin 3, a mitochondrial peroxidase, were associated with reduced muscle fiber cross-sectional area. Our results suggest that chemotherapeutics may adversely affect skeletal muscle in patients and that these effects may be driven through effects of these drugs on mitochondrial content and/or ROS production.
Collapse
Affiliation(s)
- Blas A Guigni
- Department of Medicine, College of Medicine, University of Vermont , Burlington, Vermont.,Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont , Burlington, Vermont
| | - Damien M Callahan
- Department of Medicine, College of Medicine, University of Vermont , Burlington, Vermont
| | - Timothy W Tourville
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont , Burlington, Vermont.,Department of Rehabilitation and Movement Science, College of Nursing and Health Sciences, University of Vermont , Burlington, Vermont
| | - Mark S Miller
- Department of Kinesiology, University of Massachusetts Amherst , Amherst, Massachusetts
| | - Brad Fiske
- Department of Medicine, College of Medicine, University of Vermont , Burlington, Vermont
| | - Thomas Voigt
- Department of Medicine, College of Medicine, University of Vermont , Burlington, Vermont
| | - Bethany Korwin-Mihavics
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont , Burlington, Vermont
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont , Burlington, Vermont
| | - Kim Dittus
- Department of Medicine, College of Medicine, University of Vermont , Burlington, Vermont
| | - Michael J Toth
- Department of Medicine, College of Medicine, University of Vermont , Burlington, Vermont.,Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont , Burlington, Vermont.,Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont , Burlington, Vermont
| |
Collapse
|
5
|
Omobowale TO, Oyagbemi AA, Ajufo UE, Adejumobi OA, Ola-Davies OE, Adedapo AA, Yakubu MA. Ameliorative Effect of Gallic Acid in Doxorubicin-Induced Hepatotoxicity in Wistar Rats Through Antioxidant Defense System. J Diet Suppl 2017; 15:183-196. [DOI: 10.1080/19390211.2017.1335822] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Uchechukwu Enwiwe Ajufo
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumuyima Abiola Adejumobi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, NSB303, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, TX, USA
| |
Collapse
|
6
|
Xin Z, Ma Z, Jiang S, Wang D, Fan C, Di S, Hu W, Li T, She J, Yang Y. FOXOs in the impaired heart: New therapeutic targets for cardiac diseases. Biochim Biophys Acta Mol Basis Dis 2016; 1863:486-498. [PMID: 27890702 DOI: 10.1016/j.bbadis.2016.11.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/24/2016] [Accepted: 11/23/2016] [Indexed: 01/17/2023]
Abstract
Cardiac diseases have a high morbidity and mortality and affect the global population. Based on recent accumulating evidence, Forkhead box O (FOXOs) play important roles in cardiac diseases. Therefore, a summary of the current literature on the molecular mechanisms and roles of FOXOs in the heart will provide valuable information. In this review, we first briefly introduce the molecular features of FOXOs. Then, we discuss the regulation and cardiac actions of the FOXO pathways. Based on this background, we expand our discussion to the roles of FOXOs in several major cardiac diseases, such as ischemic cardiac diseases, diabetic cardiomyopathy and myocardial hypertrophy. Then, we describe some methodological problems associated with the FOXO gene-modified animal models. Finally, we discuss potential future directions. The information reviewed here may be significant for the design of future studies and may increase the potential of FOXOs as therapeutic targets.
Collapse
Affiliation(s)
- Zhenlong Xin
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| |
Collapse
|