1
|
Zheng J, Wang H, Deng Z, Shan Y, Lü X, Zhao X. Structure and biological activities of glycoproteins and their metabolites in maintaining intestinal health. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34619993 DOI: 10.1080/10408398.2021.1987857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Glycoproteins formed by covalent links between oligosaccharide and polypeptides are abundant in various food sources. They are less sensitivity to gastrointestinal enzymes, and hence many of them undergo fermentation in the colon by microorganisms. Therefore, the confer various health benefits on the intestinal ecosystem. However, the current understanding of the effect of glycoproteins on intestinal microorganisms and gut health is limited. This is probably due to their heterogeneous structures and complex metabolic programming patterns. The structure and biological activities of glycoproteins and their microbial metabolites were summarized in this review. The metabolic pathways activated by intestinal bacteria were then discussed in relation to their potential benefits on gut health. Food-derived glycoproteins and their metabolites improve gut health by regulating the intestinal bacteria and improving intestinal barrier function, thereby amplifying immune response. The data reviewed here show that food-derived glycoproteins are promising candidates for preventing various gastrointestinal diseases. Further studies should explore the interaction mechanisms between intestinal microorganisms and host metabolites.
Collapse
Affiliation(s)
- Jiaqi Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Haotian Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Zhanfei Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Xue Zhao
- Department of Nursing, Shandong College of Traditional Chinese Medicine, Yantai, PR China
| |
Collapse
|
2
|
Qiweibaizhu Decoction Treats Diarrheal Juvenile Rats by Modulating the Gut Microbiota, Short-Chain Fatty Acids, and the Mucus Barrier. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8873294. [PMID: 33531924 PMCID: PMC7834800 DOI: 10.1155/2021/8873294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/18/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
Background Qiweibaizhu decoction (QBD), a classic Chinese herbal formula, has been widely used for treating diarrhea in infants and children with spleen deficiency syndrome for centuries, but its mechanism of action remains unclear. The gut microbiota, short-chain fatty acids (SCFAs), and intestinal mucus are closely associated with diarrhea. Methods In this study, the composition of the gut microbiota in diarrheal rats was analyzed by 16S rDNA amplicon sequencing. The concentrations of colon SCFAs were determined using gas chromatography-mass spectrometry (GC-MS). The expression of mucin 2 (MUC2) in the colon was detected by immunofluorescence. Results Diarrhea significantly changed the diversity and structure of the gut microbiota and disrupted the mucus barrier in juvenile rats. QBD did not significantly change the diversity and structure of the intestinal flora, but it enhanced the increasing tendencies of Verrucomicrobia and Akkermansia and decreased the abundance of Turicibacter (P=0.037) and Flavonifractor (P=0.043). QBD tends to repair the mucus layer and promote MUC2 expression in juvenile rats with diarrhea. Moreover, S. boulardii significantly increased the abundance of Parasutterella (P=0.043). In addition, QBD treatment tends to increase the propionic acid concentration during diarrhea, but its levels of acetic acid, propionic acid, butyric acid, and total SCFAs were lower than those in the S. boulardii group. Conclusion S. boulardii significantly increased the abundance of Parasutterella, leading to increased production of acetic acid, propionic acid, and butyric acid, consequently leading to alleviation of diarrhea. In comparison, QBD affected diarrhea via regulation of the intestinal flora, especially by increasing the abundance of Verrucomicrobia and Akkermansia, resulting in mucus barrier repair, protection of the intestines, and treatment of diarrhea.
Collapse
|
3
|
Lu J, Yao J, Xu Q, Zheng Y, Dong X. Clostridium butyricum relieves diarrhea by enhancing digestive function, maintaining intestinal barrier integrity, and relieving intestinal inflammation in weaned piglets. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Guo Y, Li H, Liu Z, Li C, Chen Y, Jiang C, Yu Y, Tian Z. Impaired intestinal barrier function in a mouse model of hyperuricemia. Mol Med Rep 2019; 20:3292-3300. [PMID: 31432190 PMCID: PMC6755192 DOI: 10.3892/mmr.2019.10586] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022] Open
Abstract
Previous studies have demonstrated the effects of hyperuricemia on the damage to target organs, including the kidneys, joints and the heart. However, it is unclear whether hyperuricemia results in damage to the intestines. The aim of the present study was to investigate intestinal barrier dysfunction in a mouse model of hyperuricemia constructed by knocking out the urate oxidase (Uox) gene. The morphology of the intestine was assessed via hematoxylin and eosin, and alcian blue staining. The serum and intestinal tissue levels of uric acid, tumor necrosis factor (TNF)‑α and interleukin (IL)‑6, in addition to the presence of uremic toxins in the serum, were assessed. The levels of diamine oxidase (DAO), D‑lactate (D‑LAC) and endotoxins in the serum, which are markers of the intestinal permeability, were measured using ELISA. The expression of the intestinal tight junction proteins zona occludens‑1 (ZO‑1) and occludin were detected by reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemical analysis. The Uox‑knockout mice spontaneously developed hyperuricemia. Histopathological analysis indicated notable intestinal defects including sparse villi, mucosal edema and a declining mucus layer in hyperuricemic mice. The expression levels of ZO‑1 and occludin in the intestines were downregulated, and the serum levels of DAO, D‑LAC and endotoxins were higher in the hyperuricemic mice, compared with control mice. The serum and intestinal tissue levels of IL‑6 and TNF‑α were significantly increased. Additionally, the expression levels of the serum uremic toxins, serum creatinine, blood urea nitrogen were significantly increased in hyperuricemic mice compared with the control mice, while only a marked increase in indoxyl sulfate (IS) and p‑cresol sulfate was reported. Collectively, the results of the present study suggested that intestinal barrier dysfunction and subsequent enhanced intestinal permeability may occur as a result of hyperuricemia in mice. Furthermore, we proposed that the loss of intestinal epithelium barrier function may be associated with uric acid‑induced inflammatory responses; however, further investigation is required.
Collapse
Affiliation(s)
- Yingjie Guo
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Hailong Li
- Institute of Metabolic Diseases, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhen Liu
- Institute of Metabolic Diseases, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Changgui Li
- Institute of Metabolic Diseases, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yunqing Chen
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Chen Jiang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yanan Yu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
5
|
Shen H, Lei Y, He X, Liu D, He Z. Role of lactadherin in intestinal barrier integrity in experimental neonatal necrotizing enterocolitis. J Cell Biochem 2019; 120:19509-19517. [PMID: 31265168 DOI: 10.1002/jcb.29255] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/29/2022]
Abstract
Necrotizing enterocolitis (NEC) is one of the most widespread and devastating gastrointestinal diseases in neonates. Destruction of the intestinal barrier is the main underlying cause of NEC. The aim of this study was to determine the role of lactadherin in preventing NEC in a neonatal rat model and investigate the molecular mechanism of lactadherin-mediated protection of the intestinal barrier. Neonatal rats were divided into three groups: dam feeding (DF), NEC (NEC), and NEC supplemented with 10 μg/(g·day) recombinant human lactadherin (NEC+L). Intestinal permeability, tissue damage, and cell junction protein expression and localization were evaluated. We found that lactadherin reduced weight loss caused by NEC, reduced the incidence of NEC from 100% to 46.7%, and reduced the mean histological score for tissue damage to 1.40 compared with 2.53 in the NEC group. Intestinal permeability of lactadherin-treated rats was significantly reduced when compared with that of the NEC group. In addition, the expression levels of JAM-A, claudin 3, and E-calcium in the ileum of NEC group animals increased compared with those in the ileum of DF group animals, and these levels decreased in the NEC+L group. Lactadherin changed the localization of claudin 3, occludin, and E-cadherin in epithelial cells. The mechanism underlying lactadherin-mediated protection of the intestinal barrier might be restoring the correct expression levels and localization of tight junction and adherent junction proteins. These findings suggest a new candidate agent for the prevention of NEC in newborns.
Collapse
Affiliation(s)
- Haiqing Shen
- Department of Neonatology, Xin-Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Perinatal Research Laboratory, Xin-Hua Hospital, Shanghai Institute of Pediatric Research Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihui Lei
- Department of Neonatology, Xin-Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuemei He
- Department of Neonatology, Xin-Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danyang Liu
- Department of Neonatology, Xin-Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Perinatal Research Laboratory, Xin-Hua Hospital, Shanghai Institute of Pediatric Research Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenjuan He
- Department of Neonatology, Xin-Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Perinatal Research Laboratory, Xin-Hua Hospital, Shanghai Institute of Pediatric Research Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Phytic acid improves intestinal mucosal barrier damage and reduces serum levels of proinflammatory cytokines in a 1,2-dimethylhydrazine-induced rat colorectal cancer model. Br J Nutr 2018; 120:121-130. [DOI: 10.1017/s0007114518001290] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractPhytic acid (PA) has been demonstrated to have a potent anticarcinogenic activity against colorectal cancer (CRC). Defects of the intestinal mucosal barrier and inflammation processes are involved in the development and progression of CRC. In the present study, we evaluated the effect of PA on the intestinal mucosal barrier and proinflammatory cytokines. After a 1-week acclimatisation period, sixty Wistar male rats were divided into the following five groups, with twelve rats per group: the control group (CG), model group (MG), low-PA-dose group (0·25 g/kg per d), middle-PA-dose group (0·5 g/kg per d), and high-PA-dose group (1 g/kg per d). 1,2-Dimethylhydrazine (DMH) at a dosage of 30 mg/kg of body weight was injected weekly to induce CRC for 18 weeks. We examined the expression of genes related to the intestinal mucosal barrier in the model. The results demonstrated that tumour incidence was decreased following PA treatment. The mRNA and protein expression of mucin 2 (MUC2), trefoil factor 3 (TFF3) and E-cadherin in the MG were significantly lower than those in the CG (P<0·05). The mRNA and protein expression of claudin-1 in the MG were significantly higher than those in the CG (P<0·05). PA elevated the mRNA and protein expression of MUC2, TFF3 and E-cadherin, and diminished the mRNA and protein expression of claudin-1. Furthermore, PA decreased serum levels of proinflammatory cytokines, which included TNF-α, IL-1β and IL-6. In conclusion, this study suggests that PA has favourable effects on the intestinal mucosal barrier and may reduce serum proinflammatory cytokine levels.
Collapse
|
7
|
Abstract
肠黏液屏障是覆盖在肠上皮表面的由黏蛋白构成的凝胶型网状结构. MUC2是黏蛋白的主要成分, 其特殊结构能保障黏液屏障的结构稳定性和抗性. 杯状细胞能通过基础及调节分泌途径生成黏蛋白来维持和更新肠黏液层, 肠道菌群也是黏液的组成、厚度及黏液屏障通透性功能形成的关键因素. 肠黏液屏障能防止腔内细菌接触上皮, 发挥抗感染作用, 调节肠道免疫与外来刺激之间的平衡. 而黏液屏障的结构和功能受损在感染性疾病、炎症性肠病、囊性纤维化、肿瘤等多种肠道疾病的发生发展中也起重要作用, 或许会成为疾病治疗的新靶点.
Collapse
|
8
|
Abstract
Background This study investigated the protective effect of aplysin on the liver and its influence on inflammation and the gut microbiota in rats with ethanol-induced liver injury. Methods Male Sprague-Dawley rats were randomly assigned to an alcohol-containing liquid diet, control liquid diet or treatment with aplysin for 8 weeks. Hepatic and intestinal histopathological analysis was performed, and cytokine levels and the intestinal mucosal barrier were assessed. Enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) and 16S rDNA high-throughput sequencing were performed to provide an overview of the gut microbiota composition. Results Chronic alcohol exposure caused liver damage in rats. Serum aspartate aminotransferase (AST), aminotransferase (ALT), alkaline phosphatase (ALP) and triglyceride (TG) activities in liver tissue were higher than in the control group. Alcohol administration elevated the levels of serum transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α) and reduced interleukin-10 (IL-10) levels compared with those of control rats. In addition, the levels of plasma endotoxin, diamine oxidase (DAO), and fatty acid-binding protein 2 (FABP2) in the alcohol group were higher than in the control group. The results of ERIC-PCR indicated that aplysin treatment shifted the overall structure of the ethanol-disrupted gut microbiota toward that of the control group. One hundred twenty to 190 genera of bacteria were detected by high throughput sequencing. Alcohol-induced changes in the gut microbial composition were detected at the genus level. These alcohol-induced effects could be reversed with aplysin treatment. Conclusions These results suggest that aplysin exerts a protective effect on ethanol-induced hepatic injury in rats by normalizing fecal microbiota composition and repairing intestinal barrier function.
Collapse
|